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Abstract
Arthropod-borne viruses (arboviruses) cause many diseases worldwide and their transmission is
likely to change with land use and climate changes. La Crosse virus is historically transmitted by
the native mosquito Aedes triseriatus (Say) in the upper Midwestern U.S., but the invasive
congeners Aedes albopictus (Skuse) and Aedes japonicus (Theobald), which co-occur with A.
triseriatus in water-holding containers, may be important accessory vectors in the Appalachian
region where La Crosse encephalitis is an emerging disease. This review focuses on evidence for
how climate, land use, and biological invasions may have direct abiotic and indirect community-
level impacts on immature developmental stages (eggs and larvae) of Aedes mosquitoes. Because
vector-borne diseases usually vary in space and time and are related to the ecology of the vector
species, we propose that the ecology of its mosquito vectors, particularly at their immature stages,
has played an important role in the emergence of La Crosse encephalitis in the Appalachian region
and represents a model for investigating the effects of environmental changes on other vector-
borne diseases. We summarize the health effects of La Crosse virus and associated socioeconomic
costs that make it the most important native mosquito-borne disease in the U.S. We review of the
transmission of La Crosse virus, and present evidence for the impacts of climate, land use, and
biological invasions on Aedes mosquito communities. Last, we discuss important questions about
the ecology of La Crosse virus mosquito vectors that may improve our understanding of the
impacts of environmental changes on La Crosse virus and other arboviruses.

Introduction
In the past 60 years, many infectious diseases have emerged so that their epidemiology or
symptoms are distinct from any disease seen previously (e.g., Ebola virus, severe acute
respiratory syndrome, and Nipah virus) (Daszak et al., 2000). Many other infectious diseases
were thought to be under control but are now re-emerging and causing morbidity or
mortality at greater rates or in areas or populations not previously affected (Barrett et al.,
1998; Weiss and McMichael, 2004; Wilcox and Colwell, 2005). Vector-borne diseases are a
significant proportion of emerging and re-emerging infectious diseases (Jones et al., 2008).
The most medically important vectors of disease are mosquitoes and among the most
important pathogens they transmit are arboviruses (Weaver and Reisen, 2010).

An important and emerging mosquito-borne disease is La Crosse virus (LACV) encephalitis.
LACV encephalitis is the most common mosquito-borne disease native to North America
(Calisher, 1994) and second most reported mosquito-borne disease behind introduced WNV
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encephalitis. LACV encephalitis is caused by LACV, which is a bunyavirus belonging to the
Californian (CAL) serogroup of viruses (Family: Bunyaviridae, genus: Orthobunyavirus)
(Tsai, 1991), and is historically transmitted by the native North American tree hole mosquito
Aedes triseriatus (Say). LACV encephalitis has experienced a dramatic geographic shift in
the last 20 years (Fig. 1). It was formerly almost entirely confined to sparsely populated
areas in the upper Midwest with few cases in the Appalachian region (Kappus et al., 1982)
but has emerged in the Appalachian region (Jones et al., 1999), which now yields the highest
incidence risk in the nation among children 15 years and younger (Haddow and Odai, 2009).
The emergence of LACV encephalitis in the Appalachian region has broadly coincided with
the invasion and spread of the Asian Tiger mosquito, Aedes albopictus (Skuse), and the
Asian bush mosquito, Aedes japonicus (Theobald) (=Ochlerotatus japonicus; Reinert, 2000),
which co-occur with A. triseriatus as larvae in water-holding containers (e.g., Livdahl and
Willey, 1991; Swanson et al., 2000; Szumlas et al., 1996; Barker et al., 2003a,b; Joy and
Sullivan, 2005; Bevins, 2007a). Aedes albopictus and A. japonicus invaded the U.S. via
used tires in the mid 1980s and 1990s, respectively. Both species have since spread
throughout the Appalachian region, and A. japonicus is also present in the upper Midwest in
apparently lower numbers (Darsie and Ward, 2005; Morris et al., 2007; Hughes et al., 2008).
Aedes albopictus and A. japonicus are competent laboratory vectors of LACV (Grimstad et
al., 1989; Cully et al., 1992; Sardelis et al., 2002). LACV has been isolated from field
populations of both A. albopictus (Gerhardt et al., 2001; Haddow et al., 2009; Lambert et al.,
2010; Westby et al., 2011) and A. japonicus (Westby et al., 2011). Thus, both invaders may
affect the incidence of LACV in the Appalachian region by acting as important accessory
vectors and by affecting the distribution and abundance of A. triseriatus by competing with
the native species for resources in water-holding containers.

Despite this dramatic emergence in the Appalachian region and the invasions of A.
albopictus and A. japonicus, LACV has received relatively little attention, even in reviews
of emerging arboviruses (Jones et al., 2008; Weaver and Reisen, 2010). LACV cases are
typically under-diagnosed (Calisher, 1994; Utz et al., 2003), which may contribute to the
limited attention to this disease. However, we propose that the dramatic geographic shift of
LACV towards the Appalachian region is unlikely to be due to differential rates of diagnosis
between the Appalachian region and the upper Midwest and is more likely dependent on the
environment. Aedes albopictus is the best-studied invasive mosquito (Juliano and Lounibos,
2005; Juliano, 2009). Despite this background, relatively little is known about how invasion
of A. albopictus affects A. triseriatus, and how interactions among these species may alter
LACV encephalitis risk. Even less is known about the recent invasion of A. japonicus and
its interactions with A. triseriatus or A. albopictus (Juliano and Lounibos, 2005). We
propose that management of LACV encephalitis requires an understanding of how climate
change, land use change, and biotic invasions, affect the ecologies of A. triseriatus, A.
albopictus, and A. japonicus. In this review, we define land use change as conversion of
forest to peridomestic habitats including single rural homes, small towns, or larger suburbs,
all of which increase numbers of artificial water-holding containers.

Incidence of arboviral diseases varies in space and time within a region (Reisen, 2010). For
arboviral pathogens to persist and to spread, mosquito vectors must encounter vertebrate
hosts and favorable environments so that spatiotemporal disease risk is directly related to the
ecology of the vector (Andreadis et al., 2004; Yasuoka and Levins, 2007; Reisen, 2010).
Thus, the ecologies of LACV vectors, particularly eggs and larvae, and their responses to
environmental changes, may be the key processes driving the regional emergence of LACV
encephalitis. In this review we postulate that human settlement facilitates invasions by A.
albopictus and A. japonicus, increasing the risk of transmission of LACV encephalitis in the
Appalachian region. Further, such land use changes combined with impending climate
change will affect future transmission in the Appalachian region and other parts in the U.S.
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We also suggest that climate and land use changes may be altering ecological interactions
among A. triseriatus, A. albopictus, and A. japonicus at the finer scale of individual water-
holding containers that are development sites for larvae of these mosquitoes. Because of
their tendency to bite humans, increased production of adult A. albopictus and A. japonicus
with human settlement and climate change are likely to increase LACV risk. Regional
coexistence of A. triseriatus, A. albopictus, and A. japonicus in a fragmented forest-
peridomestic landscape and diverse local climates is especially likely to increase LACV
transmission if they each contribute to simultaneous zoonotic and bridge transmission, or
maintain LACV in a location throughout multiple seasons (Juliano and Lounibos, 2005;
Juliano, 2009).

We begin with a review of the transmission cycle of LACV and describe recent changes in
its geographic distribution. We summarize the health and socioeconomic effects of LACV
encephalitis that make it an important mosquito-borne disease in the U.S. We then focus on
the ecologies of A. triseriatus, A. albopictus, and A. japonicus, and how environmental
changes may increase risk of LACV encephalitis by influencing the distributions and
abundances of the egg and larval stages of these Aedes. Terrestrial adult mosquitoes are the
direct cause of disease in humans, and ecological factors acting on adults (e.g., seasonal cold
stress, desiccation, availability of hosts) have been an important traditional focus of
investigations of ecology of mosquito-borne disease (e.g., Reisen, 2010). However, the
ecology of mosquito host-vector interactions is only one component of mosquito population
dynamics. Ecology of eggs and larvae is also critical for understanding and managing
mosquito-borne disease and arguably may have a greater role than adult ecology in affecting
the diseases transmitted by mosquitoes that develop in water-holding containers. Physical
factors act directly on eggs and larvae to affect the production, distribution, and coexistence
of adults (e.g., Hanson and Craig, 1995; Teng and Apperson, 2000), and we review evidence
for differential responses of immature A. triseriatus, A. albopictus, and A. japonicus to these
factors. Container-dwelling mosquito larvae are strongly affected by interspecific
competition, predation, and parasitism, and by density dependent effects, which are largely
absent at the adult stage. Such community-level effects can regulate the production and
fitness of adults (Livdahl and Willey, 1991; Lounibos et al., 2003b). Thus, we focus also on
how these biotic interactions regulate populations and coexistence of A. triseriatus, A.
albopictus, and A. japonicus, and how climate and land use may modify these processes. We
postulate that climate and land use play significant roles in LACV encephalitis risk by
affecting the ecology of immature Aedes mosquitoes. Our goal is to outline a paradigm for
investigating the ecology of these Aedes that will contribute to better management of LACV
over different land uses and climates. Because all arthropod vectors are sensitive to
environmental changes, we hope that ideas and approaches in our review will be relevant
beyond understanding LACV, and will guide future efforts to understand how climate and
land use changes affect mosquito ecology and public health.

Health impacts of LACV
LACV is an important cause of pediatric encephalitis in endemic regions of the U.S. LACV
encephalitis is the second most common mosquito-borne encephalitis behind WNV
encephalitis, with a total of 3,590 cases of confirmed and probable CAL serogroup viral
illnesses from 1964 to 2009 (29–167 cases per year; CDC, 2011). Almost all of these CAL
illnesses were LACV (Calisher, 1994; CDC, 2011). LACV cases usually exhibit symptoms
of fever, headache, myalgia, malaise, and occasionally prostration (Calisher, 1994). It is
likely that LACV infection is under-reported because LACV is often not specifically
identified (Calisher, 1994). Mild LACV infections are often misdiagnosed as “flu” or
“summer cold” (Utz et al., 2003) and severe LACV infections as herpes simplex encephalitis
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(Sokol et al., 2001). Cryptic infections may be as high as 300,000 per year in the U.S. (Rust
et al., 1999).

Severe LACV cases can lead to encephalitis, with permanent neurologic sequelae or death in
approximately 0.5% of cases (Rust et al., 1999). Although mortality is low compared to
other arboviral diseases (Utz et al., 2003), a substantial socioeconomic burden is associated
with LACV. For example, in North Carolina, direct and indirect costs of 25 cases totaled
nearly $800,000 (mean ± SD: $32,974 ± $34,793 per case) over nearly 90 accumulated life
years. Projected costs of lifelong neurologic sequelae are as high as $3,090,798 per patient.
Lost workdays due to a LACV case are estimated to be an order of magnitude greater than
those from dengue epidemics in Puerto Rico (Von Allmen et al., 1977; Torres, 1997).

Biology of LACV vectors
Aedes triseriatus is the natural vector and overwintering host of LACV. The virus has been
repeatedly isolated from A. triseriatus in the field (e.g., Sudia et al, 1971; Watts et al., 1974;
Szumlas et al., 1996; Nasci et al., 2000). Laboratory transmission experiments (Watts et al.,
1972, 1973; Woodring et al., 1998), and the spatial and temporal association of A. triseriatus
with zoonotic and human hosts with antibodies to LACV (e.g., Thompson and Evans, 1965;
Wright and DeFoliart, 1970; Moulton and Thompson, 1971), all implicate A. triseriatus as
the main vector. Aedes triseriatus circulates LACV naturally among eastern chipmunks
(Tamias striatus), gray squirrels (Sciurus carolinensius), red foxes (Vulpes fulva), and
possibly other small mammals (Calisher, 1994; Grimstad, 1988) in hardwood forests
containing vector immature-stage (eggs and larvae) habitat of water-holding treeholes.
Aedes triseriatus transovarially transmits LACV and the virus overwinters in diapausing A.
triseriatus eggs (Watts et al., 1974).

Historically, most cases of LACV encephalitis have been reported from Wisconsin,
Minnesota, Illinois, and Ohio (Fig. 1). However, in the past 20 years LACV has emerged in
West Virginia, Tennessee, and North Carolina (Fig. 1). Encroachment of human dwellings
into hardwood forests may have facilitated the emergence of LACV in the Appalachian
region since A. triseriatus can also colonize artificial and natural containers in shaded
peridomestic environments (Szumlas et al., 1996; Debboun et al., 2005; Kling et al., 2007;
Yee, 2008). Complicating the epidemiology of LACV is the spread of the invasive
congeners A. albopictus and A. japonicus into the Appalachian region. Aedes albopictus is a
particularly aggressive day-time biter of small mammals and humans, making it an effective
bridge vector of LACV (Estrada-Franco and Craig Jr., 1995). Aedes japonicus is also a
daytime biter of a variety of hosts including humans (Andreadis et al., 2001; Goudarz et al.,
2009). LACV has been isolated from A. albopictus eggs and adults (Gerhardt et al., 2001;
Haddow et al., 2009; Lambert et al., 2010; Westby et al., 2011) and A. japonicus adults
(Westby et al., 2011) in the field. For both species, LACV positive adults have been found at
case sites of LACV encephalitis in eastern Tennessee (Haddow et al., 2009, Westby et al.,
2011), implicating these species as vectors of human cases in the Appalachian region.
Laboratory infection and oral transmission rates for A. albopictus may be equal to or greater
than those for A. triseriatus (Grimstad et al., 1989; Cully et al., 1992), although disseminated
infection (Hughes et al., 2006) and transoviral transmission (Tesh and Gubler, 1975) rates
are lower.

Environmental effects on La Crosse vectors
Direct effects on immature stages

Aedes albopictus appears to require higher temperatures than A. triseriatus to complete
larval development (Teng and Apperson, 2000). We may expect strong selection on adult A.
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albopictus to oviposit in areas that receive more radiant energy and thus be more likely to
utilize containers in sunlit peridomestic areas warmed by built structures (McIntyre, 2000).
Aedes albopictus and A. japonicus show a greater oviposition preference for sunlit
peridomestic areas compared to A. triseriatus, which prefer to oviposit in forested areas
(Barker et al., 2003 a,b; Joy and Sullivan, 2005). The role of microclimate in female
oviposition choice and immature survival of these Aedes mosquitoes is still poorly
understood.

Aedes triseriatus is widely regarded as extremely tolerant of a range of temperatures and is
distributed from Florida to eastern Canada (Darsie and Ward, 2005). Since its arrival, A.
japonicus has spread as far south as Georgia (Gray et al., 2005) and north into eastern
Canada (Thielman and Hunter, 2006). Aedes albopictus has spread south into Florida and as
far north as the latitude at which daily mean January temperatures reach −5°C in the eastern
U.S., which was predicted by its northern distribution in its native range (Nawrocki and
Hawley, 1987). The more limited distribution of A. albopictus to regions of warmer
temperatures and higher humidity appears to be due to lower overwintering egg survivorship
(Andreadis, 2009). Climate change is expected to increase mean temperatures and milder
winters of across much of North America (IPCC, 2007), and thus may favor the northward
spread of all Aedes mosquitoes and, more importantly, the movement of A. albopictus into
areas already occupied by A. triseriatus and A. japonicus. Overwintering survival of Aedes
eggs depends on temperature minimum and duration of exposure (Hawley et al., 1989;
Hanson and Craig, 1994; Hanson and Craig, 1995). In laboratory experiments, the absolute
minimum temperature that cold-acclimatized diapausing A. albopictus eggs can withstand
can be as low as −12°C (Hanson and Craig, 1994), but that there has been survivorship of A.
albopictus eggs in the field when briefly exposed to these temperatures (Hanson and Craig,
1995). It is likely that northern A. albopictus populations overwinter in areas where mean
temperatures reach −5°C only if females oviposit in containers that are not subjected to
prolonged extreme cold. Artificial containers in peridomestic areas (e.g., disused tires, trash
receptacles) may be particularly well buffered against cold temperatures and increase
overwintering success of A. albopictus. Thus, increasing conversion of forest into
peridomestic areas may combine with climate change to promote the northward expansion
of A. albopictus. Arboviral infections commonly affect overwintering Aedes mortality and
the fitness of infected larvae. Mortality of overwintering LACV infected A. triseriatus eggs
is greater than for uninfected eggs (McGaw et al. 1998). Species-specific overwintering
mortality effects of LACV infection would affect LACV vectors but effects of LACV on
overwintering A. albopictus or A. japonicus, vertical transmission of LACV in A. japonicus,
and fitness of larvae infected with LACV have not been tested.

Aedes japonicus may be excluded from warm rock pool habitats, suggesting that a
temperature barrier may inhibit A. japonicus populations from occupying southern areas of
the U.S. with relatively high summer temperatures (Andreadis and Wolfe, 2010). Thus,
climate change may also limit the spread southward of A. japonicus or even favor a
retraction of this species’ southern range. However, as with A. albopictus, any regional
climate changes are likely to interact strongly with climate variation among individual
containers. Topographical diversity is also likely to contribute to local climate variability
and affect both northern and southern distributions of Aedes mosquitoes in complex ways.
Such regional and local scale variation in climate may be especially prominent in the
Appalachian region, with its mountainous landscapes (Joy and Sullivan, 2005).

Community level effects on immature stages
Water-holding containers have low primary productivity (Fish and Carpenter, 1982;
Carpenter, 1983). Almost all food resources are derived from allochthonous inputs of
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organic detritus and associated microorganisms (Carpenter, 1983; Merritt et al., 1992;
Kitching, 2000; Kaufman et al., 2001). Thus, populations of Aedes in containers are often
resource limited (Kitching, 2000, 2001) and competition for microbial food is likely the
strongest ecological process structuring communities (Kitching 2001; Juliano and Lounibos,
2005). Some container habitats harbor predators and parasites that can regulate populations
of Aedes mosquitoes. Prominent predators include the mosquito Toxorhynchites rutilus
(Coquillet) and the midge Corethrella appendiculata (Graham) (Lounibos et al., 2001).
Common parasites include the gregarine gut parasites Ascogregarina barretti (Vavra) and
Ascogregarina taiwanensis (Lien and Levine) (Tseng, 2007), and obligate intracellular
microsporidia (Andreadis, 2007). Pathogenic viruses have been isolated from A. triseriatus
and A. albopictus (Becnel and White, 2007), but little is known about how they affect the
ecology of either species.

Competition, predation, and parasitism can impact roles of A. albopictus and A. japonicus in
disease transmission. When an invasive mosquito replaces a resident mosquito via
competition, disease transmission changes if the invader is a more or less efficient vector
(Juliano and Lounibos, 2005). Intensity of competition and resultant changes in adult body
size or condition can affect the transmission of LACV (Grimstad and Haramis, 1984;
Grimstad et al., 1989; Grimstad and Walker, 1991; Paulson and Hawley, 1991). When an
invasive vector escapes enemies from its native range, distribution and abundance of that
species may be enhanced. Likewise, native enemies may limit spread and impact of invasive
mosquitoes (Juliano et al., 2010). These biotic interactions among larvae are well
documented for A. triseriatus and A. albopictus, but not A. japonicus. Further, these effects
likely will change with climate and land use.

Competition
Laboratory and field experiments consistently show A. albopictus to be superior in
competition for food resources to A. triseriatus (Livdahl and Willey, 1991; Novak et al.,
1993; Teng and Apperson, 2000; Aliabadi and Juliano, 2002; Yee et al., 2007; Juliano,
2009). Despite the competitive superiority of A. albopictus, there is little evidence for
competitive exclusion of A. triseriatus (Juliano and Lounibos, 2005). Experiments on
competition between A. albopictus and A. japonicus show clear competitive superiority for
A. albopictus (Armistead and Lounibos, 2007). No studies have tested competition between
A. japonicus and A. triseriatus but the spread of A. japonicus is associated with a decline of
A. triseriatus and other native species in waste tire sites in Connecticut (allopatric to A.
albopictus) suggesting competitive displacement (Andreadis and Wolfe, 2010). In the
Appalachian region, Aedes japonicus are becoming the most abundant mosquito species in
artificial containers where all three Aedes species coexist (Joy and Sullivan, 2005; Bevins,
2007a; Grim et al., 2007).

Superior overwintering survival and earlier hatching may enable A. triseriatus and A.
japonicus to exploit vacant habitats early in the spring and to persist throughout the summer
despite being competitively inferior to A. albopictus (Barker et al., 2003a,b; Swanson et al.,
2000). The requirement for higher temperatures by A. albopictus to attain the same
development rate as A. triseriatus, may also contribute to the dominance of A. triseriatus in
northern, cooler regions of North America (Juliano and Lounibos, 2005). Alternative
hypotheses for the regional persistence of A. triseriatus after the invasion of A. albopictus
involve varying outcomes to interspecific competition across habitat gradients (Juliano,
2009). One form of competition among these Aedes, interference competition via direct
physical or chemical negative effects, may relax the impacts of resource competition on A.
triseriatus and promote its persistence. Aedes triseriatus and A. albopictus hatch when eggs
are flooded and delay hatching, to varying degrees, in response to older larvae feeding in the
water (Edgerly et al., 1993). Later-stage Aedes larvae are likely to be superior resource
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competitors and less susceptible to toxic effects of excretory products (e.g., ammonium)
than younger Aedes larvae (Walker et el., 1991; Sunahara and Mogi, 2002). Aedes
albopictus is both least sensitive to delayed hatching effects and more likely as a fourth-
instar larva to produce this inhibitory effect than A. triseriatus (Edgerly et al., 1993).
Delayed hatching of A. triseriatus may result in avoiding later stage A. albopictus and
limited delayed-hatching response of A. albopictus may decrease A. triseriatus vulnerability
to competition. However, as yet, no studies have considered how land use or climate
changes may modify this asymmetrical interaction or interference competition involving A.
japonicus.

Advantage in resource competition between A. triseriatus and A. albopictus appears to
change with the nature of the container and resource, with A. albopictus having a strong
advantage in discarded tires but coexistence expected in tree holes (Livdahl and Willey,
1991). Because the frequency of natural vs. artificial containers and the type and amount of
detritus inputs likely change from forested to peridomestic areas, it is probable that land use
change alters the competitive outcomes among A. triseriatus, A. albopictus, and perhaps A.
japonicus, yielding another hypothesis for regional coexistence of these competitors. In the
laboratory, the outcome of competition between A. triseriatus and A. albopictus appears to
vary with the amount of total detritus and the ratio of leaf detritus to drowned insect detritus
(Yee et al., 2007). The competitive advantage of A. albopictus is reduced with greater total
detritus and greater proportions of insect detritus (Yee et al., 2007), suggesting that
coexistence is more likely in habitats with greater total or animal detritus inputs. Different
temporal patterns of detritus input also alter competitive interactions between A. triseriatus
and A. albopictus, with multiple small, evenly-spaced inputs reducing competitive
asymmetry compared to single large pulses (Bevins, 2007b). This result suggests that
patterns of detritus input may also contribute to coexistence between competing Aedes
species.

Forested areas are also less likely to be dominated by non-native vegetation than are urban
areas (Thuiller et al., 2008). Different leaf species support different quantities (and possibly
different species) of microorganisms (Walker et al., 1991; Yee and Juliano 2006), which in
turn affects the quantity or quality of food for Aedes mosquitoes (Murrell and Juliano, 2008;
Reiskind et al., 2009). Differential feeding of mosquito species on microorganism species or
an overabundance of microorganisms available to both species alter or even reverse
interspecific competitive advantage between A. triseriatus and A. albopictus, allowing their
regional coexistence (Yee et al., 2007). To date no experiments have directly tested
competitive outcomes among A. triseriatus, A. albopictus, and A. japonicus with detritus
types chosen to represent different land use patterns. The nutritional quality of leaf detritus
is highly dependent on the concentrations of nitrogen and carbon-based secondary
compounds of the detritus (e.g., phenolics, tannins, and lignin) (Strand et al., 1999;
Tuchman et al., 2003). Leaf species decomposition rate increases with nitrogen:carbon
(N:C) ratio (Peterson and Cummins, 1974). High concentrations of carbon-based secondary
metabolites are also likely to affect Aedes communities by being toxic to larvae, altering
microbial food communities, and influencing the impacts of parasites (Sota, 1993; Mercer
and Anderson, 1994).

Predation
Intraguild predation also may limit invasion of A. albopictus into containers with A.
triseriatus. Fourth-instar larvae of A. triseriatus are more likely to prey upon newly hatched
conspecifics and A. albopictus, and newly-hatched A. triseriatus are less vulnerable to such
intraguild predation (Edgerly et al., 1999). Intraguild predation early in the season may be
especially important for the persistence of A. triseriatus throughout the summer. However,
no studies have considered how land use or climate change may modify intraguild predation
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or tested for intraguild predation involving A. japonicus. Top-down predation also may
structure A. triseriatus and A. albopictus communities, and that predators are likely affected
by land use and climate. Toxorhynchites rutilus and Corethrella appendiculata produce
strong top-down effects in treeholes and other containers in forests, which are dominated by
A. triseriatus and where A. albopictus is less common (Bradshaw and Holzapfel, 1983,
1985; Lounibos, 1983, 1985; Kesavaraju et al., 2008). Laboratory and field tests show that
A. albopictus is more vulnerable to these predators (Kesavaraju and Juliano, 2004; Griswold
and Lounibos, 2005; Juliano et al., 2010), in part because A. triseriatus shows reduced
movement and foraging, which reduces predation risk, in response to water-borne cues from
either T. rutilus or C. appendiculata predation, whereas A. albopictus show much more
limited behavioral changes (Kesavaraju and Juliano, 2004, Kesavaraju et al., 2007). Few
studies have examined the role of top-down predation in A. japonicus invasion, but as with
A. triseriatus, A. japonicus shows greater reduction of movement and foraging in response
to water-borne cues from T. rutilus than does A. albopictus (Kesavaraju et al., 2011). These
predators are less common in open peridomestic areas and thus wooded areas appear to act
as barriers to A. albopictus spread (Kesavaraju et al., 2008; Juliano et al., 2010). Thus,
reduction in forested areas with increased urbanization would likely reduce predation and
facilitate the spread of A. albopictus, while intact forest may act as a barrier to invasion of
A. albopictus.

Parasitism
Parasitism by gregarines has been shown to affect the interaction of A. triseriatus and A.
albopictus, and these parasites themselves are likely affected by climate. The gregarine
parasites of A. triseriatus and A. albopictus [Ascogregarina barretti and Ascogregarina
taiwanensis, respectively] cannot infect each other’s hosts, so species-specific effects of
climate on the development and spread of each parasite would likely have an impact on
mosquito assemblage composition. When A. albopictus invades a new area, gregarine
parasitism is reduced for several years (Munstermann and Wesson, 1990; Blackmore et al.,
1995; Aliabadi and Juliano, 2002). Aedes triseriatus in such newly-invaded areas are
typically more heavily parasitized than A. albopictus, and this asymmetry in parasite load
accentuates competitive advantage of A. albopictus (Aliabadi and Juliano, 2002). It is
unclear how climate or land use change may impinge on gregarine parasites, but Van Rhein
et al. (2000) showed that the drying of tree holes greatly reduced intensity and frequency of
parasitism by A. barretti, suggesting that climate shifts toward aridity may reduce parasitism
and increase Aedes populations. To our knowledge, no research has investigated community
effects of parasites of A. japonicus.

Geographic variation
Predicting the impacts of climate and land use on LACV vectors may be complicated by
geographic variation in ecological processes, which can result from varying abiotic or biotic
environments favoring one species over the other, or from inherent geographic
differentiation of local populations. Differences among populations of A. albopictus and A.
triseriatus have been documented for numerous life-history traits. However, except for
differences in diapause incidence (Shroyer and Craig, 1983; Lounibos et al., 2003a) and
susceptibility to and transmission of LACV (Grimstad et al., 1977), no interregional
differences can be attributed to differences in latitudinal climate, LACV distribution,
predator abundances, or competitor abundances (Juliano, 1996; Frankino and Juliano, 1999;
Armbruster and Conn, 2006; Leisnham et al., 2009). These findings suggest that highly local
factors may select for life history differentiation, or that local variation results from strong
founder effects, genetic drift, or other non-selective processes. Geographic variation in
susceptibility to and transmission of LACV presents an interesting pattern of lower
susceptibility and transmission among A. triseriatus from LACV-endemic areas of the upper
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Midwest (Grimstad et al., 1977), suggesting that LACV selects for resistance among its
vectors (Grimstad et al., 1977). This study included only one A. triseriatus population from
the Appalachian region (Cashiers, NC), which showed high susceptibility and transmission,
as was typical of populations from non-endemic regions (Grimstad et al., 1977). This result
suggests that: first, LACV was in fact rare or absent in the Appalachian region at the time of
Grimstad et al.’s study, and that subsequent emergence of LACV in this region represents a
real change in LACV distribution and abundance; second, susceptibility and transmission by
newly invasive vectors A. albopictus and A. japonicus in a LACV-endemic region may be
similarly high, making new invaders particularly important as LACV vectors.

Future Research and Conclusions
For a better understanding of LACV encephalitis we require investigations of the: i) impacts
of biotic interactions (competition, predation, parasitism, vector-host interactions) involving
A. triseriatus, A. albopictus, and A. japonicus in the field in both the Midwestern and
Appalachian regions; ii) potential effects of climate change, land use change, and their
interaction, on those biotic interactions; and iii) means to predict the temporal and spatial
consequences of these biotic interactions on the distributions, abundances, animal and
human host contacts of these vectors, and their vector competence. Knowing the
composition of Aedes communities, including species co-occurrence patterns and
abundances, across different land uses will be valuable. Such surveys must determine if
containers along forest-to-peridomestic gradients have different leaf litter inputs,
hydroperiods, and temperatures that may modify the impacts of climate change on mosquito
communities. Experiments under controlled laboratory conditions can be useful for testing
potential effects of particular factors (e.g., leaf detritus, hydroperiod, and temperature) on
interspecific competition, predation and parasitism. Other experiments may test the effects
of desiccation and temperature on survival of Aedes eggs and their effects on population
growth rates. Field manipulations of climate or land use variables across latitude will be
necessary to determine the actual importance of these factors. Models of the effects of
microclimate on the population parameters of Aedes of under different climate scenarios
will be necessary to integrate interactive effects of climate and land use on mosquito
performance across the dynamic landscapes in both the Midwestern and Appalachian
regions. Re-examination of susceptibility to and transmission of LACV by A. triseriatus
populations from the Midwestern and Appalachian regions, and currently non-endemic areas
(e.g., Florida), would be extremely interesting as a way of testing predictions of the
hypothesis that LACV selects for resistance among A. triseriatus. Similar comparative
studies of susceptibility to and transmission of LACV by invasive vectors A. albopictus and
A. japonicus from these regions would also be informative for understanding the
consequences of invasions of novel vectors into LACV endemic areas.
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Fig. 1.
Number of cases with CAL serogroup viral disease in Midwestern (Ohio, Wisconsin,
Minnesota, Illinois) and Appalachian (West Virginia, North Carolina, Tennessee) states of
the United States (CDC 2011).
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