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ClC-3 is a member of the ClC voltage-gated chloride (Cl-) channel superfamily.  Recent studies have demonstrated the abundant 
expression and pleiotropy of ClC-3 in cardiac atrial and ventricular myocytes, vascular smooth muscle cells, and endothelial cells.  
ClC-3 Cl– channels can be activated by increase in cell volume, direct stretch of β1-integrin through focal adhesion kinase and many 
active molecules or growth factors including angiotensin II and endothelin-1-mediated signaling pathways, Ca2+/calmodulin-dependent 
protein kinase II and reactive oxygen species.  ClC-3 may function as a key component of the volume-regulated Cl– channels, a superox-
ide anion transport and/or NADPH oxidase interaction partner, and a regulator of many other transporters.  ClC-3 has been implicated 
in the regulation of electrical activity, cell volume, proliferation, differentiation, migration, apoptosis and intracellular pH.  This review 
will highlight the major fi ndings and recent advances in the study of ClC-3 Cl- channels in the cardiovascular system and discuss their 
important roles in cardiac and vascular remodeling during hypertension, myocardial hypertrophy, ischemia/reperfusion, and heart fail-
ure.  
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Introduction
ClC-3 is a member of the ClC voltage-gated chloride (Cl–) 
channel gene superfamily[1].  In 1994, ClC-3 cDNA was first 
cloned from rat kidney by Kawasaki et al using a polymerase 
chain reaction (PCR) cloning strategy[2].  ClC-3 is also abun-
dantly expressed in brain[3], lung, kidney[4], heart[5, 6], and vas-
culature[7] of many species, including human[4, 6, 8].  Expression 
of the cloned rat ClC-3 yielded an outwardly-rectifying Cl– 
current in Xenopus oocytes[2] and in somatic cell lines[3], which 
was completely inhibited by activation of protein kinase C 
(PKC)[2] or increased intracellular Ca2+ concentration[3].  The 
Cl– currents produced by expression of cardiac ClC-3 in 
mammalian cells are also outwardly-rectifying and inhibited 
by PKC and share many biophysical and pharmacological 
characteristics with the volume-regulated Cl– currents (ICl, vol) 
in cardiac myocytes[5, 9, 10–13], vascular smooth muscle cells[7], 
and many other cell types[14–16].  ClC-3 Cl– channels can be 
activated also by direct stretch of β1-integrin through focal 
adhesion kinase and many active molecules or growth factors 
including angiotensin II (Ang II) and endothelin-1 mediated 
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signaling pathways[17–20], Ca2+/calmodulin-dependent protein 
kinase II (CaMKII)[21] and reactive oxygen species[22, 23].  In the 
past 15 years, accumulated experimental data has shown that 
ClC-3 proteins are expressed in sarcolemmal membranes and 
intracellular organelles of cardiac myocytes, vascular smooth 
muscle cells, and endothelial cells[24–27].  Numerous studies 
have demonstrated the pleiotropy of ClC-3 in many cellular 
functions, including 1) as a key component of the volume-
regulated Cl– channels (VRCCs) to strengthen the regulatory 
volume decrease (RVD) and protect cardiac myocytes from 
excessive increase in cell volume during hypoxia, ischemia, or 
hypertrophy; 2) as a regulator of the redox signaling pathway 
through interaction with NADPH oxidase (Nox) and/or as a 
superoxide anion (O2·–) transporter to improve myocyte viabil-
ity against oxidative damage; 3) as an anti-apoptotic mecha-
nism through regulation of cell volume and intracellular pH; 
and 4) as a regulator of other transport functions involved in 
the etiology of myocardial damage, heart failure, and hyper-
tension (Figure 1).  

This review will highlight the major findings and recent 
advances in the study of ClC-3 Cl– channels in the cardiovas-
cular system and discuss their important roles in cardiac and 
vascular remodeling during hypertension, myocardial isch-
emia/reperfusion, hypertrophy, and heart failure.
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ClC-3 and VRCCs
Under osmotic, metabolic, and/or oxidative stress mammalian 
cells are able to precisely maintain their size through the 
regulated loss or gain of intracellular ions or other osmolytes to 
avoid excessive alterations of cell volume that may jeopardize 
structural integrity and a variety of cellular functions[28–31].  
Even under physiological conditions, volume constancy 
of any mammalian cell is challenged by the transport of 
osmotically active substances across the cell membrane and 
alterations in cellular osmolarity by metabolism[28].  Thus, the 
continued operation of cell volume regulatory mechanisms, 
such as activation of VRCCs, is required for cell volume 
homeostasis in many mammalian cells, including cardiac 
myocytes and vascular smooth muscle cells (VSMCs)[12, 24, 32, 33].  
Acute increase in cell volume (or cell swelling) initiates the 
regulatory volume decrease (RVD) process to bring the cells 
back to their initial volume, which is achieved by the opening 
of VRCCs and other channels and transporters mediating Cl-, 

K+, and taurine effl ux that in turn drives water exit[28].  
Although the exact identification of the protein(s) respon-

sible for VRCCs has proven to be elusive, ClC-3 has been pro-
posed to be the molecular correlate of the native VRCCs in car-
diac myocytes[5] and VSMCs[7].  But the role of ClC-3 as a con-
stituent of native VRCCs became an issue of debate owing to 
inconsistent and confl icting data collected from some labora-
tories[34–36].  Specially, the presence of the native VRCCs in two 
different cell types from the global ClC-3 knockout (Clcn3–/–) 
mice[35] casts considerable doubt on the role of ClC-3 as a 
molecular component of VRCCs.  However, later additional 
experiments using Clcn3–/– mice revealed that the properties of 
native VRCCs in the Clcn3–/– heart were signifi cantly altered 
and the expression of a variety of membrane proteins other 
than ClC-3 was also markedly changed, raising fundamental 
questions about the usefulness of the Clcn3–/– mouse model to 
assess ClC-3 function[37].  A series of recent independent stud-
ies from many laboratories further strongly corroborated the 

Figure 1.  Schematic representation of regulation and function of ClC-3 Cl– channels in cardiac myocytes and vascular smooth muscle cells.  ClC-3, a 
member of voltage-gated ClC Cl– channel family, encodes Cl- channels in cardiac myocytes and vascular smooth muscle cells that are volume regulated 
(ICl, vol) and can be activated by cell swelling (ICl, swell) induced by exposure to hypotonic extracellular solutions or possibly membrane stretch.  ICl, b is a 
basally activated ClC-3 Cl– current.  Membrane topology model (α-helices a–r) for ClC-3 is modifi ed from Dutzler et al[100].  ClC-3 proteins are expressed 
on both sarcolemmal membrane and intracellular organelles including mitochondria (mito) and endosomes.  The proposed model of endosome ion fl ux 
and function of Nox1 and ClC-3 in the signal ing endosome is modifi ed from Miller Jr et al[101].  Binding of IL-1β or TNF-α to the cell membrane initiates 
endocytosis and formation of an early endosome (EEA1 and Rab5), which also contains NADPH oxidase subunits Nox1 and p22phox, in addition to 
ClC-3.  Nox1 is electrogenic, moving electrons from intracellular NADPH through a redox chain within the enzyme into the endosome to reduce oxygen 
to superoxide.  ClC-3 functions as a chloride-proton exchanger, required for charge neutralization of the electron fl ow generated by Nox1.  The ROS 
generated by Nox1 result in NF-κB activation.  Both ClC-3 and Nox1 are necessary for generation of endosomal ROS and subsequent NF-κB activation 
by IL-1β or TNF-α in VSMCs.  PKC, protein kinase C; PP, serine-threonine protein phosphatases; α-AR, α-adrenergic receptor; Gi, heterodimeric inhibitory 
G protein; Nox: NADPH oxidase; CaMKII: Ca2+/calmodulin-dependent protein kinase II; (+) stimulation; (–) inhibition.
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hypothesis that ClC-3 encoded a key component of the native 
VRCCs in a variety cell types ranging from normal cardiac 
myocytes to cancer cells[16, 20, 37–46].  Knockdown of ClC-3 by 
siRNA[41, 42, 47], shRNA[48, 49], and antisense[20, 39, 43, 45] and intracel-
lular dialysis of anti-ClC-3 antibody (Ab)[16, 37, 38, 44–46] all con-
sistently eliminated VRCC currents in many types of cells.  A 
recent study using the inducible heart-specifi c ClC-3 knockout 
mouse found that a time-dependent inactivation of ClC-3 gene 
expression was correlated with an elimination of the endoge-
nous VRCCs (Figure 2) and signifi cantly compromised cardiac 
function (Figure 2)[50].  Therefore, ClC-3 remains a strong and 
viable candidate for VRCCs in the heart and may contribute to 
normal cardiac function.

VRCCs and ClC-3 in cardioprotection induced by ischemic 
preconditioning (IPC)
Ischemic preconditioning (IPC) is a phenomenon in which 
brief episodes of ischemia dramatically reduce myocardial 
infarction caused by a subsequent sustained ischemia[51].  IPC 
has an early phase (lasting 1–2 h) and a late phase or “sec-
ond window” (lasting 24–72 h) of protection[52].  It has been 
reported that the block of ICl, swell in rabbit cardiac myocytes 
inhibits IPC by brief ischemia, hypo-osmotic stress[53, 54] and 
adenosine receptor agonists[55].  These studies were solely 
based on the use of several Cl– channel blockers, such as 
anthracene-9-carboxylic acid (9-AC) and 4-acetamide-4’-
isothiocyanatostilbene-2,2’-disulfonic acid (SITS).  These 
pharmacological tools lack specificity to a particular Cl– 
channel in the heart and may also act on other ion channels 
or trans porters[56, 57].  Therefore the causal role of ICl, swell in 
IPC has been very difficult to be confirmed[58].  To specifi-
cally test whether the VRCCs are indeed involved in IPC, we 
have recently established in vitro and in vivo models of early 
IPC and late IPC in ClCn3–/– mice.  Our preliminary results 
indicate that targeted inactivation of ClC-3 gene prevented 
protective effects of late IPC but not of early IPC, suggesting 
that ClC-3/VRCCs may contribute differently to early and 
late IPC[59,60].  The underlying mechanisms for these differen-
tial effects are currently unknown.  Recent reports, however, 
suggest that VRCCs and ClC-3 may play an important role in 
apoptosis[61] and infl ammation[62].  Cl– channel blockers DIDS 
and NPPB were as potent as a broad-spectrum caspase inhibi-
tor in preventing apoptosis and elevation of caspase-3 activity 
and improved cardiac contractile function after ischemia and 
in vivo reperfusion[63].  Transgenic mice overexpressing Bcl-2 
in the heart had signifi cantly smaller infarct size and reduced 
apoptosis of myocytes after ischemia and reperfusion[64].  It 
has been shown that Bcl-2 induces up-regulation of ICl, vol by 
enhancing ClC-3 expression in human prostate cancer epi-
thelial cells[65].  Cell shrinkage is an integral part of apoptosis, 
suggesting that ICl,vol and ClC-3 might be intimately linked to 
apoptotic events through regulation of cell volume homeosta-
sis[61, 65, 66].  

VRCCs and ClC-3 in myocardial hypertrophy and heart 
failure
Structural remodeling of myocardial hypertrophy and dilated 
cardiomyopathy involves oxidative stress and hypertrophic 
cell volume increase or dilated myocyte membrane stretch, 
which alters cell volume homeostasis and many cellular 
functions including cell proliferation, differentiation, and 
apoptosis.  ICl, swell is persistently activated in ventricular myo-
cytes from a canine pacing-induced dilated cardiomyopathy 
model[67].  Using the perforated patch-clamp technique, Clemo 
et al found that, even in isotonic solutions, a large 9-AC-sensi-
tive, outwardly rectifying Cl– current was recorded in failing 
cardiac myocytes but not in normal cardiac myocytes.  Graded 
hypotonic cell swelling (60%–90% hypotonic) failed to activate 
additional current while graded hypertonic cell shrinkage 
caused an inhibition of the “basal” Cl- current in failing myo-
cytes.  Moreover, the maximum current density of the ICl, swell 
in failing myocytes was about 40% greater than that in osmoti-
cally swollen normal myocytes.  Constitutive activation of 
ICl, swell is also observed in several other animal models of heart 
failure, such as a rabbit aortic regurgitation model of dilated 
cardiomyopathy[68], a dog model of heart failure caused by 
myocardial infarction[69], and a mouse model of myocardial 
hypertrophy by aorta binding[70].  In human atrial myocytes 
obtained from patients with right atrial enlargement and/or 
elevated left ventricular end-diastolic pressure, a tamoxifen 
sensitive ICl, swell was also found to be persistently activated[67].  
Therefore, it is possible that persistent activation of ICl, swell is a 
common response of cardiac myocytes to hypertrophy or heart 
failure-induced remodeling.  

The mechanism for persistent activation of ICl, swell in hyper-
trophied or failing cardiac myocytes is still not clear.  Perhaps 
the increase in cell volume caused by hypertrophy and the 
stretch of cell membrane caused by dilation are both involved 
in the activation of ICl, swell.  Alternatively, the persistent activa-
tion of ICl, swell may be caused by signaling cascades activated 
during hypertrophy independent of changes in cell length and 
volume, or both.  ICl, swell could be activated by direct stretch of 
β1-integrin through focal adhesion kinase (FAK) and/or Src[49].  
Mechanical stretch of myocytes also releases Ang II, which 
binds to AT1 receptors (AT1R) and stimulates FAK and Src 
in an autocrine-paracrine loop.  A recent study by Browe and 
Baumgarten suggests that the stretch of β1-integrin in cardiac 
myocytes activates ICl, swell by activating AT1R and NADPH 
oxidase and, thereby, producing reactive oxygen species 
(ROS).  In addition, a potent NADPH oxidase inhibitor, diphe-
nyleneiodonium (DPI), and a structurally unrelated NADPH 
oxidase inhibitor, 4-(2-aminoethyl) benzenesulfonyl fluoride 
(AEBSF), rapidly and completely blocked both background 
and stretch-activated Cl– currents in cardiac myocytes[19].  
Therefore, NADPH oxidase may be intimately coupled to 
the channel responsible for ICl, vol, providing a second regula-
tory pathway for this channel through membrane stretch or 
oxidative stress[19].  This fi nding is very important for further 
understanding of the mechanism for hypertrophy activa-
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                                                   0 week                          1.5 weeks                             3 weeks
                        On Doxy         Off Doxy          On Doxy       Off Doxy               On Doxy           Off Doxy
                           n=8             n=15  n=4        n=12                     n=5          n=9  

 
IVSs (mm)   1.64±0.05   1.61±0.03   1.60±0.07     1.49±0.04*   1.61±0.05     1.48±0.04*

LVIDs (mm)   0.95±0.11   0.98±0.08   1.02±0.15     1.51±0.09***,#   1.01±0.11     1.57±0.10***,##

LVPWs (mm)   1.41±0.07   1.45±0.05   1.18±0.10     1.33±0.06   1.35±0.08     1.31±0.07
Systole Area (mm2)   2.61±0.52   2.93±0.38   1.89±0.73     3.77±0.42   2.41±0.55     3.16±0.49
IVSd (mm)   0.81±0.02   0.81±0.02   0.76±0.03     0.76±0.02   0.80±0.02     0.80±0.02
LVIDd (mm)   2.86±0.12     2.94±0.08   2.81±0.16     3.26±0.09*,#   2.94±0.12     3.21±0.11
LVPWd (mm)   1.08±0.05   1.08±0.04   1.02±0.07     1.08±0.04   0.98±0.05     1.07±0.05
Diastole Area (mm2) 11.36±1.29 13.26±0.94 13.83±1.83    14.44±1.05 12.07±1.38   12.09±1.22 
FS (%) 66.88±2.12 67.08±1.55 63.65±3.00   54.36±1.73***,# 65.35±2.27   51.62±2.00***,###

LVEF (%) 79.01±2.16 78.11±1.58 85.21±3.06   74.25±1.76## 80.02±2.31   75.20±2.04
Mass (mg/mm2) 89.06±4.36 92.33±3.18 78.65±6.16 103.08±3.56***,## 83.93±4.66 102.02±4.11***,#

Body Weight (g) 34.86±2.55 43.10±1.86# 33.15±3.61   41.21±2.08 35.04±2.73   36.34±2.40
Mass/BW Ratio   2.69±0.18   2.17±0.13   2.37±0.26     2.55±0.15*   2.38±0.12     2.86±0.17***,#

*P<0.05, **P<0.01, ***P<0.001 vs off Doxy 0 week; #P<0.05, ##P<0.01, ###P<0.001 vs on Doxy at the same time 
point.

Figure 2.  Effects of inducible 
heart-specific ClC-3 knockout on 
cardiac volume-regulated Cl– cur-
rent (VRCC) and heart function.  
(A) Representative current traces 
in isotonic condition and under 
hypotonic challenge recorded in 
freshly isolated atrial myocytes 
from the inducible heart-specific 
ClC-3 knockout (doxyhsClC-3–/–) 
mice with doxycycline (on Doxy) 
in the diet (panel a), or af ter 
wi thdraw of doxycyc l ine (of f 
Doxy) from the diet for 3 weeks 
(panel b).  (c) Summary of VRCC 
current densities in isotonic and 
hypotonic solutions, recorded at 
+80 mV and -80 mV. Open boxes, 
under isotonic conditions; filled 
boxes under hypotonic conditions; 
Grey boxes, on doxycycline; black 
boxes, off doxycycline 1.5 weeks; 
pale grey boxes, off doxycycline 
for 3 weeks. **P<0.01, hypotonic-
induced VSOAC current densities 
compared to isotonic conditions. 
##P<0.01, hypotonic- induced 
VSOAC current densities com-
pared between on Doxy and 1.5 
weeks off Doxy, and between 1.5 
and 3 weeks off Doxy using ANO-
VA.  (B) Representative M-mode 
echocardiography from on Doxy (a) 
and off Doxy (b) mice.  (C) Time-
dependent changes in M-mode 
echocardiogram of age-matched 
on Doxy or off Doxy for 1.5 and 3 
weeks.  (D) Comparison of hearts 
isolated from age-matched (11-
week old) doxyhsClcn3–/– mice 
on Doxy or off Doxy for 3 weeks.  
Hearts were cleaned up blood 
and connective tissues and fi xed 
in 4% paraformaldehyde.  (Adapt-
ed from Xiong et al[50] ).
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tion of ICl, swell and ClC-3 channels and their relationship with 
hypertrophy and heart failure as it is very well known that 
Ang II plays a crucial role in myocardial hypertrophy and 
heart failure[71].  Interestingly, Miller and colleagues recently 
found that Cl– channel inhibitors and knockout of ClC-3 abol-
ished cytokine-induced generation of ROS in endosomes and 
ROS-dependent NF-κB activation in vascular smooth muscle 
cells[37], suggesting a potential close interaction between 
NADPH oxidase and ClC-3 (Figure 1).  In human corneal ker-
atocytes and human fetal lung fibroblasts ClC-3 knockdown 
by a short hairpin RNA (shRNA) significantly decreased 
VRCC and lysophosphatidic acid (LPA)-activated Cl– cur-
rent (ICl,LPA) in the presence of transforming growth factor-β1 
(TGF-β1) compared with controls, whereas ClC-3 overexpres-
sion resulted in increased ICl, LPA in the absence of TGF-β1[72].  
ClC-3 knockdown also resulted in a reduction of α-smooth 
muscle actin (α-SMA) protein levels in the presence of TGF-
β1, whereas ClC-3 overexpression increased α-SMA protein 
expression in the absence of TGF-β1.  In addition, keratocytes 
transfected with ClC-3 shRNA had a significantly blunted 
regulatory volume decrease response following hyposmotic 
stimulation compared with controls.  These data not only con-
fi rm that ClC-3 is important in VRCC function and cell volume 
regulation, but also provides new insight into the mechanism 
for the ClC-3-mediated fibroblast-to-myofibroblast transi-
tion[15].  

The functional and clinical significance of VRCCs in the 
hypertrophied and dilated heart is currently unknown.  Using 
a mouse aortic binding model of myocardial hypertrophy, 
we have found that globally targeted disruption of ClC-3 
gene (ClCn3–/–) accelerated the development of myocardial 
hypertrophy and the discompensatory process, suggesting 
that activation of ICl, vol might be important in the adaptive 
remodeling of the heart during pressure overload[73].  Interest-
ingly, heart failure was found to be accompanied by a reduced 
ICl, vol density in rabbit cardiac myocytes[43].  Our recent studies 
on the conditional heart-specific ClC-3 knockout (hsClcn3–/–) 
mice (Figure 3) support the crucial functional role of ClC-3 
channels in the adaptive remodeling of the heart against pres-
sure overload[72].  As shown in Figure 3, echocardiography 
revealed marked signs of myocardial hypertrophy (a signifi -
cant increase in left ventricular mass LVM) and heart failure (a 
signifi cant increase in LVIDs and reduction in IVSs, LVEF, and 
%FS) in the hsClcn3–/– mice compared to their age-matched 
wild-type control mice (Figure 3B).  In addition, both left and 
right atria were signifi cantly enlarged (Figure 3C).  These data 
strongly suggest that ClC-3 may play an important role in 
maintaining normal structure and function of the mammalian 
heart.

VRCCs and ClC-3 in electrophysiology and electrical 
remodeling 
Activation of VRCCs is expected to produce depolarization 
of the resting membrane potential and signifi cant shortening 
of action potential duration (APD) because of its strong out-
wardly rectifying property[5, 11, 24, 74, 75].  The Cl– current through 

the VRCCs under basal or isotonic conditions is small[10, 11, 76] 
but can be further activated by stretching of the cell mem-

Figure 3.  Echocardiography of cardiac function of wild type and heart-
specifi c ClC-3 knockout mice.  (A) Representative M-mode echocardiog-
raphy from wild-type (Clcn3+/+; left) and heart-specific ClC-3 knockout 
(hsClcn3–/–; right) mice.  (B) Echocardiographic measurements in Clcn3+/+ 
and hsClcn3–/– mice.  IVSd, interventricular septum thickness at the end 
of diastole; LVIDd, left ventricular (LV) dimension at the end of diastole; 
LVPWd, LV posterior wall thickness at the end of diastole; IVSs, interven-
tricular septum thickness at the end of systole; LVIDs, LV dimension at the 
end of systole; LVPWs, LV posterior wall thickness at the end of systole; 
LVEP, calculated LV ejection fraction; %FS, LV fractional shortening; Esti-
mated LV mass, LVM (mg)=1.05[(IVS+LVID+LVPW)3–(LVID)3], where 1.05 
is the specifi c gravity of the myocardium.  (C) Single longitudinal section (8 
μm) of hearts to demonstrate all four heart chambers.  Longitudinal were 
stained with hematoxylin and eosin (Bar=2 mm) (Ye L and Duan DD.  un-
published data).

                                                     Clcn3+/+ (n=8)                  hsClcn3–/– (n=8)

 
 IVSd (mm)     0.54±0.02     0.56±0.02
 IVSs (mm)     1.31±0.09     1.01±0.04*

 IVIDd (mm)     2.63±0.16     2.69±0.09
 LVIDs (mm)     0.84±0.07     1.52±0.09***

 LVPWd (mm)     0.74±0.05     0.81±0.05
 LVPWs (mm)     1.22±0.05     1.23±0.05
 LVEF     0.97±0.04     0.80±0.03***

 % FS   67.05±3.57   43.88±2.85***

 HR (bpm) 495.71±22.58 396.13±19.11**

 LVM (mg)   40.58±4.33   52.22±2.91*

*P<0.05, **P<0.01, ***P<0.001 vs Clcn3+/+.
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brane by infl ation[77] or direct mechanical stretch of membrane 
β1-integrin[78] and/or cell swelling induced by exposure to 
hypoosmotic solutions[5, 9–13].  The consequences of activation 
of ICl, vol are very complex.  It may be detrimental, benefi cial, or 
both simultaneous in different parts of the heart, depending 
on environmental infl uences.  

Because cardiac myocytes swell during hypoxia and isch-
emia, and the washout of hyperosmotic extracellular fluid 
after reperfusion induces further cell swelling, activation of 
VRCCs may contribute to APD shortening and arrhythmias 
induced by hypoxia, ischemia and reperfusion[79].  Shorten-
ing of APD and, therefore, the effective refractory period 
(ERP) reduces the length of the conducting pathway needed 
to sustain reentry (wavelength).  In principle, this favors the 
development of atrial fibrillation (AF) or ventricular fibrilla-
tion (VF), depending on the presence of multiple reentrant 
circuits or rotating spiral waves.  Activation of ICl, vol may slow 
or enhance the conduction of early extrasystoles, depend-
ing on the timing.  In guinea-pig heart, hypo-osmotic solu-
tion shortened APD and increased APD gradients between 
right and left ventricles.  In burst stimulation-induced VF, 
exposure to hypo-osmotic solution increased VF frequencies, 
transforming complex fast Fourier transformation spectra to 
a single dominant high frequency on the left but not the right 
ventricle[19].  Perfusion with the VRCC blocker indanyloxya-
cetic acid-94 reversed organized VF to complex VF with lower 
frequencies, indicating that VRCC underlies the changes in VF 
dynamics.  Consistent with this interpretation, ClC-3 channel 
protein expression is 27% greater on left than right ventricles, 
and computer simulations showed that insertion of ICl, vol trans-
formed complex VF to a stable spiral.  Therefore, activation of 
ICl, vol has a major impact on VF dynamics by transforming ran-
dom multiple wavelets to a highly organized VF with a single 
dominant frequency.

In the case of myocardial hypertrophy and heart failure, 
ionic remodeling is one of the major features of pathophysi-
ological changes[80].  Under these conditions, ICl, vol is consti-
tutively active[69].  The persistent activation of ICl,vol may limit 
the APD prolongation and make it more diffi cult to elicit early 
after depolarization (EAD).  Indeed, in myocytes from failing 
hearts, blocking ICl, vol by tamoxifen significantly prolonged 
APD and decreased the depolarizing current required to 
elicit EAD by about 50%.  And hyper-osmotic cell shrinkage, 
which also inhibits ICl, vol, was almost equivalent to the effect 
of tamoxifen on APD and EAD in these myocytes[79].  It has 
been shown that mechanical stretching or dilation of the atrial 
myocardium is able to cause arrhythmias.  Since ICl, vol was also 
found in sino-atrial (S-A) nodal cells, VRCCs may serve as a 
mediator of mechanotransduction and play a signifi cant role 
in the pacemaker function if they act as the stretch-activated 
channels in these cells[79, 81].  Baumgarten’s laboratory has 
recently demonstrated that ICl, vol in ventricular myocytes can 
be directly activated by mechanical stretch through selectively 
stretching β1-integrins with mAb-coated magnetic beads[19, 79].  
Although it has been suggested that stretch and swelling acti-
vate the same anion channel in some non-cardiac cells, further 

study is needed to determine whether this is true in cardiac 
myocytes and VSMCs.  

VRCC and ClC-3 in vasculature and hypertensive vascular 
remodeling
It has been demonstrated that VRCCs and ClC-3 are expressed 
in aortic and pulmonary VSMCs of human and several other 
speicies[20, 82, 83] and have been implicated in a number of vital 
cellular functions including vascular myogenic tone, cell vol-
ume regulation, cell proliferation and apoptosis[7, 26, 61, 84].  

Membrane stretch or increases in transmural pressure 
cause contraction of vascular smooth muscle cells, ie, myo-
genic response[85].  Early studies revealed that the myogenic 
response was associated with membrane depolarization[86].  
Ion channels sensitive to mechanical stimuli have been sug-
gested to serve as the sensor element of the myogenic response 
of vascular smooth muscle.  Mechano-sensitive Cl– channels 
and VRCCs have been observed in vascular smooth muscle 
cells[7, 87] and a pressure-induced Cl– efflux was reported[88].  
Activation of VRCCs and ClC-3 has been postulated to par-
ticipate in the myogenic response[7, 84, 86, 87], such as in the 
membrane depolarization and contraction mediated by acti-
vation of α1-adrenoceptors and vascular wall distension due 
to increased transmural pressure[89].  However, convincing 
functional evidence for the functional role of VRCCs or ClC-3 
in myogenic response and myogenic tone is still lacking due 
to the lack of specific Cl– channel blockers[90].  Further study 
using the ClC-3 knockout or transgenic mice may provide 
more insights into the functional role of ClC-3 and VRCCs in 
the regulation of myogenic response to mechanical stretch.

Arterial VSMC proliferation is a key event in the develop-
ment of hypertension-associated vascular disease[83].  Recent 
accumulating evidence suggests an important role of ClC-3 
and VRCCs in the regulation of cell proliferation induced by 
numerous mitogenic factors[61].  The magnitude of VRCC cur-
rents in actively growing VSMCs is higher than in growth-
arrested or differentiated VSMCs, suggesting that VRCCs may 
be important for VSMC proliferation[91].  Antisense oligonucle-
otide-mediated downregulation of ClC-3 dramatically inhibits 
cell proliferation of rat aortic VSMCs[20].  A recent study found 
that static pressure increased VRCCs and ClC-3 expression 
and promoted rat aortic VSMC proliferation and cell cycle 
progression[83].  Inhibition of VRCCs with pharmacological 
blockers (such as DIDS or the NADPH oxidase inhibitor DPI) 
or knockdown of ClC-3 with ClC-3 antisense oligonucleotide 
transfection attenuated pressure evoked cell proliferation and 
cell cycle progression.  Static pressure enhanced the produc-
tion of ROS in aortic smooth muscle cells.  DPI or apocynin 
pretreatment inhibited pressure-induced ROS production 
as well as cell proliferation.  Furthermore, DPI or apocynin 
attenuated the pressure-induced upregulation of ClC-3 protein 
and VRCC current.  These data suggest that VRCCs may play 
a critical role in static pressure-induced cell proliferation and 
cell cycle progression.  Therefore, VRCCs may be of unique 
therapeutic importance for treatment of hypertension atten-
dant vascular complications.  
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Cerebral resistance arteries undergo remodeling of the vas-
cular walls during chronic hypertension, which is caused by 
the coordination of vascular smooth muscle cell proliferation 
and migration, endothelial cell dysfunction, infl ammation and 
fi brosis.  A very recent study demonstrated that the expression 
of ClC-3 and VRCC activity were increased in basilar artery 
during hypertension and simvastatin, an inhibitor of 3-hy-
droxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase 
widely used in clinics for the treatment of hypercholester-
olemia, normalized the upregualtion of ClC-3[92].  Furthermore, 
simvastatin ameliorated hypertension-caused cerebrovascular 
remodeling through inhibition of VRCCs and ClC-3 and cell 
proliferation[92].  These effects of simvastatin were abolished by 
pretreatment with mevalonate or geranylgeranyl pyrophos-
phate.  In addition, Rho A inhibitor C3 exoenzyme and Rho 
kinase inhibitor Y-27632 both reduced cell proliferation and 
activation of VRCCs.  ClC-3 overexpression decreased the sup-
pressive effect of simvastatin on endothelin-1 and hypoosmo-
larity-induced cell proliferation.  These results provided novel 
mechanistic insight into the benefi cial effects of statins in the 
treatment of hypertension and stroke through an inhibition of 
ClC-3 and VRCC function.  

ClC-3 and superoxide transport and interaction with 
NADPH oxidase 
ROS has been implicated in cellular signaling processes as 
well as a cause of oxidative stress-induced cell proliferation[93].  
One of the major sources of ROS in the heart and vasculature 
is through one or more isoforms of the phagocytic enzyme 
NADPH oxidase, a membrane-localized protein which gener-
ates the superoxide (O2·–) anion on the extracellular surface 
of the plasma membrane (Figure 1).  As a charged and short 
lived anion, it is believed that O2·– fl ux is insuffi cient to initiate 
intracellular signaling due to the combination of poor perme-
ability through the phospholipid bilayer[94] and a rapid dismu-
tation to its uncharged and more stable derivative, hydrogen 
peroxide[95, 96].  However, recent evidence has indicated dis-
crete signaling roles for both O2 and H2O2

[97].  
In response to monocrotaline-induced pulmonary hyper-

tension the expression of ClCn3 gene was upregulated in rat 
pulmonary artery[98].  In canine cultured pulmonary arterial 
smooth muscle cells (PASMCs) incubated with infl ammatory 
mediators Clcn3 gene was also upregulated[98].  Overexpression 
of ClC-3 in PASMCs enhanced viability of the cells against 
H2O2, thus suggesting that ClC-3 may improve the resistance 
of VSMCs to ROS in an environment of elevated infl ammatory 
cytokines in hypertensive pulmonary arteries[98].  It was found 
that extracellular O2·–, but not H2O2, led to Ca2+ signaling and 
apoptosis in pulmonary endothelial cells[99].  This indicates 
that extracellular O2·– produced by NADPH oxidase or other 
sources either crosses the plasma membrane or modifi es cell 
surface proteins to mediate cell signaling (Figure 1).  

Recently, Hawkins et al studied the transmembrane fl ux of 
O2·– in pulmonary microvascular endothelial cells[17].  Appli-
cation of an extracellularbolus of O2·– resulted in rapid and 
concentration-dependent transient O2·–-sensitive fluorophore 

hydroethidine (HE) oxidation that was followed by a progres-
sive and nonreversible increase in nuclear HE fluorescence.  
These fluorescence changes were inhibited by superoxide 
dismutase (SOD), and the Cl– channel blocker DIDS, and selec-
tive silencing of ClC-3 by treatment with siRNA.  Extracellular 
O2·– triggered Ca2+ release, in turn triggered mitochondrial 
membrane potential alterations that were followed by mito-
chondrial O2·– production and cellular apoptosis.  These “sig-
naling” effects of O2·– were prevented by DIDS, by depletion 
of intracellular Ca2+ stores with thapsigargin and by chelation 
of intracellular Ca2+.  This study demonstrates that O2·– flux 
across the endothelial cell plasma membrane occurs through 
ClC-3 channels and induces intracellular Ca2+ release, which 
activates mitochondrial O2·– generation.  These and other stud-
ies suggest that activation of ClC-3 may indeed play a role in 
cell proliferation, growth, volume regulation and apoptosis of 
VSMCs.  

Conclusion
Regulation of ClC-3 functions in the cardiovascular system is 
emerging as a novel and important mechanism for the electri-
cal and structural remodeling of the heart and vasculature.  
However, the integrated function of ClC-3 as a key component 
of VRCC and Nox1 and as a transport of superoxide needs 
to be further explored.  Although specifi c gene targeting and 
transgenic approaches have been proven very powerful for 
specifi cally addressing the questions, it will be ideal if specifi c 
compounds for ClC-3 can be developed as pharmacological 
tools to answer these questions and to develop drugs targeting 
ClC-3 as novel therapeutic tools for the treatment of many car-
diac and vascular diseases such as myocardial hypertrophy, 
ischemia, heart failure, and hypertension.  
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