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Abstract.—In Bayesian divergence time estimation methods, incorporating calibrating information from the fossil record is
commonly done by assigning prior densities to ancestral nodes in the tree. Calibration prior densities are typically para-
metric distributions offset by minimum age estimates provided by the fossil record. Specification of the parameters of
calibration densities requires the user to quantify his or her prior knowledge of the age of the ancestral node relative to the
age of its calibrating fossil. The values of these parameters can, potentially, result in biased estimates of node ages if they
lead to overly informative prior distributions. Accordingly, determining parameter values that lead to adequate prior den-
sities is not straightforward. In this study, I present a hierarchical Bayesian model for calibrating divergence time analyses
with multiple fossil age constraints. This approach applies a Dirichlet process prior as a hyperprior on the parameters of
calibration prior densities. Specifically, this model assumes that the rate parameters of exponential prior distributions on
calibrated nodes are distributed according to a Dirichlet process, whereby the rate parameters are clustered into distinct
parameter categories. Both simulated and biological data are analyzed to evaluate the performance of the Dirichlet process
hyperprior. Compared with fixed exponential prior densities, the hierarchical Bayesian approach results in more accurate
and precise estimates of internal node ages. When this hyperprior is applied using Markov chain Monte Carlo methods, the
ages of calibrated nodes are sampled from mixtures of exponential distributions and uncertainty in the values of calibration
density parameters is taken into account. [Bayesian divergence time estimation; Dirichlet process prior; fossil calibration;
hyperprior; MCMC; relaxed clock.]

Since Zuckerkandl and Pauling (1962) put forth their
hypothesis describing molecular evolution as a clock-
like process, such that nucleotide or amino acid substi-
tutions occur at a constant rate over time, researchers
have integrated data from the fossil record with molec-
ular sequence data to date lineage divergence events
on the tree of life. Recently developed methods for ac-
commodating variation in rates of substitution among
lineages make it possible to relax the assumption of
a global molecular clock and can provide robust esti-
mates of relative species divergence times (Hasegawa
et al. 1989; Kishino and Hasegawa 1990; Sanderson
1997, 2002; Thorne et al. 1998; Huelsenbeck et al. 2000;
Kishino et al. 2001; Yang and Yoder 2003; Thorne and
Kishino 2005; Drummond et al. 2006; Lepage et al. 2006;
Rannala and Yang 2007; Drummond and Suchard 2010;
Heath et al. 2012). Consequently, when combined with
carefully applied node age constraints based on reliable
date estimates from geological data, relaxed-clock di-
vergence time analyses can also produce more accurate
estimates of the absolute ages of ancestral nodes.

When used to calibrate relaxed-clock phylogenetic
analyses, age constraints are typically assigned to
nodes representing known most-recent-common an-
cestors (MRCA) of living taxa present in an align-
ment of molecular sequence data. Although it is
possible to calibrate an analysis using known substi-
tution rates, biogeographical event dates, or inferred
node age estimates from previously published studies,
age estimates of fossil organisms are the primary and

(typically) most reliable source for time calibration
(Marshall 2008; Kodandaramaiah 2010). However, nu-
merous challenges arise when calibrating molecular
phylogenies with fossil age estimates (Graur and Martin
2004; Gandolfo et al. 2008; Ho and Phillips 2009). Dis-
parity in fossilization and preservation, geographical
distribution, and fossil recovery biases are all factors
influencing the availability of adequate fossil calibra-
tions for certain clades (Benton and Ayala 2003; Lloyd
et al. 2012). Moreover, new fossil discoveries must be
carefully identified, described, analyzed, dated, and cu-
rated; endeavors both challenging and labor intensive.
It is also no small undertaking to identify the phyloge-
netic placement of a fossil. Ideally, this is done by con-
ducting thorough phylogenetic analyses of homologous
morphological characters from both extant and fossil
taxa (e.g., Brochu 1997; Feng et al. 2009; Magallón 2009;
Ruane et al. 2010; Wiens et al. 2010). However, combined
phylogenetic analyses become increasingly difficult de-
pending on the completeness of available fossils and
the availability of morphological data for extant species.
As a consequence, fossil age constraints are often as-
signed to putative ancestral nodes based on taxonomy
or other criteria, which can lead to inaccurate node age
estimates if the fossil is truly older than its presumed
ancestor (Benton and Ayala 2003; Graur and Martin
2004; Hug and Roger 2007; Marshall 2008). In spite of
such challenges, fossil and geological data are practi-
cally essential for estimating the absolute ages of lineage
divergences.
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With reliably dated and identified fossil taxa in hand,
further consideration must be taken when applying
age constraints and calibrating divergence times. The
approach to incorporating calibration dates can signifi-
cantly impact node time estimates throughout the tree
(Graur and Martin 2004; Benton and Donoghue 2007;
Hug and Roger 2007). The ages of fossil taxa can only
provide reasonable minimum age estimates for calibrat-
ing internal nodes (Benton and Ayala 2003; Marshall
2008). For this reason, applying a point calibration by
assuming the fossil date is an error-free age estimate of
the age of the MRCA of the clade to which it is assigned
can result in erroneous branching time estimates and is
not recommended (Graur and Martin 2004; Hedges and
Kumar 2004; Ho 2007). This pitfall can be circumvented
without difficulty when prior densities are applied to
calibrated nodes in a Bayesian framework.

The fossil record provides prior information about
the ages of certain nodes in the tree of life, and dates
obtained from fossil taxa are easily incorporated in
Bayesian inference methods for divergence time estima-
tion (Kishino et al. 2001; Drummond et al. 2006; Yang
and Rannala 2006; Benton and Donoghue 2007; Ho 2007;
Ho and Phillips 2009). The common practice in Bayesian
phylogenetic dating methods is to apply parametric dis-
tributions as prior densities on the ages of calibrated
nodes (Fig. 1). The prior density placed on a calibrated
node is typically offset by the minimum age estimate
obtained from the fossil specimen. Parameterization of
the node age prior can accommodate uncertainty about
the timing of the divergence event in relation to its cal-
ibration time. In their thorough review, Ho and Phillips
(2009) describe different approaches to applying calibra-
tion dates for divergence time estimation and explic-
itly discuss the use of calibration priors for Bayesian
inference, highlighting the importance of judicious
application of calibration prior densities.

In Bayesian inference, parameters describing a prior
distribution are called hyperparameters, thus distin-
guishing them from parameters estimated as part of
the likelihood model. Figure 1 illustrates some of the
parametric distributions often used as priors on fossil-
calibrated nodes. When specifying a prior density and
the values of its associated hyperparameters (such as
the shape and rate of the gamma distribution), the user
must make assumptions about the expected age of each
calibrated node relative to the external constraint. If
prior data regarding the age difference between the fos-
sil and ancestral node or a maximum age bound are
unavailable, the parameter values of the prior distribu-
tion must be set so that the prior on the calibrated node
age is not overly informative (Yang and Rannala 2006).
An excessively informative prior implies explicit knowl-
edge about the true age of the ancestral node in rela-
tion to the age of its fossilized descendant. If a highly
informative prior is erroneously specified, posterior
samples of node ages throughout the tree may be bi-
ased, potentially leading to inaccurate divergence time
estimates. Conversely, a vague prior signifies equivocal
knowledge about the age of the calibrated node, giving

FIGURE 1. Examples of four different types of probability densi-
ties and associated hyperparameters commonly used as priors on the
ages of calibrated nodes when provided a minimum age estimate.
The ages of the N = 10 tips (a1, a2, . . . , a10) are known and indicated
with black circles. The internal nodes are labeled N + 1, . . . , 2N − 1 in
postorder sequence. For the majority of empirical data sets, it is not
possible to place a reliable age constraint on most internal nodes
(white circles: a11, a13, a14, a16, a18, a19) and a general prior on branch-
ing times is assumed for uncalibrated internal nodes (e.g., birth–death
process or uniformly distributed node times). Geological data can pro-
vide information that can be used to calibrate certain nodes (gray cir-
cles: a12, a15, a17). Typically, a node is calibrated by placing a minimum
age obtained from the oldest known descendant fossil taxon (gray ar-
rows). Provided that the phylogenetic placement of the fossil is correct,
the age of the calibrated node is assigned a prior distribution. This ex-
ample shows four different prior densities for the age of calibrated
node number 17 (separate priors can be specified for nodes 12 and
15 in the same manner). The gray dotted line indicates the minimum
age constraint placed on the age of node 17 by the fossil descendant
(gray arrow). Commonly used parametric distributions are offset by
the minimum age provided by the fossil and each requires that hyper-
parameter values (in parentheses) be specified prior to analysis.

higher relative probability to a greater range of values
compared with an overly informative prior. In some
cases, an uninformative prior can result in estimates
similar to those produced by frequentist methods. It is
also important to note that an overly disperse prior may
lead to problematic estimates of parameter values if sig-
nificant probability is assigned to unrealistic values and
if there is insufficient signal in the data to inform infer-
ence, though this will be reflected in the relevant credi-
bility intervals resulting from the Bayesian analysis.

Although, in most cases, prior knowledge of the true
node age is unavailable and specifying a vague prior
is the preferred approach, selecting parameter values
that lead to a sufficiently vague prior density for each
calibrated node can be challenging. Recently, Dorn-
burg et al. (2011) presented a multiple-step method
that identifies a set of “consistent” fossils and discards
“inconsistent” node calibrations that may result in bi-
ased, excessively young node age estimates. Addition-
ally, they parameterize prior distributions on calibrated
nodes based on the bracketing approach developed
by Marshall (2008). This novel approach attempts to
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account for disparity in fossil preservation, whereby the
probability of fossilization and recovery is higher for
younger lineages (Marshall 1990). Because researchers
using fossil data to calibrate divergence time estimates
often find themselves in need of clear methods for pa-
rameterizing prior distributions on calibrated nodes,
the approach described by Dornburg et al. (2011) is a
worthwhile contribution to the field, providing a re-
peatable and direct method for specifying prior densi-
ties on nodes calibrated by information from the fossil
record. Additionally, it is of vital importance that molec-
ular biologists conducting studies employing data from
the fossil record evaluate and understand each fossil
specimen included in their analyses, and calibration–
validation methods provide a means for researchers
to familiarize themselves with relevant geological data
(Near et al. 2005; Hugall et al. 2007; Rutschmann et al.
2007; Marshall 2008; Dornburg et al. 2011; Warnock
et al. 2012). There are, however, potential drawbacks
to discarding fossil calibrations that are (assumed) cor-
rectly placed on the tree since previous studies have
indicated that the placement and number of fossil cali-
brations may impact estimates of node ages (Hug and
Roger 2007; Rutschmann et al. 2007; Moreau and Bell
2011; Lukoschek et al. 2012). Moreover, the approach of
Dornburg et al. (2011) specifies the hyperparameters
of calibration densities based on the fossil ages, which
can potentially lead to overly informative prior distri-
butions, particularly for younger fossils. Such informa-
tive priors can, in turn, result in biased underestimates
of species divergence times. To overcome these chal-
lenges, a hierarchical Bayesian approach can provide a
repeatable method for integrating fossil data to calibrate
relaxed-clock analyses of molecular data sets.

Estimation in a hierarchical Bayesian framework al-
lows for inference under richer classes of models that
are better at reflecting our statistical understanding of
the distribution of ancestral node ages in relation to fos-
sil calibrations. In addition, such methods diminish the
difficulty of specifying hyperparameter values that lead
to adequate prior distributions on calibrated nodes. In
Bayesian inference, an additional prior distribution can
be placed on a hyperparameter of a prior distribution
(Fig. 2). These second-order priors are called hyperpri-
ors and are very useful for incorporating uncertainty
in the hyperparameters (e.g., rate, shape, scale, or lo-
cation parameters) of a prior distribution (Carlin and
Louis 2000). A generic hierarchical Bayesian model is
illustrated in Fig. 2, where a lognormal prior density is
assigned to the parameter of interest (χ), and the stan-
dard deviation hyperparameter (σ) of that lognormal
distribution follows a gamma distribution:

σ ∼ Gamma(s,β),
χ ∼ Lognormal(μ,σ),

where s and β are the shape and rate parameters of
the gamma-distributed hyperprior, respectively, and μ
is the mean of the lognormal prior distribution describ-
ing χ. Thus, generating values of χ under this model in-

FIGURE 2. A generic example of a hierarchical Bayesian model.
Hyperparameter values are sampled from the hyperprior (a) and used
to parameterize the prior density assigned to the parameter of interest
χ (b). In this example, χ follows a lognormal distribution with a mean
(μ) and standard deviation (σ). A gamma distribution with shape (s)
and rate (β) parameters is the hyperprior and describes the standard
deviation hyperparameter (σ) of the lognormal prior on χ.

volves first drawing an instance of the hyperparameter,
σ, from the gamma hyperprior distribution (Fig. 2a),
then an instance of χ is sampled from the prior den-
sity: Lognormal(μ,σ) (Fig. 2b); and this entire proce-
dure is repeated for each occurrence of χ sampled from
the lognormal prior density. Namely, in the field of
Bayesian phylogenetic inference and divergence time
estimation, when lineage-specific substitution rates are
assumed to be independent draws from an under-
lying lognormal distribution in the program BEAST
(Drummond and Rambaut 2007), separate hyperpriors
are typically applied to the mean and standard devia-
tion hyperparameters of that distribution (Drummond
et al. 2006). As a result, the lineage-specific rates are
sampled by Markov chain Monte Carlo (MCMC) from a
mixture of lognormal distributions, even though the un-
correlated lognormal model is not a true mixture model.
Bayesian methods employing hierarchical models pro-
vide additional information in the form of posterior
estimates of hyperparameter values. In the case of diver-
gence time analysis in BEAST, estimates of the variance
parameter of the lognormal distribution can indicate de-
viation from or conformity to a strict molecular clock.
Furthermore, applying hyperpriors frees the user from
the responsibility of specifying the values of hyperpa-
rameters, and uncertainty regarding the parameteriza-
tion of a prior distribution is taken into account.

Calibration ages can rarely be assigned to nodes of
a tree without error, and much of the information as-
sociated with geological dates is lost when the fossil
record of a clade is represented as a single time estimate
applied to a single internal node. Because of the con-
siderable uncertainty associated with calibration dates,
it is necessary to accommodate this in priors placed
on calibration node ages. In this study, I considered a
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mixture model, the Dirichlet process prior, for use as a
hyperprior on the rate parameters of offset exponential
distributions applied as prior densities on the ages of
calibrated nodes. This hyperprior is useful for analyses
employing multiple age constraints to calibrate diver-
gence time analyses, and when combined with numer-
ical methods, such as MCMC, calibrated node ages are
sampled from mixtures of exponential distributions.

MATERIALS AND METHODS

Bayesian Divergence Time Estimation

The objective of Bayesian divergence time estimation
methods is to calculate the joint probability density of
the following parameters:

r = (r1, . . . , r2N−2) Vector of substitution rates
for branches of the tree

a= (aN+1, . . . , a2N−1) Vector of ages of interior
nodes of the tree

θr Parameters of the model of
lineage-specific
rate variation

θa Parameters of the model
of branching times

θs Parameters of the model
of sequence evolution,

conditioned on observed data (X) for N species (Thorne
and Kishino 2005; Yang and Rannala 2006). Assuming
a known rooted tree topology, with the tips labeled
1, . . . ,N and the internal nodes labeled N + 1, . . . , 2N− 1
(in postorder sequence so that the root is labeled 2N−1),
the joint conditional distribution is:

f (r, a, θr, θa, θs | X) =
f (X | r, a, θr, θa, θs)f (r, a, θr, θa, θs)

f (X)
,

where f (X | r, a, θr, θa, θs) is the likelihood and f (r, a, θr,
θa, θs) is the joint prior probability density over the pa-
rameters and hyperparameters. The difficulty of cal-
culating the marginal probability of the data, f (X), is
conveniently eliminated with the application of MCMC
algorithms (Metropolis et al. 1953; Hastings 1970).

Note that the probability of the sequence data
depends on the node ages and the rates of sequence evo-
lution, but the process of sequence evolution is indepen-
dent of the process that generates these ages and rates,
such that

f (X | r, a, θr, θa, θs) = f (X | r, a, θs).

Furthermore, it is assumed that the process governing
the ages of nodes operates independently of processes
governing mutation, and that the process governing
the total rates of substitutions is independent from the
mutational parameters that determine relative rates of
different substitutions:

f (r, a, θr, θa, θs) = f (r | θr)f (a | θa)f (θr)f (θa)f (θs).

After enforcing these assumptions, the posterior distri-
bution of the parameters and hyperparameters can be
expressed as:

f (r, a, θr, θa, θs | X) =
f (X | r, a, θs)f (r | θr)f (a | θa)f (θr)f (θa)f (θs)

f (X)
.

A number of researchers have focused their attention
on the development of models that capture variation
in rates of molecular evolution. Therefore, f (r|θr) can
represent any of a number of priors on branch rates,
including, but not limited to, the molecular clock (Zuck-
erkandl and Pauling 1962), local molecular clock mod-
els (Hasegawa et al. 1989; Kishino and Hasegawa 1990;
Yoder and Yang 2000; Yang and Yoder 2003; Drummond
and Suchard 2010), autocorrelated rate models (Thorne
et al. 1998; Kishino et al. 2001; Lepage et al. 2006), mod-
els accounting for stepwise rate changes along branches
(Huelsenbeck et al. 2000), and uncorrelated rate mod-
els (Drummond et al. 2006; Heath et al. 2012). For ex-
ample, if all lineages are assumed to evolve under a
strict molecular clock, with a single substitution rate
drawn from a gamma distribution with a shape param-
eter (s) and a rate parameter (β), then r=(r, r, . . . , r) and
f (r | θr) = f (r | s,β).

Prior Density on Node Ages

In the absence of external calibration ages, node time
prior densities, f (a | θa), can be characterized by non-
biological parametric distributions such as the Dirichlet
distribution (Kishino et al. 2001) or uniform distribution
(Lepage et al. 2007), or by branching processes describ-
ing lineage diversification, including the Yule model
(Yule 1924; Sanderson 1997; Thorne et al. 1998) and the
birth–death process (Yule 1924; Kendall 1948; Nee et al.
1994; Rannala and Yang 1996; Gernhard 2008). None
of these priors provide much precision about the ab-
solute ages of nodes in the tree, however, and usually,
some information from fossils is introduced to provide
a timescale for the tree.

The ideal approach to accommodating fossil informa-
tion would be to treat the ages of fossils as data. Thus,
rather than inferring the values for parameters condi-
tional on the sequence data, the inference is conditioned
on having observed the sequence data and the set of
fossils. In principle, every fossil would be used, and un-
certainty about the phylogenetic position of fossil taxa
would be incorporated during inference. Such an ap-
proach has been carefully explored by Ronquist et al.
(2012) in their investigation of the diversification of Hy-
menoptera. Their work and the studies by Lee et al.
(2009) and Pyron (2011) present methods for accounting
for uncertainty in the placement of fossil taxa and rep-
resent exciting, new developments in divergence time
estimation methods, although further work is required
to determine sufficient tree priors that account for fos-
silization and sampling probabilities of fossil lineages
for combined datasets (Wilkinson et al. 2011; Ronquist
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et al. 2012). Despite such advancements, combined anal-
ysis is not feasible for many taxonomic groups as it
requires extensive knowledge of fossil taxa, morpho-
logical characters for both extinct and extant species, as
well as an understanding of the processes that affect the
probability of the fossilization and recovery of ancient
lineages.

If the fossil record is viewed as primarily providing
minimum bounds on the ages of clades, then the anal-
ysis can be simplified by using only the dates that are
associated with the oldest fossil assigned to each group.
Such an approach would capture most of the minimum
age information from fossil taxa without requiring ex-
haustive treatment of the fossil record. Each clade in the
tree can be identified with an internal node (which rep-
resents the speciation event at the end of the lineage
that is the MRCA of the clade). For each internal node i,
there is a parameter value that represents the age of the
node (ai). Data on the age of the oldest fossil associated
with the group can be represented by Ci. The variable
Hi can serve as an indicator variable that assumes the
value 0 if node i has no fossils associated with it and 1
if node i does have a calibration fossil. This would then
lead to:

f (r, a, θr, θa, θs | X,C,H) =

f (C,H | a, θc)f (θc)f (X | r, a, θs)f (r | θr)f (a | θa)f (θr)f (θa)f (θs)

f (X)
,

where θc is a set of parameters related to the probabil-
ity of fossilization, fossil discovery, and diagnosis of the
fossil as a member of a specific clade. Treating the fos-
silization events as independent for each clade would
allow one to calculate a probability density for fossil cal-
ibrations for the entire tree as the product of the event
that a fossil is assigned to a clade, Pr(Hi | ai), and a prob-
ability density for the time lag between the node i and
the oldest fossil:

f (C,H | a, θc) =

2N−1∏

i=N+1

Pr(Hi | ai, θc)f (Ci | ai, θc,Hi),

where

f (Ci|ai, θc,Hi) =

{
f (Ci|ai, θc) if Hi = 1

1 if Hi = 0
.

Modeling Pr(Hiai, θc)f (Ci | ai, θc,Hi) in a biologically
plausible fashion would be difficult. The probability of
the discovery of a fossil which represents a particular
clade on the tree (and which is not assignable to one of
the “daughter clades”) would depend on the amount of
time associated with ancestral lineages, the rate of evo-
lution for diagnostic morphological traits, the probabil-
ity of preservation of such traits, the completeness of the
fossil record, and other factors.

Treating the dates associated with the oldest fossils
for a clade as data merits further investigation. How-
ever, this detailed modeling of fossilization processes is

beyond the scope of this study. Presumably, the main ef-
fect of a rigorous model for f (Ci | ai, θc,Hi) would be a
preference for small differences in time between Ci and
ai. The precise functional form of the probability density
for this difference would depend on the wide variety of
factors mentioned above. But fundamentally, the proba-
bility density should reflect a waiting time; specifically,
the time between the speciation event and the creation
of the oldest assignable fossil. Thus, in place of a full
model, it seems reasonable to assume that the calibra-
tion difference, ai − Ci, can be described by a prob-
ability function that is similar to an exponential dis-
tribution. Strictly speaking, an exponential distribution
would only be appropriate if the rate of creation of the
oldest assignable fossil was constant after the clade was
formed.

For the purposes of the present study, I have used a
very simple model for the presence of a fossil being as-
signed to any clade of age ai:

Pr(Hi | ai, θc) =
1
2
,

for all nodes regardless of their age. Furthermore,
f (Ci|ai, θc,Hi = 1) is assumed to have a simple func-
tional form that only depends on ai − Ci. This is es-
sentially equivalent to following the common practice
in Bayesian divergence time estimation of placing prior
densities on calibrated nodes, offset by fossil dates.
When assuming an offset prior density on a calibrated
node i, the age of the node (ai) must be older than
the age of the fossil (Ci). This rough sketch of a model
about the probability for the lag between speciation
and oldest fossilization (the calibration difference) can
be incorporated into divergence time analysis. Typi-
cally, the prior density assigned to a calibration differ-
ence is combined with a general prior on node times,
such as the birth–death prior. This “multiplicative” ap-
proach assumes that the process responsible for generat-
ing the node times is independent of process describing
the calibration difference and disregards some rules of
probability theory (Heled and Drummond 2012). Nev-
ertheless, applying calibration priors in this way is the
convention in Bayesian inference methods.

In this study, I am addressing the prevailing prac-
tice for applying calibrating information in Bayesian
divergence time estimation and parameterization of
densities applied to multiple calibrated nodes on a
fixed topology. A birth–death process is assumed as a
general prior on speciation times (Gernhard 2008). This
prior formulation differentiates the ages of nonroot in-
ternal nodes in the set I from the age of the root of
the tree (ω). Using the tree in Fig. 1 as an example,
I = (11, 12, 13, 14, 15, 16, 17, 18) and ω = a19. Under the
birth–death prior, the probability of a is conditional on
a speciation rate (b) and an extinction rate (d), such that
f (a | θa) = f (ω)fBD(aI | b, d,ω), where aI represents
the ages of nodes in set I. Thus, using the formula in
Gernhard (2008), the probability density for the ages of
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the interior nodes (excluding the root), aI , is:

fBD(aI | b, d,ω)

= (N − 1) !
∏

i∈I

(b− d)2e−(b−d)ai

(b− de−(b−d)ai)2
b− de−(b−d)ω

1− e−(b−d)ω
,

where N is the number of species in the tree (also see
Stadler 2009, 2010). With the addition of minimum age
constraints from the fossil record, the prior density on
the ages of internal nodes is also conditional on the cali-
bration priors (Yang and Rannala 2006). Thus, the obser-
vations of fossil ages must be considered and the ages of
the calibrated nodes are identified,H=(12, 15, 17), along
with the minimum age constraints provided by the fos-
sil record for those nodes, C = (C12,C15,C17) (Fig. 1).
With these additional parameters, the density associated
with a becomes: f (a,C | θa) = f (ω)fBD(aI | b, d,ω)f (C |
aH), with aH denoting the ages of the calibrated nodes.
This “multiplicative” approach assumes that the birth–
death branching process is independent of the fossil
data (Heled and Drummond 2012).

The exponential distribution is convenient for cali-
brating internal node ages because it is described by a
single rate parameter (λ) and does not require specifica-
tion of a maximum bound (Fig. 3). Under an offset expo-
nential distribution, the greatest prior weight is placed
on ages equal to the minimum age constraint. However,
nonzero probability is given to node ages ranging to
infinity, and the relative probability of older node ages
changes as the rate parameter is increased or decreased.

FIGURE 3. Examples of exponential distributions on the age differ-
ence between the calibrated node and its descendant fossil (calibration
difference). The three probability densities are parameterized so that
the expected calibration differences are equal to 5 (black solid line), 20
(gray dashed line), and 60 (black dotted line) time units, respectively.
For exponentially distributed variables, the expected value is equal to
the inverse of the rate parameter: E(x) = λ−1. The inset figure shows
an example of the expected node ages under the three different expo-
nential distributions if the minimum age provided by the fossil is 60
time units. Under the most informative prior, the expected node age
is equal to 65 (black line). Reducing λ results in less informative ex-
ponential prior distributions, and the expected node ages under these
are 80 (gray dashed line) and 120 (black dotted line).

As a prior on node age, the exponential distribution is
offset by age of the fossil, and the expected difference
between the ancestral node age and the fossil age is
equal to λ−1. Accordingly, for very large values of λ, the
prior places very low probability density on node ages
significantly older than the minimum age provided by
the fossil calibration, resulting in a strongly informative
prior. The exponential prior distribution becomes less
informative as the rate parameter decreases (Fig. 3). For
any calibrated node, j ∈ H (where H is the set of all
calibrated nodes), I use the unnormalized density of the
exponential distribution in the calculations,

fExp(Cj|aj, λj,Hj = 1) ∝ λje
−λj(aj−Cj),

because MCMC eliminates the need to calculate normal-
ization constants. Thus, the unnormalized probability
density is over a and C used here is

f (a,C | θa) = f (ω)fBD(aI | b, d,ω)fExp(C | aH,λλλ),

where λλλ is the vector containing the exponential rate pa-
rameters of the calibrated nodes. Note that, because the
model simply assigns a probability of 0.5 to the event
that Hi = 1 regardless of the age of the node or other
parameters, that constant factor can be dropped from
the unnormalized probability calculations.

Applying the exponential distribution as a prior on
calibrated nodes requires careful consideration of the
time duration from the divergence event to the date of
the fossil calibration (Ho and Phillips 2009). When using
multiple fossil calibrations, it is possible that some fos-
sil constraints are close in age to their calibration nodes,
whereas others may be a great deal younger than their
putative ancestral node. Thus, in such cases, it is in-
appropriate to use a single rate parameter for all prior
distributions on calibrated nodes.

Hyperprior Density on Calibration Node Priors

Although a number of different distributions may be
appropriate as hyperpriors on calibration densities, for
the purposes of this study, I assume a Dirichlet pro-
cess prior probability distribution on the rate param-
eters of offset exponential priors on calibrated node
ages. Under this construction, the rate parameters are
distributed such that λλλ ∼ DPP(α,G0). This stochastic
process assumes that discrete variables are distributed
among an array of distinct parameter classes (Ferguson
1973; Antoniak 1974) and has been applied to a num-
ber of problems in phylogenetics (Lartillot and Philippe
2004; Huelsenbeck et al. 2006; Ané et al. 2007; Huelsen-
beck and Suchard 2007; Heath et al. 2012) and popula-
tion genetics (Huelsenbeck and Andolfatto 2007). As a
hyperprior on λ-hyperparameters, each calibrated node
is assigned an exponential prior distribution, and the in-
dividual rate parameters of those exponential priors are
distributed according to a Dirichlet process. By choosing
the Dirichlet process prior, an explicit assumption is
made that there are latent (not yet observed) categories
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of λ-hyperparameters and that within a category, prior
densities share the same rate value.

The Dirichlet process hyperprior (DPP-HP) is de-
scribed by two parameters, a concentration parameter
(α) and a generating distribution (G0). The concentra-
tion parameter controls the degree to which the rate
parameters are clustered into different categories. As
a consequence, large values of α lead to greater par-
titioning among the data and more parameter classes
relative to small values of α, which indicate greater
homogeneity. Under the Dirichlet process prior, the ex-
ponential rate parameters are partitioned among differ-
ent rate categories and the number of rate classes (k) and
the assignment of calibration priors to those rate classes
are random variables under this model. Furthermore,
the probability of the number of categories depends on
the concentration parameter and the number of fossil-
calibrated nodes

(
F=

∑
i∈HHi

)
:

Pr(k | α, F) =
c(F, k) αk

∏F
i=1(α + i− 1)

,

where c( ∙ , ∙ ) is the Stirling number of the first kind. For
each rate category, the value of λ is drawn from the base
distribution, G0, which, for the purposes of this study,
is a gamma distribution. With the addition of the hyper-
prior on λλλ and the specification of the other prior pa-
rameters (b, d,α, and G0,), the quantity proportional to
the posterior density is

f (a, r, θr, θs,ω, b, d,λλλ | X,C) ∝ f (X|r, a, θs)f (θs)f (r | θr)

× f (ω)fBD(aI | b, d,ω)fExp(C | aH,λλλ)fDPP(λλλ | α,G0).

The DPP-HP on calibration node ages was imple-
mented in the C++ program DPPDiv and is available at
http://cteg.berkeley.edu/software.html (for further de-
tails, see Heath et al. 2012). This program uses MCMC
to estimate divergence times on a fixed rooted tree
topology. As the Markov chain proceeds, samples of
the marginal posterior distributions of exponential rate
parameters are obtained using the proposal mechanism
described by Neal (2000, Algorithm 8). This algorithm
updates the partitioning of λ-hyperparameters into rate
categories using Gibbs sampling with auxiliary rate
classes (also see Huelsenbeck and Suchard 2007; Heath
et al. 2012). The implementation of the hyperprior
model on calibrated nodes, as well as priors on all other
parameters, were evaluated by carrying out numerous
independent runs on alignments without data and
assessing the marginal distributions of the various
parameters, using the program Tracer (Rambaut
and Drummond 2009) when sampling only from prior
densities.

Simulations: Data Generation

I used simulated data sets to evaluate the perfor-
mance of the DPP-HP. One hundred ultrametric tree
topologies and branching times were simulated under

a birth–death process (b = 0.02, d = 0.01) using the
general sampling approach described by Hartmann
et al. (2010) and Stadler (2011). Each simulated tree
topology contained 20 extant taxa, and the average
root age was equal to 205 time units (ranging from
75.02 to 537.5). The branching times were scaled by a
single clock rate, which, for each simulation replicate,
was drawn from a gamma distribution with a mean
of 0.5 and variance of 0.0625: Gamma(4.0, 8.0). This
substitution rate was used to transform the entire tree,
producing branch lengths proportional to the number
of expected substitutions per site; trees consistent with
a strict global molecular clock.

Molecular data sets of 1000 nucleotides were simu-
lated on each model tree using the program seq-gen
(Rambaut and Grassly 1997). For each simulation repli-
cate, parameter values for the general time reversible
model with gamma-distributed rate heterogeneity (GTR
+ Γ ; Tavaré 1986; Yang 1994) were drawn from the fol-
lowing parametric distributions: πππ = (πA,πC,πG,πT) ∼
Dirichlet(5, 5, 5, 5), θθθ = (θAC, θAG, θAT, θCG, θCT, θGT)
∼ Dirichlet(2, 2, 2, 2, 2, 2), and γ ∼ Gamma(8, 16),
where πππ is the vector containing each of the four nu-
cleotide frequencies, the relative rates of substitution
between two nucleotides are contained in the vector θθθ,
and γ is the shape parameter of the mean-one gamma
distribution on among-site rate variation.

The objective of this study was to evaluate the perfor-
mance of divergence time estimation under the DPP-HP
on calibrated nodes in the presence of variation in the
distances of the fossil ages to the true ages of nodes to
which they are assigned. To address this, four sets of
calibration ages for each simulated tree were generated
(Fig. 4). For each tree, a set containing 10 calibration
nodes was assembled by selecting the root and 9 inter-
nal nodes randomly drawn from the set of divergence
times with ages greater than 4.0 time units. The sets
of calibration ages differed in the distribution of the
calibration differences (δ), which is the time duration
between the true MRCA age (AT) and the fossil age (AF):
δ = AT − AF. The different sets of calibrating fossils are
shown in Fig. 4. The first set of fossil ages, set A, were
all equally distant from the true times of the calibrated
nodes (δ1 = δ2 = δ3 = ∙ ∙ ∙= δ10). For each tree, the age of
the youngest calibrated node was multiplied by 0.5 and
δA was set to this value. Then, the calibration ages in set
A were all fixed to δA, so that there was no variation in
the true node age to fossil age distances, representing
a single category of minimum ages (Fig. 4a). A second
category was introduced for calibration set B. In this
case, two randomly chosen calibration nodes from those
used in set A were assigned fossil ages that were 6δA
time units younger than the true node time, whereas
all the other calibration nodes were assigned the same
minimum ages as in set A. Both altered fossil ages were
used to make calibration set B (Fig. 4b). Calibration
set C was created by altering three of the calibration
nodes from set B so that five fossils were δA time units
younger than the true node time, two were 6δA time
units younger, and three minimum ages were 3δA time
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FIGURE 4. The four sets of minimum node ages used to calibrate
simulated data sets, shown with a single simulation replicate. In trees
A through D, minimum ages provided by “fossils” (AF; white vertical
bars) were used to calibrate 10 different internal nodes. The differences
(δ) between the true node ages (AT) and the ages of their fossil descen-
dants are represented by shaded horizontal bars (δ=AT −AF). (a) For
each simulated phylogeny, a set of nodes were selected for calibration
and assigned minimum age calibrations. The fossil ages in set A (1
category) were all equidistant from their respective calibration nodes
(nodes 1–10, light gray bars). (b) A second fossil category was created
by randomly selecting two calibration points from set A and altering
them so that the minimum ages were 6 times that of the other fossils
(nodes 1 and 3, black bars). (c) Calibration set C was created by alter-
ing three fossils from set B that had not yet been changed (nodes 7,
8, and 10; dark gray bars) so that the distance between the fossil and
calibrated nodes was 3 times that of the calibration ages used in set
A. (d) For the set of calibrations in D, each fossil minimum age was
drawn from a uniform distribution with a minimum value equal to
the true node age minus 6 times the calibration age difference from set
A (AT − 6δA) and a maximum value equal to the true node age (AT).
The calibration differences in set D did not fall into distinct clusters
(nodes 1–10, gradient shaded bars).

units younger (Fig. 4c). Thus, in calibration set C, there
were three categories of fossil age to node age distances.
Finally, the calibration ages in set D were generated
for each of the 10 nodes by drawing minimum age
values from a uniform distribution on the interval
U(AT − 6δA,AT), where the minimum value was equal
to the true age of the node minus 6δA and the maximum
value was equal to AT, and the node calibrations did
not cluster in distinct categories (Fig. 4d).

Simulations: Analysis

I compared the performance of divergence time es-
timates under the DPP-HP with two alternative prior

FIGURE 5. Fixed calibration priors. This figure illustrates the two
alternative prior parameterizations used to estimate node times. If the
fossil age (AF: white circle) is equal to 80 time units, the rate parameter
for the offset exponential distribution on the calibrated node was fixed
at λI = (AF ∗ 0.1)−1 = 0.125 for the strongly informative prior (solid
line) and λV = (AF ∗ 0.333)−1 = 0.0375 for the vague prior (dashed
line). For example, if the true age of the calibrated node was 110, or 30
time units older than the fossil age, the informative prior would place
very little prior weight on the true divergence time, whereas under the
vague prior, the Markov chain is more likely to sample the true node
age.

parameterizations on calibration node ages. The alterna-
tive priors fixed the rate of the offset exponential prior
distribution on each calibrated node time based on the
fossil age: λV imposed a relatively vague (noninforma-
tive) prior on the node age compared with λI, which
resulted in a strongly informative prior on the difference
between the fossil age and the true node age (Fig. 5). The
exponential rate values were respectively set to:

λV = (AF ∗ 0.333)−1,

λI = (AF ∗ 0.1)−1.

Under an exponential prior on calibrated nodes, the ex-
pected age of the calibrated node is equal to AF + λ−1.
Figure 5 provides an example of the two fixed parameter
priors on calibrated nodes. If the minimum age bound
provided by the fossil is equal to 80, then λI = 0.125
and λV = 0.0375, and as a result, the expected ages of
the node calibrated by this fossil under the fixed pri-
ors are 88.0 and 106.67, respectively (Fig. 5). Thus, it
is apparent that the informative prior (λI) places strong
prior weight on node ages that are very close to the
fossil age and there is a low probability of sampling
much older node times. Under the vague prior (λV),
the offset exponential distribution has a much fatter tail
and higher probability of sampling older dates com-
pared with the informative prior. This fixed hyperpa-
rameter approach results in a range of rate values for
each set of calibration node prior distributions, and the
scale of the minimum age provided by the fossil im-
pacts the expected node age. Therefore, if the fossil age
is very close to the present, the rate parameter of the
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exponential prior distribution will be greater than for
nodes calibrated by older fossils. Potentially, this can
lead to very precise prior densities for recent fossils,
which may or may not be a desirable affect. This ap-
proach is similar to the prior distribution parameteriza-
tion used by Dornburg et al. (2011), where they fixed
the hyperparameters of each calibration prior distribu-
tion so that the 95% of the probability was less than the
0.95 confidence level given by Marshall (2008), which is
the age of the fossil divided by F

√
(1− 0.95), where F is

equal to the total number of fossils. Under the DPP-HP,
however, the age of the fossil does not influence the ex-
ponential density in the same way since a very young
fossil and an ancient fossil can be assigned to a single
λ-rate category.

Estimates of divergence times produced by analyses
using fixed vague priors and fixed informative priors
were compared with node times resulting from analy-
ses under the DPP-HP. The DPP-HP requires the ini-
tialization of additional parameters: the concentration
parameter (α) and the parameters of the base distri-
bution (G0; in this case, a gamma distribution) from
which exponential rates are drawn. For each analysis, I
specified a concentration parameter of α= 1.052, which
results in a prior mean of, approximately, three λ-rate
categories. The λ values for each category were drawn
from a gamma distribution with a shape equal to 2.0 and
a rate proportional to the initial age of the root of the
tree. Specifically, the expected value of G0 was equal to
(0.07ωt0)

−1, whereωt0 is the starting value for the depth
of the tree; this ensures that the λ values drawn from G0
are within an appropriate range for a given data set.

In total, 12 analyses were performed for each simu-
lated data set. The three different calibration prior pa-
rameterizations (DPP-HP, Fixed-λV, and Fixed-λI) were
applied separately to each of the four sets of fossil
minimum ages (A, B, C, and D). Divergence times
were estimated under a strict molecular clock, with a
gamma-distributed prior on the clock rate, such that
r ∼ Gamma(4.0, 8.0). The tree topology was fixed to
the true tree and all analyses assumed a GTR + Γ
model of sequence evolution (the true model) with the
following prior densities: πππ ∼ flat Dirichlet probabil-
ity, θθθ ∼ flat Dirichlet probability, and γ ∼ Exponen-
tial(2) prior. The MCMC analyses were all run for 2 mil-
lion generations with 1 million generations discarded as
burn-in. Convergence assessment, although critical for
any Bayesian analysis, was only feasible for a subset
of the 1200 MCMC runs, this was done by comparing
the marginal densities and effective sample sizes of rele-
vant parameters and hyperparameters sampled by inde-
pendent Markov chains in the program Tracer v1.5
(Rambaut and Drummond 2009).

The results of each analysis were analyzed so that the
relative success and power of node time estimates could
be compared. For each estimate of node age, I computed
the 95% credible interval (CI) across all analyses of sim-
ulated data sets. The 95% CI serves as an approxima-
tion for the 95% highest posterior density interval and

was used to quantify power and compute the coverage
probability of each estimator. The coverage probability
is the proportion of time the true value is found within
the 95% CI. From a frequentist perspective, a robust
unbiased estimator is expected to have a coverage prob-
ability of 0.95, and in a Bayesian framework, high cover-
age probabilities are preferred. However, even with high
coverage probabilities, an analysis may have low power,
and this was measured by assessing the widths of the
95% CIs.

Biological Application: Turtles

The DPP-HP on calibration node prior densities was
applied to a data set comprised of 23 DNA sequences,
each representing a single genus, spanning the diversity
of the turtle phylogeny (for GenBank accession num-
bers, see Near et al. 2005). This biological data set has
been analyzed in several studies evaluating methods for
calibrating divergence time estimation methods (Near
et al. 2005; Marshall 2008; Dornburg et al. 2011). The se-
quences in this alignment included a single mitochon-
drial gene (cytochrome-b) and two nuclear markers,
recombination activating gene 1 (RAG-1) and intron 1
of the RNA fingerprint protein 35 (R35).

In their recent study, Dornburg et al. (2011) presented
14 fossil ages for calibration that were assumed to be
correctly assigned to clades in the turtle phylogeny
(Table 1). Of the 14 fossil calibrations, they found 10
consistent fossils using their approach for assembling
a set of calibration ages. In Table 1, the consistent cali-
brations are assigned to nodes labeled 1 through 10 and
were used to calibrate the divergence time analyses pre-
sented in the Dornburg et al. (2011) paper. The fossils
descending from nodes 11, 12, 13, and 14 were deemed
inconsistent based on the scaling factors estimated

TABLE 1. The fossil minimum ages and taxon names used for cal-
ibrating turtle divergence times (partially reproduced from Table 1 of
Dornburg et al. 2011)

Minimum Fossil taxon
Node age (myr) name

Consistent
fossils

1 100 Aspideretes maortuensis
2 110 Cearachelys placidoi
3 110 Araripemys barretoi
4 71 Yaminuechelus gasparinii
5 65 Hoplochelys
6 50 Baltemys
7 90 Lindholmemydidae
8 52 Hadrianus majusculus
9 50 “Ocadia” crassa

10 34 Chrysemys antiqua

Inconsistent
fossils

11 18 Pelusios rusingae
12 11.6 Chelus
13 15 Chelodina and Elsaya
14 5 Trachemys inflata

Notes: Dornburg et al. (2011) identified 10 consistent fossils (1–10),
which were used for calibrating divergence time analyses. The four
inconsistent fossils (nodes 11–14) were not used to calibrate their node
age estimates.
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using their method. The inconsistent fossils also provide
the youngest age constraints and it has been suggested
that such fossils can potentially lead to biased under-
estimates of speciation times (Marshall 2008; Dornburg
et al. 2011).

In the present study, I conducted two separate anal-
yses estimating turtle divergence times; both assuming
a DPP-HP on calibration prior densities. The first analy-
sis used only the consistent calibrations (Table 1; nodes
1–10) and the second applied all 14 fossils to calibrate
the estimates of divergence times. Node ages were es-
timated on a fixed rooted tree topology for all analyses
that matched the phylogeny found by Dornburg et al.
(2011). The phylogenetic relationships of turtles in this
tree were congruent with the phylogeny presented in
Near et al. (2005) with the exception of the placement of
the root. Although the placement of the root of the Tes-
tudines tree is still an open question (Barley et al. 2010),
the root found by Dornburg et al. (2011) was maintained
in this study for comparing node age estimates. This
root places species in the superfamily Trionychia (soft-
shelled turtles, represented by the genera Carettochelys,
Lissemys, and Apalone in this data set) as the sister group
to all other turtles.

Two independent MCMC runs of 3 million itera-
tions were carried out for each set of fossil calibrations.
Additionally, for each set of fossil calibrations, inde-
pendent Markov chains were run on “empty” data
sets, providing samples from the joint prior densities.
I applied a separate Dirichlet process prior on lineage-
specific rates to relax the assumption of the molecu-
lar clock (Heath et al. 2012). This model assumes that
the substitution rates associated with each branch in the
phylogeny are distributed according to a Dirichlet pro-
cess, with a clustering parameter, αr, and a base dis-
tribution, G0r (category-specific rates are drawn from
a gamma distribution with a shape of 2.0 and a rate
of 4.0, parameters chosen to cover a range of rate
values with an expected value of 0.5), and has been
shown to produce robust estimates of relative diver-
gence times (Heath et al. 2012). The clustering hyper-
parameter (αr) of the Dirichlet process prior on branch
rates was sampled from a gamma-distributed hyper-
prior with an expected value of 1.24, so that the prior
density on the vector of lineage-specific substitution
rates (r) was:

f (r | θr) = fDPP(r | αr,G0r)f (αr | s,β),

where s and β represent the shape and rate parameters
of the hyperprior density applied to αr. The values of
the shape and rate parameters of the gamma-distributed
hyperprior were fixed to 2.0 and 1.613, respectively.

The DPP-HP on the fossil calibrated nodes was
applied in each analysis. For the set of calibrations con-
taining just the 10 consistent fossils, the concentration
parameter of the hyperprior was equal to 1.05, which
corresponds to an expectation of approximately three
exponential rate categories. The value of the concentra-
tion parameter for analyses applying all 14 fossils was

set to 0.86, which also leads to an expectation of three
parameter classes.

For each divergence time analysis, I assessed conver-
gence of the two independent Markov chains by evalu-
ating the marginal distributions and the effective sample
sizes of the various parameters and hyperparameters
using Tracer v1.5 (Rambaut and Drummond 2009).
The first 1 million generations were discarded as burn-
in and the remaining samples were combined. The
trees were summarized by computing average branch-
ing times and node height 95% CIs and annotated
using the tools available in DendroPy (Sukumaran
and Holder 2010). The average estimates of node ages
from the analysis under the 10 consistent fossils were
compared with the average estimates resulting from the
analysis under all 14 fossil calibration constraints.

RESULTS AND DISCUSSION

Simulations

The coverage probabilities for estimates of node times
produced by three different prior parameterizations
on calibrated nodes (DPP-HP, Fixed-λV, and Fixed-λI)
when provided each of the sets of calibration points
(A, B, C, and D) are summarized in Table 2. Overall,
these results show that as the variation in distances be-
tween the fossil age and node age increases, the accu-
racy of node time estimates under the three calibration
priors decreases. These simulation results suggest that
assuming a strongly informative prior (Fixed-λI), with
considerable prior weight on node ages close to that of
the fossil age, produces less accurate estimates of di-
vergence times compared with choosing a less informa-
tive prior (Fixed-λV). Therefore, in the absence of prior
knowledge of the true node to fossil age differences, it
is advisable to assign a vague prior distribution to cal-
ibrated node ages. However, choosing a hyperparame-
ter value that leads to a sufficiently uninformative prior
is not a simple task, and it is preferable to accommo-
date uncertainty in the values of hyperparameters and
treat them as random variables. For this reason, plac-
ing a hyperprior on such parameters can provide bet-
ter estimates. Node age estimates under the DPP-HP
have higher coverage probabilities, on average, com-
pared with calibration priors fixed to precise values for
each of the sets of fossils in these simulations (Table 2).

TABLE 2. The node age coverage probabilities for the three sepa-
rate analyses performed on each of the fossil calibration sets

Calibration set DPP-HP Fixed-λV Fixed-λI

A (one category) 0.970 0.946 0.831
B (two categories) 0.955 0.941 0.734
C (three categories) 0.926 0.877 0.566
D (uniform distribution) 0.811 0.689 0.354

Notes: The coverage probability is the proportion of nodes (across all
simulation replicates) where the true node time was contained within
the 95% CI. The simulations were analyzed under four different cali-
bration sets described in Fig. 4.
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FIGURE 6. The change in coverage probability as node age increases. The node ages were binned so that each bin contained 100 true node
depths and the coverage probability was calculated for each bin. Each graph plots the within-bin coverage probability against the average bin
age (on the log scale). (a) shows the coverage rates when the single category calibration set (A) is used to calibrate divergence time analyses
when assuming a DPP-HP (•) on calibrated node times and when vague (Fixed-λV : ×) or informative (Fixed-λI : �) fixed priors are used. These
results are also shown for calibration sets B (b, two node time to fossil age distance categories), C (c, three categories), and for calibration set D
(d, calibration ages sampled from a uniform distribution) (Fig. 4).

These results were examined further by evaluating
coverage probability as a function of node age (Fig. 6).
The true node ages, across all simulated trees, were
binned so that each bin contained 100 nodes and each
within-bin coverage probability was computed. Figure 6
shows the change in coverage probability as the true
node age increases. Generally, these results show that
as the variation in the distances between the fossil min-
imum ages and the true calibrated node ages increases,
divergence time estimates under all three priors be-
come less accurate. When all calibrated nodes are as-
signed very informative prior distributions (Fixed-λI),
very poor coverage rates are observed for nodes at in-
termediate ages. However, when the analysis employed
a much less informative prior (Fixed-λV) or the DPP-HP,
a greater proportion of the true node times fell within
the 95% CIs. On average, coverage probabilities under
the DPP-HP are higher than under the fixed vague prior.
However, in the presence of variation in the calibration
differences, the simulation results indicate a decrease in
coverage of estimates of older node ages when using the
DPP-HP (Fig. 6c,d). This effect is due to the fact that the
rate parameters of the exponential prior distributions
are not scaled by the fossil ages under the hyperprior.
Thus, the prior density on a very young node can, over
the course of the Markov chain, be identical to the prior
density on a much older calibrated node. For example,
an exponential distribution with λ−1 = 20 (i.e., λ= 0.05)

may be an equivocal prior density on a calibrated node
with a minimum age constraint of 5 and, at the same
time, it can be an overly precise prior density on a node
calibrated by a fossil age of 200; given that there is typ-
ically more uncertainty associated with older fossils. In
contrast, under the vague fixed prior, intermediate node
age estimates are less successful (compared with older
nodes) for fossil sets with greater variation in the node-
to-fossil age differences. In this case, the prior density
on the node age is parameterized based on the age of
the calibrating fossil, thus λV = (AF× 0.33)−1 may result
in a relatively informative prior when applied to a node
with a fossil age equal to 10, where λ−1 = 3.3, or a very
imprecise prior density can be placed on a node with
a minimum age of 300, λ−1 = 99. These results are also
evident when the widths of the CIs are compared with
the true node ages.

The widths of the 95% CIs were measured and com-
pared with the true node ages for each of the three
different calibration priors (DPP-HP, Fixed-λV, and
Fixed-λI) and for each of the four calibration sets (Fig. 7).
For the results presented in Fig. 7, the true node ages
were binned so that each bin contained 100 values, then
the average 95% CI width was calculated for each bin.
This figure shows only slight differences in the precision
of most node age estimates resulting from the three dif-
ferent calibration priors, and the greater accuracy of the
DPP-HP is not accompanied by a loss in power for most

803



SYSTEMATIC BIOLOGY VOL. 61

FIGURE 7. The change in the size of the node age 95% CIs as node age increases. The true node ages were binned (each containing 100 node
depths) and the average 95% CI width was calculated for each bin. Each plot compares the within-bin average 95% CI size with the average bin
age (on the log scale). The results are shown for analyses using calibration sets A, B, C, and D (Fig. 4) when a DPP-HP (•) is applied to calibrated
node times and when vague (Fixed-λV : ×) or informative (Fixed-λI : �) fixed priors are used.

node age estimates. However, there is a difference in the
95% CI widths for relatively old nodes. When the data
were analyzed under a fixed vague prior (λV), the 95%
CIs were larger compared with estimates resulting from
the DPP-HP. Therefore, the high coverage probabilities
of age estimates of relatively old nodes is the result of
larger 95% CI widths and reduced power when apply-
ing the fixed-vague prior.

In general, I found that the prior density applied to
calibrated node ages can have a strong effect on the ac-
curacy of divergence time estimates. Using a single sim-
ulation replicate, Fig. 8 illustrates the effect of the prior
distributions on estimates of node ages from analyses
under the three types of priors on nodes calibrated by
calibration set C (three categories). The sensitivity of
node age estimates to offset exponential prior distribu-
tions is evident when comparing the marginal poste-
rior estimates of the calibration differences (δ), where
δ = AT − AF, to marginal densities sampled only from
the priors (Fig. 8b–d). In this example, there were three
categories of fossils, such that the calibration difference
(δi) for each calibrated node i took one of the following
values (Fig. 8a):

δ3 = δ6 = δ7 = δ9 = δ10 = 2.8,

δ2 = δ4 = δ5 = 8.4,

δ1 = δ8 = 16.8.

This figure shows that the DPP-HP had the advantage
in this comparison since the generation of the calibra-
tion set matched the assumptions of the model (Fig. 8b).
When a fixed exponential prior is assigned to calibrated
nodes (Fig. 8c,d), the prior densities are overly infor-
mative for young fossils (e.g., nodes 5, 7, 8, 9, and
10) because the exponential rate parameters are scaled
by the age of the fossil. This behavior can be particu-
larly problematic when the fossil specimen is a great
deal younger than the node to which it acts as a mini-
mum age constraint. In particular, the fossil assigned to
node number 8 (Fig. 8) is 16.8 time units younger than
the node it calibrates, and the marginal posterior esti-
mates of δ8 under both of the fixed priors (Fixed-λV and
Fixed-λI) indicate that although there is a strong signal
in the data, the prior densities on node 8 are overwhelm-
ing the likelihood. In comparison, the DPP-HP leads to
a much more diffuse prior density on the age of node 8
(Fig. 8b; gray dotted lines) and does not result in a bi-
ased estimate. Conversely, the prior densities on older
nodes can be very diffuse when applying fixed vague
priors (Fig. 8c; nodes 1 and 2). Thus, these results show
that parameterizing a fixed prior distribution based on
the age of the fossil can lead to both informative and
vague prior densities on calibration differences depend-
ing on the age of the fossil. A hierarchical Bayesian
approach like the DPP-HP, however, accounts for un-
certainty in the hyperparameter values and can flexibly
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FIGURE 8. An example of the results from a single simulation replicate when a calibration set with three categories of fossils (set C; Fig. 4c)
was used to estimate divergence times. The true tree topology and divergence times are shown in (a), and the 10 calibrated nodes are numbered.
In this figure, graphs (b), (c), and (d) show the average (white circles) and 95% CIs for estimates of the calibration difference (δ = AT − AF)
between the calibrated node age and the fossil age for each of the 10 fossil constraints (black vertical lines). The gray dotted lines indicate the
95% CIs under the prior. The true age differences are shown using horizontal bars. The results are shown for analyses under the DPP-HP is used
(b), the fixed vague prior on calibrated nodes (c: Fixed-λV), and the fixed informative prior (d: Fixed-λI).

accommodate calibrations from a range of fossil ages.
Ultimately, our understanding of the precision of an-
cient fossils as node calibrations is quite equivocal, and
a hierarchical Bayesian model that also accounts for the
age of the fossil in the same manner as the fixed vague
prior is worthy of investigation.

Biological Application: Turtles

When calibrating molecular divergence time analyses
with an array of fossil age estimates, applying a hyper-
prior to parameters of calibration densities is a practical
approach to incorporating data from the fossil record.
Provided the assumption that the fossils are correctly
placed on the tree is met, this approach does not require
the researcher to discard potentially important age con-
straints. The multistep method described by Dornburg
et al. (2011) identified four calibrating turtle fossils that
could potentially lead to biased age estimates. These in-
consistent age constraints were removed from their sub-
sequent analyses, and Bayesian divergence time esti-
mates were calibrated with only the 10 oldest fossil taxa.
Under certain calibration prior densities, it is quite likely
that very young fossils can lead to biased, overly young
node age estimates if the prior densities are very infor-
mative. However, if flexible prior distributions are ap-
plied to calibrated nodes, such an approach can allow
for the inclusion of all available fossil calibrations.

The DPP-HP on calibration densities was applied to
a data set of turtles, using two overlapping sets of
fossils. Figure 9 shows a comparison of the node age
estimates resulting from two separate analyses; one
analysis included all 14 fossils (Table 1) and the other
was calibrated with only the 10 consistent fossils. These
results show that there is no significant difference in
the estimates of node ages. Specifically, inclusion of the
four youngest, putatively inconsistent, calibration ages
did not lead to biased age estimates that were exces-
sively young compared with analyses that omitted those
fossils (Fig. 9).

In general, node age estimates under the DPP-HP
using the complete set of calibration ages were consis-
tent with the divergence times presented in Dornburg
et al. (2011), in that the 95% CIs from the hierarchical
analysis overlapped with the mean estimates resulting
from the previous study (Table 3; Fig. 10). However,
the mean estimated ages of calibrated nodes in the
Dornburg et al. (2011) study (when assigned exponen-
tial calibration densities) were all younger than the ages
estimated using the DPP-HP (Table 3). This result is,
most likely, due to the fact that the exponential distri-
butions applied in their study were specified with fixed
λ-rate hyperparameters (Dornburg et al. 2011). These
prior distributions were more informative than the cali-
bration densities under the hierarchical Bayesian model.
Additionally, in spite of the potential for “inconsistent”
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FIGURE 9. A comparison of node age estimates produced by anal-
yses using the DPP-HP on calibrated nodes. On the horizontal axis,
the average age estimates and 95% CIs are plotted for an analysis that
used only the consistent set of fossils (calibrations 1–10) identified in
the study by Dornburg et al. (2011). The y-axis indicates the mean node
ages and 95% CIs estimated when all the putatively accurate fossils
are used (calibrations 1–14). Estimates of node ages without fossil cal-
ibrations are shown with white circles, the nodes calibrated by consis-
tent fossils identified by Dornburg et al. (2011) are represented with
black circles, and the nodes with inconsistent fossils discarded by the
previous study are shown with gray-shaded circles.

fossils to result in excessively young node age estimates,
the estimated ages of nodes calibrated by these fos-
sils under the DPP-HP were, in actuality, older than
the estimates resulting from the Dornburg et al. (2011)
analyses that did not include the four youngest fossils.

In particular, when the calibration on node 14 was ig-
nored, as was done by Dornburg et al. (2011), the node
height 95% CI they reported covered the minimum fos-
sil age (Table 3). Thus, it is more likely that the prior
densities on calibration differences have a greater influ-
ence on the estimates of node ages compared with the
inclusion of relatively young or potentially inconsistent
fossil age estimates.

Because of the uncertainty involved in applying fos-
sil calibrations in Bayesian divergence time estimation
methods, placing hyperpriors on calibration densities
is preferable to specifying arbitrary fixed hyperparam-
eter values. However, the Dirichlet process model, as
applied in this paper, does warrant further investi-
gation into its suitability as a hyperprior on the hy-
perparameters of calibration prior densities since it
does not necessarily represent an explicit biological
model. Incidentally, a hierarchical Bayesian approach
to calibration priors is not limited to the Dirichlet
process prior or the software presented in this pa-
per. Although such analyses have not been explicitly
described and may not be trivial to implement, in
the popular divergence time analysis program BEAST
(Drummond and Rambaut 2007), hyperpriors can be
applied to any hyperparameter defined in the XML
input file.

CONCLUSIONS

The results of this study indicate that calibrating
divergence time analyses in a hierarchical Bayesian
framework is a sensible approach to incorporating fossil
age constraints in conventional methods for dating
species phylogenies. By placing hyperpriors on calibra-
tion densities, uncertainty in values of hyperparameters
is accounted for and ages of calibrated nodes are
sampled from a mixture of prior distributions. When an

TABLE 3. The mean calibrated node age estimates and 95% CIs under the DPP-HP with all 14 fossils and the estimates published in the
paper by Dornburg et al. (2011) which used fixed exponential prior densities and a subset of fossil calibrations that were identified as consistent
fossils

All fossils (1–14) Consistent fossils (1–10)

Node Fossil Age (Ma) DPP-HP DPP-HP prior Fixed exponential

1 100 119.0 (100, 141.6) 108.5 (100, 129.6) 106 (100, 118.4)
2 110 115.6 (110, 127.5) 114.6 (110, 126.2) 113.5 (110, 120.6)
3 110 152.2 (123.1, 177.6) 125.2 (110, 156.3) 143.8 (129, 160.4)
4 71 95.5 (71, 120.4) 80.3 (71, 103.4) 78.5 (71, 91.6)
5 65 88.1 (65.4, 109.7) 71.9 (65, 88.8) 71.7 (65, 82.4)
6 50 58.7 (50, 73.1) 56.1 (50, 67.8) 51.9 (50, 55.6)
7 90 101.3 (90, 117.6) 101.6 (90, 130.7) 94.5 (90, 103.1)
8 52 69.4 (55.4, 84.8) 60.6 (52, 77.8) 59 (52.7, 66.1)
9 50 54.6 (50, 63.2) 53.8 (50, 62.6) 51.7 (50, 54.9)

10 34 52.8 (34.2, 69.1) 42.7 (34, 63.6) 36.2 (34, 40.4)
11 18 51.7 (25.7, 77.0) 28.0 (18, 54.8) 43.2 (21.4, 67.5)
12 11.6 52.3 (27.2, 88.4) 21.1 (11.6, 45.4) 43 (25.4, 61.6)
13 15 72.2 (48.3, 105.6) 24.3 (15, 48.5) 60.8 (36.8, 80)
14 5 21.8 (10.4, 32.8) 12.9 (5, 30.9) 13.1 (4.55, 23.8)

Notes: Dornburg et al. (2011) identified 10 consistent fossils (nodes 1–10) and four inconsistent fossils (nodes 11–14); their results for estimates
under exponential calibration priors are reproduced here (their estimates resulting from lognormal priors were not included). The minimum
age estimates of the fossil taxa are expressed in units of millions of years. Mean age estimates are shown for two separate analyses (in units of
millions of years) and the 95% CIs are presented in parentheses.
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FIGURE 10. Estimates of node ages for 23 turtle species, resulting from an analysis applying a DPP-HP on calibration densities, with the
complete set of 14 fossils. The branch lengths are in proportion to the mean estimated branching times and the gray horizontal bars represent
the 95% CIs of node age. The numbered nodes correspond to the fossil taxa used for calibration (Table 1). Calibrated nodes 1 through 10
(indicated with black circles) were identified as consistent fossil calibrations by Dornburg et al. (2011). The inconsistent fossils (11–14; nodes
indicated with gray circles) were ignored in the previous study (Dornburg et al. 2011) but included in the analyses presented here.

array of calibrating information from the fossil record
is available, the hyperprior approach described here al-
lows for inclusion of all applicable fossils, regardless of
their relative age and reduces the difficulty of specifying
the parameters of calibration prior densities. This is in
contrast to fossil validation methods that result in the
removal of potentially accurate calibrating information
(Near et al. 2005; Hugall et al. 2007; Rutschmann et al.
2007; Marshall 2008; Dornburg et al. 2011). Thus, in the
absence of prior knowledge of the waiting time between
the node age and the minimum age constraint provided
by the fossil record, this hierarchical model is prefer-
able to specifying fixed hyperparameters. It remains
important to state, however, that applying hyperpriors
to calibration densities does not also free the user from
carefully considering and understanding the fossil
and geological data applied in his or her divergence
time analyses. Moreover, it is highly recommended
that researchers applying Bayesian divergence time
estimation methods evaluate and report the marginal
prior distributions on calibrated nodes chosen for
their analysis, regardless of the approach to including
calibration data (Heled and Drummond 2012; Warnock
et al. 2012). This can be done by sampling (via MCMC)
from the joint prior probability density over the model
parameters and hyperparameters. When the marginal
prior densities on parameters and hyperparameters are
compared with their expected distributions, problem-
atic or unexpected results caused by misspecified

or poorly constructed priors may be revealed
(Heled and Drummond 2012).

As our understanding of the fossil record and the
properties of lineage fossilization, preservation, and
sampling continues to develop, these elements can be
incorporated into descriptive biological models of lin-
eage diversification. With such models, data from fossil
taxa can be included in divergence time analyses in a
more rigorous way, allowing for inclusion of all avail-
able fossil specimens instead of reducing the informa-
tion from the fossil record to a single minimum age con-
straint (Wilkinson et al. 2011). This will lead to robust,
combined analyses of fossil and extant taxa while ac-
counting for uncertainty in the tree topology and place-
ment of extinct lineages (Ronquist et al. 2012) and un-
certainty in the ages of fossil specimens (Shapiro et al.
2011). Moreover, in cases where combined approaches
are not possible, realistic macroevolutionary tree priors
can allow for better and more statistically sound ap-
proaches to calibrating divergence times with fossil age
estimates (Heled and Drummond 2012).
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