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Abstract

Visual perceptual learning (PL) and perceptual expertise (PE) traditionally lead to different
training effects and recruit different brain areas, but reasons for these differences are largely
unknown. Here, we tested how the learning history influences visual object representations. Two
groups were trained with tasks typically used in PL or PE studies, with the same novel objects,
training duration and parafoveal stimulus presentation. We observed qualitatively different
changes in the cortical representations of these objects following PL and PE training, replicating
typical training effects in each field. These effects were also modulated by testing tasks,
suggesting that experience interacts with attentional set and that the choice of testing tasks
critically determines the pattern of training effects one can observe after a short-term visual
training. Experience appears sufficient to account for prior differences in the neural locus of
learning between PL and PE. The nature of the experience with an object's category can determine
its representation in the visual system.
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Visual learning provides a special window on how the visual system works. Theoretical
accounts of visual learning (Op de Beeck & Baker, 2010; Gilbert et al., 2001; Sasaki et al.,
2010; Roelfsema et al., 2010; Bukach et al., 2007) are often based on small clusters of
empirical research, each located in small regions of the multi-dimensional space of factors
potentially affecting learning. It is therefore difficult to extract general principles of
learning. Here we seek to explore the space between two such clusters of visual training
studies that stem from different traditions of research and typically produce different
training effects. The first area of study is perceptual learning (PL), which investigates how
practice results in improvements in judgments based on simple visual attributes such as line
orientation, Gabor filters or moving dot patterns (Fiorentini & Berardi, 1980; Karni & Sagi,
1991). Behavioral improvements are often highly specific to the trained stimuli (e.g.
orientation, spatial frequency or shape), task, visual field, or even trained eye (Fiorentini &
Berardi, 1980; Karni & Sagi, 1991; Poggio, Fahle, & Edelman, 1992; Sigman, 2000; Fahle,
Edelman, & Poggio, 1995; Ball & Sekuler, 1987; Fiorentini & Berardi, 1981; Fahle, 1997).
In the brain, PL studies consistently produce training effects in early retinotopic cortex
(Furmanski et al., 2004; Pourtois et al., 2008; Maertens & Pollmann, 2005; Schoups et al,

Correspondence concerning this article should be addressed to Yetta K. Wong, Psychology Department, University of Hong Kong,
604, Knowles Building, Pokfulam Road, Hong Kong. yetta.wong@gmail.com.

Yetta K. Wong, Psychology Department, University of Hong Kong; Jonathan R. Folstein, Psychology Department, Vanderbilt
University; Isabel Gauthier, Psychology Department, Vanderbilt University.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wong et al.

Page 2

2001; Mukai et al., 2007; Schwartz et al., 2002; Yotsumoto et al., 2008; Lewis et al., 2009),
where neural selectivity to simple attributes and specific retinotopic locations is consistent
with highly specific behavioral improvements (Gilbert et al., 2001; Fahle & Poggio, 2002;
Fahle, 2009).

A second tradition has focused on a family of phenomena called perceptual expertise (PE),
inspired by studies characterizing expertise acquired outside of the laboratory with natural
object categories (Gauthier et al., 2000; Xu, 2005; Tanaka et al., 2001; 2005; James et al.,
2005; Wong & Gauthier, 2010; Busey & Vanderkolk, 2002; Harley et al., 2009) and
extending this work to laboratory training with familiar or novel objects. In PE studies,
observers typically learn to individuate or discriminatel visually-similar objects within a
category, such as birds (Tanaka et al., 2005), cars (Jiang et al., 2007), letters (McCandliss et
al., 2003), and in some cases computer-generated novel objects (Gauthier, Williams, Tarr &
Tanaka, 1998; Moore et al., 2006; Op de Beeck et al., 2006; Yue et al., 2006; Wong, Palmeri
& Gauthier, 2009a; Wong, Palmeri, Rogers, Gore & Gauthier, 2009b). Contrasting with the
specificity of PL effects, learning in PE studies generalizes to new objects in the trained
domain (Gauthier et al., 1998; Wong et al., 2009a). PE also leads to category-specific
recruitment of areas in lateral occipital region and the fusiform gyrus but generally not in the
early visual cortex (Gauthier et al., 1998; 2000; Moore et al., 2006; Op de Beeck et al.,
2006; Yue et al., 2006; Wong et al., 2009b; Cohen et al., 2000; van der Linden, Murre & van
Turegnout, 2008; van der Linden, van Turennout & Indefrey, 2010; but see Harel et al.,
20104).

Although the neural changes after PL and PE are very different, little discussion or empirical
work has been devoted to understanding these differences. Comparing PL and PE studies is
difficult as methods in the two fields differ on multiple dimensions. For example, PL uses
simple visual attributes (Gilbert et al., 2001) while PE typically uses complex objects
(Bukach et al., 2006). The training tasks in PL often involve binary judgment for orientation
or size, while those in PE often involve object naming (Gauthier & Tarr, 1997; Wong et al.,
2009a). PE usually presents single objects at the fovea while PL often presents multiple
objects in peripheral visual regions simultaneously (e.g. Sigman et al., 2000; Karni & Sagi,
1991). The training duration and testing tasks for PL and PE are different, such that not only
the learning materials and the amount of experience differ, but also how learning is
measured and quantified. Therefore, it is highly difficult to pinpoint specific factor(s) that
account for the differences in training effects between PL and PE. Here, we sought to bridge
these literatures empirically by testing a specific hypothesis: the divergent neural changes
associated with PL vs. PE are driven by the nature of the experience determined by the
training tasks, rather than other differences involving the complexity or number of training
stimuli, or the part of the visual field used during training. By keeping everything but
training experience constant, we can test whether such a manipulation is sufficient to
produce PL- vs. PE-like neural patterns of learning.

The role of experience in determining visual representations remains unclear. Some authors
suggest that cortical visual representations could be determined by innate factors (Mahon et
al., 2009) or largely constrained by object geometry (Tanaka, 1996; Kourtzi & Dicarlo,
2006; Kayaert, Biederman & Vogels, 2005), and others have explicitly suggested that
learning may only moderately alter pre-existing object representations (Op De Beeck et al.,
2007; Op de Beeck, 2010). However, others suggest that learning history critically

INote that there are reasons to believe that individuation and discrimination trainings have different effects but for the present
Eurposes, they both result in learning that differ from PL training.

In that study, the extent of expertise effects may have been overestimated due to low level differences in the categories that were
compared, suggested by the fact that even car novices showed significantly more activity to cars than control stimuli in early visual

areas.
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determines the visual representation of objects. For example, specific demands of the
training task can lead to a shift of object representation from higher to lower visual regions
(Sigman et al., 2005). Also, task-specific and item-specific cortical networks are tuned up by
training experience (Gilbert, 2007; Fahle, 2009). In one recent line of research, different
training experiences with the same objects yielded qualitatively different perceptual
strategies (Wong et al., 2009a) and different patterns of learning in visual cortex (Wong et
al., 2009b). In particular, learning to individuate objects from a novel category (a PE task)
resulted in a local increase in the right fusiform gyrus, while learning to categorize the same
objects resulted in more distributed changes with increased activity in the medial portion of
the ventral occipito-temporal cortex relative to more lateral areas (Wong et al., 2009; see
also Song et al., 2010).

Here, we examined whether the different patterns of visual learning for PL and PE could be
accounted for by training experience. We compared PL and PE with training protocols
typical of each field but with matched training object sets, the same parafoveal stimulus
presentation and the same training duration. The PL training task followed a visual search
paradigm based on judgments of stimulus orientation used by Sigman et al., (2005), while
the PE training task modeled an individuation training used in a number of PE studies
(Gauthier et al., 1999; Wong et al., 2009a; Rossion, Kung & Tarr, 2004). We used two
families of computer-generated “Ziggerin” objects used in prior PE work (Wong et al.,
2009a; 2009b) but in two-tone silhouette versions that would allow discrimination in the
visual periphery (Fig. 1).

We first examined whether modified PL and PE training protocols would replicate the
typical patterns of changes in the brain found in prior PL and PE studies. If differences in
training task suffice to account for large differences between PL and PE in prior work, we
should observe typical PL training effects after our PL training, with increased activity in
early retinotopic cortex when subjects search for objects in the trained compared to an
untrained orientation (Sigman et al., 2005). We should also observe typical PE training
effects, with higher visual areas showing selectivity for the trained compared to a novel
object category during shape discrimination (Gauthier et al., 1998; 1999).

Second, by comparing the patterns of learning following our modified PL and PE protocols
to those obtained in prior work, we may offer some inferences as to whether the departures
from classic methods (e.g., our using parafoveal presentation rather than foveal presentation
for PE, or our inclusion of task-irrelevant shape differences in PL) influence patterns of
visual learning.

Third, we tested how training experience determines object representations by comparing
the training effects for PL and PE. If object representation is largely constrained by innate
factors, object geometry or pre-existing object representations (Mahon et al., 2009; Tanaka,
1996; Kourtzi & Dicarlo, 2006; Kayaert, Biederman & Vogels, 2005; Op De Beeck et al.,
2007; Op de Beeck, 2010), the training effects observed for PL and PE should be highly
similar, given that the training objects were matched in the two types of training. However,
if training experience matters, we should observe different training effects in PL and PE in
the same task and with the same contrasts.

Finally, we examined how changes in the visual system following PL and PE are modulated
by testing tasks. In the literature, the neural substrates of PL are often thought to be task-
specific (Fahle, 2009; Gilbert et al., 2001; 2007; Li et al., 2004). In contrast, the results in
PE are mixed. For example, there is some evidence that with increasing expertise, category-
specific activity becomes less task dependent (e.g. Gauthier et al., 2000), while another PE
study found category-specific effects that depended both on the training task and on the
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testing context (Wong et al., 2009b; see also Harel et al., 2010). Here we included tasks each
designed to tap into the learning effects of PL or PE, therefore our design allowed us to
examine the influence of testing tasks on the neural patterns of changes associated with each
training protocol. We compared the training effects across two different testing tasks in the
same group of subjects using the same contrast. If the training effects of PL or PE are task-
specific, the results should be different across the two tasks.

Subjects were 24 undergraduate students, graduate students and staff members at VVanderbilt
University. All 24 subjects completed the behavioral training and two fMRI sessions, one
before and one after the training. Twelve subjects were randomly assigned to the PL group
(6 females, 6 males; mean age = 25.1 years; SD = 4.87), and 12 were assigned to the PE
group (7 females, 5 males; mean age = 25.1 years; SD = 4.68). All subjects reported normal
or corrected-to-normal vision and gave informed consent according to the guidelines of the
institutional review board of Vanderbilt University and received money for their
participation.

Two categories of novel objects called ‘Ziggerins’ (Wong et al., 2009a) were used and
transformed in silhouette format using Adobe Photoshop CS2 software (Fig. 1). Each
category of 24 exemplars was defined by a unique part structure and configuration.

Training Regimens

Subjects were trained with 18 exemplars of one of two categories in one of two possible
orientations (0° or in 180°), and the remaining six exemplars were reserved for the pretests
and posttests (‘novel exemplars’). The trained object set, the trained orientation and which
six objects were reserved were all counterbalanced across subjects within groups. There
were eight one-hour training sessions and all subjects finished the training sessions within a
four-week period. For all training tasks, the stimuli were presented in eight positions, 3.5°
from the central fixation along a circle, and each object spanned a visual angle of
approximately 1.9° x 1.9° (Fig. 2). Throughout the eight-hour training, no object was
presented at fovea and accuracy was stressed over response time. Before the training task
was introduced, each subject was allowed to study the 24 training objects presented on a
piece of paper with no time limit.

PL training was modeled after the visual search training in Sigman et al (2005), using
silhouettes of Ziggerins instead of ‘T’ shapes (see also Lewis et al., 2009). On each trial, one
of the 18 training objects was randomly selected to create an eight-object array, in which the
eight objects were identical in shape but either plane-rotated 0°, 90°, 180° or 270° from the
subject's assigned training orientation (Figure 2). Subjects judged whether any object in the
array was in the target orientation by key press, and targets appeared with 50% probability.
On each trial, a central fixation dot was presented for 1000ms, followed by an eight-object
array for 150ms, and then the central fixation reappeared until response (Fig. 2a). Subjects
were informed of their mean accuracy every 60 trials.

PE training was modified from the protocol in Greeble training studies (Gauthier & Tarr,
1997; Gauthier, et al., 1998). Eighteen two-syllable nonsense words (e.g., pimo, jepu) were
randomly assigned to the 18 trained objects for each subject, and subjects learned to name
objects that were presented for 150ms in one of eight positions (Fig. 2). The 18 objects were
gradually introduced in four learning phases (4, 4, 4 and 6 objects respectively). Each
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learning phase included passive viewing (an object with its name) and verification practice
(judging whether a name matched with the object) for the newly introduced objects,
followed by a naming training among all the introduced objects. Corrective feedback was
provided for each naming or verification trial, and subjects proceeded to the next learning
phase when they achieved 90% naming accuracy among all the learned objects. The training
procedures and behavioral training effects are detailed in Wong et al. (2011).

Pre- and Post-training fMRI scans

The pre and post-training fMRI scans were identical. Each fMRI scan included six
experimental runs (three visual searchand three shape matching runs) and 2 localizer runs.
Stimuli were presented on an LCD panel and back-projected on a screen. Subjects viewed
the stimuli through a mirror mounted on top of an RF coil above their head.

Experimental runs used either a visual searchtask or a shape matching task, each including
four conditions: objects in the trained or the novel category, presented either in the trained
(upright) or the inverted orientation. For the trained category, only novel exemplars were
used such that no names were associated with any objects for either group. Each run began
with a 10s fixation period. Then the four conditions were presented in four 20s blocks of
trials. This set of four conditions were presented four times in total (with order of the four
conditions counterbalanced), separated by a 16s fixation period. The run ended with a 6s
fixation period. Similar to the behavioral training, the stimuli were always presented in 8
possible locations, centered 3.1° - 3.5° from fixation along a circle (adjusted for the
positions of the mirror with variable individual head sizes), and each object spanned a visual
angle of 1.9°.

V isual search runs were modeled after Sigman et al. (2005) to look for neural training
effects after PL training. Each block started with a target object presented for 2000ms at the
center of the screen. Subjects were asked to search for this target object in six consecutive
trials — it was present 50% of the time (Fig. 3). On each trial, an eight-object array was
briefly presented for 150ms, followed by a central fixation for 2850ms, and objects were
arranged in the same manner as the behavioral training and testing. Subjects responded by
key presses, with the right index or middle finger for target present or absent trials
respectively.

Shape matching runs were designed to tap into the neural changes following PE training.
Each block included ten trials, in which two objects were simultaneously presented in
opposite peripheral positions for 150ms, followed by a fixation dot for 1850ms (Fig. 3).
Subjects judged whether the two objects were identical in shape by key presses, with the
right index finger for ‘same’ and right middle finger for “different’ responses. Half of the
trials were ‘same’ trials in each run.

Localizer runs included three types of stimuli: faces, common objects and scrambled
objects. Each run began with a 10s fixation period, followed by six groups of 3 blocks (16s
each), one for each object type with order counterbalanced, and ended with a 6s fixation
period. Each block consisted of 16 trials, in which an object was presented for 750ms
followed by a 250ms fixation. Subjects performed a one-back task, in which they pressed
the right index finger key as fast as possible when they detected an object identical to the
previous one. There were either two or three repeated trials in each block, with a repeat rate
of 16.1%.

MRI Data Acquisition

Imaging was performed using a 3T Philips Intera Achieva scanner at the Institute of Imaging
Science at Vanderbilt University. The blood oxygen level-dependent (BOLD) signals were
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collected using a T2*-weighted EPI acquisition (TE = 35ms, TR = 2000ms, flip angle = 79°,
matrix size = 64x64, field of view = 192mm, 34 slices, slice thickness = 3mm with no gap).
To increase coverage of the brain, the slices were tilted 10° from the horizontal plane so that
the ventral temporal cortex and the occipital lobe were always covered, while portions of the
superior parietal and superior frontal cortex may be left out due to individual differences in
brain size. High-resolution T1-weighted anatomical volumes were also acquired using a 3D
Turbo Field Echo (TFE) acquisition (TE = 4.6ms, TR = 8.9ms, flip angle = 8°, matrix size =
256x256, field of view = 256mm, 170 slices, slice thickness = 1mm with no gap).

fMRI Data Analysis

Results

Data analysis was performed with Brain Voyager 1.10 (www.brainvoyager.com) and
included 3D motion correction, slice scan time correction, temporal filtering (3 cycles / scan,
high-pass), spatial smoothing (6mm FWHM Gaussian), and multi-study GLM (general
linear model), treating subjects as a random factor. For each subject, all functional images in
the two scans were co-registered to the anatomical images obtained during the pre-training
scan. Data analyses included the 4™ volumes onwards when the hemodynamic response
should be at peak level. Whole brain analyses were focused on the posterior half of the brain
(from Talairach coordinates y = -20 to occipital pole) and the active voxels (voxels that
produced a significantly larger response for any of the conditions compared to fixation at the
level of uncorrected p = .01) to ensure that analyses were performed on regions that were
covered by functional scans in all subjects and to increase statistical power. Multiple
comparisons were corrected by cluster thresholding method, where statistic images were
assessed for cluster-wise significance using the Cluster Thresholding plugin in Brain
Voyager, with a cluster-defining threshold of p=0.02 and 2000 simulation trials. The 0.05
FWE-corrected critical cluster size was 9 or 11 voxels depending on the contrast (243 - 297
mm?3). With the localizer, we identified bilateral face-selective areas (FFA) [faces — objects],
bilateral ventral object-selective areas (LO) [objects — scrambled objects] and also bilateral
parahippocampal gyri (PG) that responded more for objects than faces [objects — faces].
These ROIs were defined because they have been used in prior PE studies (e.g. Gauthier et
al., 1999; Kourtzi & Dicarlo, 2006; Wong et al., 2009b; Wong & Gauthier, 2010; Xu, 2005).
Note that these ROIs are defined at the group level with both training groups combined, with
p < .05 corrected with false discovery rate (FDR; Genovese, 2002) except for the LFFA that
required a lower threshold (t > 2.0), presumably because it tends to be smaller than the
RFFA and more variable in location. ROI analyses were focused on the group level because
unequal numbers of individual ROIs were obtained in the two groups, which made
interpretation of the results difficult. In regions showing significant activation, further data
analyses were performed with a region-of-interest 10x10x10 mm?3 in size, centered on the
peak activity, either to extract descriptive statistics (to illustrate the pattern of a significant
interaction) or for analyses on an independent part of the data set. Contiguous areas of
activity were separated as multiple non-overlapping 10x10x10 significant mm?3 areas if they
consisted of multiple local peaks. We report spatial coordinates in Talairach space.

Summary of behavioral findings

Behavioral results for this study are reported elsewhere (Wong, Folstein & Gauthier, 2011).
The major findings are summarized below, to provide the context for our fMRI analyses.

PL—Similar to prior PL studies (Sigman et al., 2000; 2005), the PL group developed
orientation-specific improvement for the visual search task (Table 1). A 2x2 ANOVA with
Training (pretest / posttest) x Orientation (trained / inverted) on d’ revealed a significant
interaction between Training and Orientation, F(1,11) = 63.9, p <.0001 (np2 = .85, Cl g5 of
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an = .55 t0 .91; Fritz, Morris & Richler, 2011). Scheffé tests (p < .05) revealed that an
inversion effect was absent during pretest but was significant at posttest, with better
performance for the trained than the inverted orientation. Similar analyses on novel
exemplars of the trained category revealed a similar Training x Orientation interaction,
F(1,11) = 124.3, p <.0001, suggesting that learning generalized to novel exemplars.

The PL improvement for the visual search task was also category-specific. A 2x2 ANOVA
on Category (trained / novel) x Orientation (trained / inverted) on d’ was performed on
posttest results (Table 1). The Category x Orientation interaction was significant, F(1,11) =
73.4, p <.0001 (mp? = .87, Cl g5 0f np2 = .59 t0 .92). Scheffé tests (p < .05) revealed that the
performance for the trained objects was better than for novel objects, only for the trained
orientation.

PE—As in prior PE studies (Gauthier et al., 1998; Wong et al., 2009), PE training improved
shape discrimination performance for the trained compared to novel object category (Table
2). A one-way ANOVA on Training (pretest / posttest) on the noise threshold for the trained
category revealed a main effect of Training, F(1,11) = 6.71, p = .025 (Cohen's d = .86, Cl g5
of d =.09 to 1.38), indicating that the amount of Gaussian noise required to keep subjects’
accuracy at 80% increased after PE training. The improvement was category-specific since,
after training, performance for the novel category was no different from pretest performance
for the trained category.

Behavioral evidence of PE learning transferring to novel exemplars within the trained
category was not obtained, which is different from prior studies (Gauthier et al., 1997, 1998,
2002). This was attributed to the fact that the only task (matching) that included novel
exemplars was not sensitive to training effects even with the trained exemplars. This may
simply be a limitation of measurements, since other tasks showed training effects for the
trained objects. Accordingly, we expected that fMRI would be more sensitive to reveal a
generalization effect to novel exemplars, given that prior PE fMRI work only used novel
exemplars and since training effects in PE studies can be obtained even in passive viewing
or incidental tasks (e.g. Gauthier et al., 2000).

Generalization to untrained tasks—Both types of learning generalized to untrained
tasks. For PL, performance improved for the untrained shape matching task (Table 2). A
one-way ANOVA on Training (pretest / posttest) on the noise threshold for the trained
category revealed a main effect of Training, F(1,11) = 9.24, p = .011 (Cohen's d = .86, Cl g5
of d =.19 to 1.54), indicating that more noise was required to keep accuracy at 80% during
the untrained shape matching task after PL training. Similar to the PE group, the PL
improvement in shape matching was specific to the trained category and was not observed
for the novel category.

The PE group improved for the untrained visual search task (Table 1). For the trained
exemplars, a 2x2 ANOVA with Training (pretest / posttest) x Orientation (trained /
inverted) on d’ revealed a significant main effect of Training, F(1,11) = 11.5, p = .006 (Tlp2
= .51, Cl g5 of an = .06 to .72), with better performance at posttest than pretest. While
Training x Orientation interaction was not significant for trained exemplars (p < .2),
analyses with novel exemplars revealed a significant inversion effect (trained d’ > inverted
d’) at posttest but not at pretest, suggesting some degree of orientation specificity in the
improvement of the untrained visual search task.

In sum, the PL and PE training effects replicated typical behavioral findings of PL and PE,
and revealed that the behavioral improvement can generalize across untrained tasks.
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Next, we report the fMRI results in four sections. First, we examined whether our PL and PE
training protocols replicated the typical patterns of neural changes reported in prior studies.
The PL and PE training effects were assessed using the visual search task and the shape
matching task respectively. Second, we investigated how the current findings differ from
prior studies, as we introduced some important departures from standard training paradigms
here for the purpose of making PE and PL more comparable (e.g. involving task-irrelevant
shape variability in the training objects for PL, or using parafoveal instead of foveal
presentation for PE). Third, we compared the training effects between PL and PE with the
same contrasts in the same task to test whether changes in object representation depended on
the nature of training experience. Finally, we tested whether the PL or PE training effects
were task-specific by comparing the learning patterns observed across the two testing tasks.

Typical training effects replicated

PL—An increased inversion effect, i.e., higher sensitivity to objects in the trained than an
untrained orientation, has been the signature behavioral effect in PL training and was
obtained for our subjects (Sigman et al., 2000; 2005; Wong et al., 2011). The same contrast
was used to reveal the brain regions engaged by PL (Sigman et al., 2005; Lewis et al., 2009).
We performed a whole brain analysis using the Orientation x Training contrast [(trained —
inverted orientation) x (post — pre scan)] with objects from the trained category to look for
brain regions recruited after the PL training.

An increased inversion effect was observed in a widespread network of brain areas (Fig. 4A;
Table 3). Importantly, early retinotopic areas showed an increased inversion effect after PL
training, including different parts of the occipital pole and the calcarine fissure (Fig. 4A;
Table 3). The recruitment of early visual regions by PL replicates findings from prior PL
studies (Furmanski et al., 2004; Pourtois et al., 2008; Maertens & Pollmann, 2005; Schoups
et al, 2001; Mukai et al., 2007; Schwartz et al., 2002; Yotsumoto et al., 2008; Lewis et al.,
2009).

PE—Category selective learning is generally the focus of PE studies, with subjects
performing better at shape discrimination with the trained object category compared to an
untrained category (Gauthier et al., 1999; 2000; Wong et al., 2009b). This was investigated
in a whole brain analysis using a Category x Training contrast [(trained — novel category) x
(post — pre scan)] with objects in the trained orientation to look for brain regions showing
increased category selectivity after the PE training.

Increased category selectivity was observed in bilateral ventral temporal cortex, including
bilateral inferior temporal regions and the left middle temporal area, and the LIPS (Fig. 5D;
Table 4). We quantified the amount of behavioral improvement using the noise threshold for
80% accuracy during shape matching, contrasting the trained and novel category after
training (for details of the noise manipulations during pretests or posttests, see Wong et al.
2011), and found that the increase in category selectivity in one of these ventral temporal
areas (the left middle temporal area; -63, -37, -6; 288mm3) predicted this behavioral
advantage for the trained category, r= .66, p=.02 (Fig. 6A).

Separate ROI analyses (see Methods) further revealed that PE training engaged the face- and
object-selective regions. The increase in category selectivity predicted behavioral
improvement (defined as above) in the LFFA (r = .61, p = .034; Fig. 6B), the LLO (r = .61,
p =.034; Fig. 6C), and the RPG (r = .59, p = .045, Fig. 6D).

In sum, the recruitment of ventral temporal cortex for the trained category, with the
magnitude of category selectivity predicting behavioral effects, replicates PE training effects
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in prior studies (Gauthier et al., 1999; Gauthier & Tarr, 2002; Op de Beeck et al., 2006; Yue
et al., 2006; Xu, 2005; Wong et al., 2009b).

Comparing current findings with prior work

PL—Compared to prior studies with similar designs (Sigman et al., 2005; Lewis et al.,
2009), our results were qualitatively different in several ways. For example, an increased
inversion effect was found in bilateral higher visual cortex extensively, covering bilateral
lingual gyrus and fusiform gyrus (Fig. 4A, Table 3), in contrast to prior studies in which the
higher visual cortex was only recruited in a highly localized region (Lewis et al., 2009), or
showed a negative inversion effect after training, i.e., the neural activity was higher for the
inverted than upright condition (Sigman et al., 2005). The ROI analysis further revealed that
our PL training engaged some brain regions selective for faces and objects. A 2x2 ANOVA
with Orientation x Training revealed an increased inversion effect after training in the
LFFA, A1,11) =6.91, p=.023 (np2 =.39, Cl g5 of np2 =.00 to .64; Fig. 7A) and the LPG,
A1,11) =9.04, p=.012 (n,? = .45, Cl g5 of 1,? = .03 to .68; Fig. 7B).

In addition, our PL protocol led to increased inversion effects in a large part of the dorsal
network, with local deactivations in bilateral superior parietal regions (Fig. 4A; Table 3).
These were in contrast to the global deactivation in the dorsal network in previous studies
(Sigman et al., 2005; Lewis et al., 2009). Finally, bilateral STS and the cingulate gyrus also
showed increases in inversion effects after PL. Engagement of these two areas were not
reported in previous studies (Sigman et al., 2005; Lewis et al., 2009).

The extensive neural network showing an increased inversion effect after PL training was
not driven by pre-training differences, because no voxels with significant inversion effect
were found before training (trained — inverted orientation, pre-scan only; Fig. 8).

Since the increased inversion effect in behavioral learning in PL was also specific to the
trained object category (Wong et al., 2011), we performed a whole-brain analysis with the
Orientation x Category x Training [(trained — inverted orientation) x (trained — novel
category) x (post — pre scan)] to explore which brain regions are related to the category-
specific inversion effect. Result revealed a widespread neural network covering both higher
visual cortex and the dorsal network (Fig. 9), suggesting that a wide range of neural areas
may support the orientation- and category-specific behavioral learning in PL.

In sum, our PL training engaged the early retinotopic cortex, a typical finding in prior PL
studies (Furmanski et al., 2004; Pourtois et al., 2008; Maertens & Pollmann, 2005; Schoups
et al, 2001; Mukai et al., 2007; Schwartz et al., 2002; Yotsumoto et al., 2008; Lewis et al.,
2009). The qualitative differences between the current and prior studies, including the
extensive recruitment of bilateral higher visual cortex, the dorsal network, the STS and the
cingulate gyrus, is probably a result of using more complex object silhouettes with shape
variability instead of simple Gabor filters or shapes (see Discussion).

PE—The occipito-temporal areas showing increased category selectivity were somewhat
different from those observed in some other PE studies. For example, prior work using
Ziggerins (Wong et al., 2009b) or other novel objects (Gauthier et al., 1999) found increased
category selectivity in the RFFA, while we observed similar effects in the LFFA instead of
the RFFA. This could be related to the use of parafoveal presentation in our PE protocol,
which could be further explored in future studies.
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Training effects depend on training experience

Visual search engaged different neural substrates in PL vs. PE—With different
training experience, the PE training led to cortical changes that were qualitatively different
from that of the PL group during visual search. In the same analysis, no training effect was
found in early retinotopic cortex (Fig. 4C; Table 5). Also, in higher visual cortex (e.g. the
left fusiform gyrus and the middle temporal gyrus) and various parietal regions in the dorsal
pathway, the inversion effect decreased after training. This was in contrast to the PL group
in which a widespread neural network showed increased inversion effects after training (Fig.
4A; Table 3).

The group differences were confirmed by analyses directly comparing the two groups. The
Group x Orientation x Training contrast [(PL — PE) x (trained — inverted orientation) x (post
— pre scan)] was performed with objects from the trained category. An extensive neural
network showed significantly larger increase in the inversion effect for PL than PE (Table 6;
Fig. S1), similar to that in Fig. 4A.

ROI analyses also revealed qualitatively different visual learning between the two groups. In
the LFFA, a 2x2 ANOVA with Orientation x Training revealed that the inversion effect
increased after PL (Fig. 7A) but not after PE (F1 11 < 1). In both left and right PG, a 2x2x2
ANOVA with Group x Orientation x Training revealed significant three-way interactions in
both the LPG, A1,22) = 10.4, p=.0039 (np2 = .49, Cl g5 of an =.051t0.70; Fig. 7B), and
the RPG, A1,22) = 4.35, p=.049 (n,? = .28, Cl g5 of 12 = .00 to .57; Fig. 7C). For both
areas, the inversion effect was not found before training for either group, but was found after
training for PL (Scheffé tests, p < .05) but not for PE. Therefore, the visual search task
produced qualitatively different changes in orientation selective object representations
depending on training experience.

Apart from the Orientation x Training contrast, qualitatively different training effects can
also be found with the Category x Training contrast [(trained — novel category) x (post — pre
scan), for objects in the trained orientation]. As shown in figure 5A and 5C, PL led to
increase in category selectivity in early retinotopic cortex, higher visual cortex and the
dorsal pathway, while PE resulted in decrease in category selectivity in the higher visual
cortex and the parietal regions. These results demonstrate that the specific contrast used is
not critical here. PL and PE show qualitatively different visual learning effects in the visual
search task, regardless of whether the baseline is an untrained orientation or a novel category
of objects.

Shape matching engaged different neural substrates in PL vs. PE—During
shape matching, PL resulted in a different pattern of neural changes after training compared
to that in PE. The Category x Training contrast did not reveal an increase in category
selectivity in the ventral temporal cortex after PL training (Fig. 5B; Table 7). Instead,
increased category selectivity was observed in the LIPS, a region similar to that engaged by
the PE group in the same contrast, and in an additional RSTS region. Directly comparing the
two groups with the Group x Category x Training contrast did not reveal any significant
difference in these regions during shape matching, perhaps because of limited statistical
power for a between-subject contrast. This is consistent with behavioral results showing
more similarity between the two groups during shape matching than visual search tasks
(Wong et al., 2011). Although we cannot conclude that the training effects in terms of
category selectivity for trained vs. novel objects differ across groups, an analysis restricted
to the trained-upright objects revealed a significant interaction between groups. Specifically,
the Group x Training contrast [(PL — PE) x (post — pre scan)], with trained-upright objects
only, revealed significant interactions with increased activity for PE more than for PL in
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bilateral ventral temporal regions, and larger increases for PL than PE in the RSTS (Table 8;
Fig. S1).

The ROI analyses in bilateral FFA, LO or PG did not reveal any change of category
selectivity after PL training, in terms of the mean category selectivity (all ps > .3), or
correlation between the change in category selectivity and behavioral improvement (defined
as that in the PE group; all ps > .2). This is in contrast to the PE group that engaged multiple
regions in the ventral temporal cortex and the face- and object-selective regions for shape
matching.

It is difficult to compare training effects across groups using the Orientation x Training
contrast [(trained — inverted orientation) x (post — pre scan)], because this contrast only
revealed limited training effects within each group (Fig. 4B & 4D; all ps > .2 for ROI
analyses with this contrast). This is perhaps not surprising for PE, since a significantly
increased inversion effect after PE training has only been obtained once (Gauthier et al.,
1999), while changes in category selectivity has been considered a more reliable and robust
training effect for PE (e.g., Gauthier et al., 2000; Xu, 2005; Op de Beeck et al., 2006).3

In sum, the trained objects in the trained orientation engaged different neural substrates
during the shape matching task, depending on training experience. It is worth noting that the
PL group's performance in shape matching improved at least as much as that of the PE
group (Wong et al., 2011; Table 2). Therefore, similar behavioral improvements in shape
matching ability in the two groups are associated with different neural mechanisms. For PE,
the shape matching ability may be supported by multiple regions in the ventral temporal
cortex and the face- and object-selective regions, while that for the PL group may be
supported by the inferior parietal area and the RSTS.

Training effects depend on testing tasks

Training effects do not only depend on the nature of training experience, but also appeared
dependent on the testing tasks. Using identical contrasts, the training effects observed in
each group were different during visual search and shape matching. For PL, both the
increased inversion effect (Fig. 4A) and the increased category specificity (Fig. 5A) were
found in a widespread set of areas during visual search but not during shape matching (Fig.
4B, 5B). For PE, the inversion effect and category selectivity in ventral temporal areas and
left parietal regions were increased during shape matching (Fig. 4D, 5D), but decreased
during visual search (Fig. 4C, 5C).

This interaction between testing task and prior experience can be observed not only in
distributed patterns of activity but also within small local regions. For example, in the
LFFA, an increased inversion effect was found for PL during visual search (p = .023) but
not during shape matching (F < 1), and this effect was not found for PE in either task (both
Fs < 1). These results suggest that both the change in inversion effects and the category
selectivity were dependent on training experience and testing tasks.

Discussion

In this study, we investigated why PL and PE studies consistently obtain contrasting patterns
of neural training effects. We found that the nature of training experience alone is sufficient
to explain the typical training effects of PL and PE, including the increased selectivity for
objects in the trained orientation in early retinotopic cortex in PL (but not in PE) during

3ltis possible that the representational changes that support PE and allow for generalization to new exemplars very quickly (e.g.,
McGugin et al., in press) are not initially specific enough to produce inversion effects.
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visual search, and the increased category selectivity for trained objects in higher visual
cortex in PE (but not in PL) during shape matching. These suggest that the qualitatively
different patterns of learning effects reported in the two literatures may be largely driven by
differences in the training experience, rather than other factors matched in the current study
such as object sets, parafoveal stimulus presentation and training duration. The divergent
patterns of results in PL and PE cannot be explained by different levels of attention or
differential degrees of learning in the two groups. Our findings demonstrate the critical
importance of the nature of experience with an object's category as one of the factors
determining its representation in the visual system (Gauthier et al., 1998; Wong et al.,
2009b; Gauthier, Wong & Palmeri, 2010).

Implications for Perceptual Learning

For PL, despite the fact that our training objects were much more complex and variable than
in prior work, activity increased in early retinotopic cortex during visual search for targets in
the trained orientation compared to inverted targets, consistent with the engagement of early
visual areas for PL (Furmanski et al., 2004; Pourtois et al., 2008; Maertens & Pollmann,
2005; Schoups et al, 2001; Mukai et al., 2007; Schwartz et al., 2002; Yotsumoto et al., 2008;
Lewis et al., 2009). The results are consistent with the hypothesis that rapid recognition of
multiple simultaneously presented objects leads to the recruitment of early retinotopic cortex
because its high spatial resolution helps rapid access of the stimuli presented in different
visual field positions (Sigman et al., 2005).

However, changes in the dorsal network and in higher visual areas in our PL were different
from previous studies (Sigman et al., 2005; Lewis et al., 2009). In prior work, the opposite
learning effects in different visual areas, i.e., decreases in extrastriate areas associated with
increases in retinotopic cortex, were taken as evidence that large-scale reorganization
between visual areas supported learning in this task (Sigman et al., 2005). However, our
results indicate that changes in early visual cortex can be obtained without a corresponding
decrease of activity in higher visual regions or in the dorsal attention network (both were
more active for the trained orientation in the current study). Our results suggest that PL can
lead to large-scale changes in object representation, while the roles of the higher visual areas
and the dorsal network may be determined by properties of the training objects. For
example, it is possible that PL with shape variability in objects required influences from
higher areas to establish the correct template in early visual areas for the search task. It is
worth noting that the similarities and differences in neural engagement in the current and
previous PL studies are all accompanied by common behavioral improvement highly
specific to the training orientation and category. This demonstrates how similar behavioral
effects can be supported by different patterns of changes in the visual system.

Implications for Perceptual Expertise

Our modified PE training led to increases in category selectivity in multiple regions in the
ventral temporal cortex. In particular, the change in category selectivity in the left temporal
area, LFFA, LLO and RPG predicted behavioral improvement, suggesting that the enhanced
shape discrimination ability is related to computations in these regions. These results are
consistent with prior PE studies that shape discrimination learning recruits higher visual
cortex (Gauthier et al., 1999; Gauthier & Tarr, 2000; Op de Beeck et al., 2006; Yue et al.,
2006; Xu, 2005; Wong et al., 2009; van der Linden, Murre & van Turennout, 2008; van der
Linden, van Turennout & Indefrey, 2010). While our modified PE training engaged different
parts of the higher visual cortex compared to prior studies (e.g. Gauthier et al., 1999; Wong
et al., 2009), the differences may be caused by the parafoveal object presentation instead of
foveal presentation.
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Even though the PL and PE training led to similar degrees of improvement in shape
matching (Wong et al., 2011), the neural mechanisms supporting such behavioral learning
are largely different across the two groups. While prior PE studies and the current findings
consistently demonstrated that PE is associated with ventral temporal cortex (Gauthier et al.,
1999; Gauthier & Tarr, 2002; Op de Beeck et al., 2006; Yue et al., 2006; Xu, 2005; Wong et
al., 2009; van der Linden, Murre & van Turennout, 2008; van der Linden, van Turennout &
Indefrey, 2010), increased category selectivity in the PL group was found in the LIPS and
RSTS instead of the ventral temporal regions. The results were not strong enough to support
a group difference in category selectivity (for trained vs. novel objects), but we nonetheless
observed the engagement of different neural areas across groups for trained-upright objects
during shape matching: ventral temporal regions showed a larger increase for PE than PL,
while the right STS showed a larger increase for PL than PE. These difference in neural
training effects cannot be explained by differences in behavioral learning across groups,
since the behavioral improvement for both groups were of similar magnitude and shared
similar category specificity. These differences in neural recruitment may be related to the
fact that shape discrimination was explicitly trained in PE but acquired in a task-irrelevant
manner in PL (in which the training was related to visual search instead of fine-level shape
discrimination; Wong et al., 2011). Our results highlight the importance of fow a certain
visual ability is acquired: similar behavioral learning can be supported by distinct neural
mechanisms when the ability is learned through different types of training.

Relationship between Perceptual Learning and Perceptual Expertise

In the literature, PL and PE have been treated as different types of visual training studies.
For example, PE (but not PL) is thought to involve explicit and semantic memory (e.g. the
use of naming training) and thus recruit temporal regions, while PL is regarded as more
implicit and perceptual and thus engages early visual areas (Fine & Jacobs, 2002; Gilbert et
al., 2001). However, we showed that PL can recruit ventral temporal regions extensively,
indicating that the engagement of ventral temporal areas in visual learning is not necessarily
related to naming.

PL and PE are subsets of visual learning studies that are perhaps not that distinct from each
other. For example, both PL and PE may engage higher visual cortex (e.g. the present study)
and early visual cortex (e.g. Sigman et al., 2005; and Schoups et al., 2001 for PL; Wong &
Gauthier, 2010 for PE). On the behavioral level, the degree of specificity in PL, the
signature of PL, did not appear to be lower than PE when they were directly compared using
the same testing tasks (Wong et al., 2011). In addition, improvements in PL have been
associated to changes in the intraparietal regions and the medial frontal cortex, suggesting
the involvement of decision-making and reward mechanisms in PL (Kahnt et al., 2011; Law
& Gold, 2008). While prior PE studies did not investigate the role of decision-making or
reward mechanisms, multiple intraparietal and medial frontal regions are engaged after PE
training (Table 4-5; Wong & Gauthier, 2010), suggesting similar possibilities of involving
higher mechanisms in PL and PE. In general, we did not observe strong evidence supporting
the idea that PL and PE should be considered separately (Fine & Jacobs, 2002; Gilbert et al.,
2001).

Apparent discontinuities between PL and PE (and perhaps with other visual learning studies)
may be salient because the space of task constraints is sparsely sampled in the literature. In
the present study, training effects in PL and PE can be explained by differences in training
tasks, suggesting that these two types of training may fall onto different positions along a
continuum of task demands. Indeed, task constraints across training studies often differ in
numerous ways. For example, our PL and PE training protocols differed along multiple
dimensions, including types of discrimination (orientation / shape), amount of visual
crowding on each display, and number of responses used on training tasks. To bridge the

J Exp Psychol Gen. Author manuscript; available in PMC 2013 November 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 14

literatures between PL and PE, one should consider the differences in task demands between
these two types of training.

Importance of testing task

Patterns of short-term visual learning do not only depend on the nature of training
experience, but also the testing task. Within the same group of subjects, the observed
training effects can be qualitatively different when the testing task was visual search or
shape matching. This task dependency of the training effects was found when different
contrasts were used, suggesting that this finding was not a result of specific contrasts, but
rather may well represent learning effects that are not expressed in some testing conditions.

For PL, such task dependency differs from what prior studies seem to predict. Specifically,
while the neural substrates of PL is often thought to be task-specific (Fahle, 2009; Gilbert et
al., 2001; 2007; Li et al., 2004), this typically means that the training effects can be observed
only during the trained task. Here, although we observed that the exact patterns of results
were highly dependent on the specific tasks, we found training effects in both the trained
task (visual search) and a task irrelevant to the PL training (shape matching). Using tasks
that are very different from the training task may help to differentiate the role of various
brain regions in visual learning.

It is possible that the task-specificity may decrease with additional training. For example, a
prior study with Ziggerins used six object categories in the training and thus provided about
1/6 of the experience per object category compared to the present PE training (Wong et al.,
2009). The task-specificity of their neural training effect was even higher than the current
study in that their training effects were observed only for testing tasks that were highly
similar to the training. It is possible that as we learn a category, visual learning effects
progress from being specific to the training task, to generalizing to other tasks and
eventually showing a relatively stable pattern where regardless of the task, the pattern of
activity resembles that for the practiced task (Gauthier et al., 2000). For instance, one
hallmark of expertise individuating objects is a relatively inflexible tendency to apply
holistic strategies even when the task calls for part-based attention (Bukach et al., 2010).

Manipulating experience for developing visual learning theories

In the face of the many factors that can drastically influence how the visual system is
affected by visual learning, and the possibility that these factors can interact as training task
and testing task did in our study, how can a systems-level theory of visual learning be
possible? Given a detailed description of objects and training conditions, how can we predict
which visual areas will show the greatest amount of learning? Can we do better than to state
post-hoc that the neural substrates recruited are the ones that are the most informative for the
task at hand (Op de Beeck & Baker, 2010)?

While we are optimistic that neuroimaging can help reveal how different aspects of
experience constrain patterns of visual learning, the empirical evidence required for such
models is currently lacking, in particular because of the need for manipulations of prior
experience as we used here. Such designs are not common (Wong et al., 2009; Song et al.,
2010), as most fMRI studies of visual learning only look at the changes that follow a single
training protocol (e.g., Sigman et al., 2005; Op de Beeck et al., 2006; Jiang et al., 2007;
Kourtzi et al., 2005; Schwartz et al., 2002; Mukai et al., 2007; Yotsumoto et al., 2008; Lewis
etal., 2009). In such cases, training effects cannot be attributed to specific aspects of
experience: even mere exposure could potentially explain these results. For this reason, we
know a lot less about the role of experience than we know about factors that are frequently
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manipulated, such as object category or shape (e.g., Haxby et al., 2001; Eger et al., 2008;
Grill-Spector, Sayres & Ress, 2006; Golcu & Gilbert, 2009).

Arguing that several factors interact and provide constraints for visual learning to influence
category-selectivity is not a completely new idea (Gauthier, 2000; Malach et al., 2002; Op
de Beeck et al., 2008; Op de Beeck & Baker 2010). Our daily experience with objects is
associated with different goals, which may interact with other factors such as object
geometry (Tanaka, 1996; Op de Beeck, 2010), eccentricity (Malach & Hasson, 2002) and
non-visual experience with objects (Wong et al., 2010; James et al., 2005) to shape the
topographical map of selectivity for various categories of objects (Grill-Spector and Malach,
2004). Some results also suggest that visual experience may not be necessary for at least
some of the coarse organization in the visual system (Mahon et al., 2009).

The contribution of the present work is to show that experience alone is sufficient to drive
differences as large as those reported in the PL and PE literatures. Although this goes
beyond the current data, it is logically possible that prior experience with objects could in
fact constrain the shape-selective effects obtained in experiments where experience is not
manipulated. For instance, in an experiment where entirely novel objects vary in shape such
that some are smooth and others are spiky (e.g., Op de Beeck et al., 2006), the maps of
shape-selectivity could be determined by prior experience with other spiky and smooth
objects. In the light of the present demonstration that the nature of our experience with an
object's category can influence its representation in the visual system, it appears premature
to suggest that learning only moderately alters pre-existing object representations and does
so only in a very distributed fashion (Op de Beeck & Baker, 2010; Op de Beeck et al., 2007;
see also Freedman & Miller, 2008). Controlled manipulations of prior experience such as we
used here can help us understand the principles governing the functional plasticity of the
visual system.
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Figure 1.

The two sets of Ziggerins in silhouette formats used for the training. The brackets illustrate
the objects used as training exemplars, novel exemplars and novel category for one subject
(counterbalanced across subjects).
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Figure2.

The training paradigm used in the training. For PL (top), a visual search task was used in
which subjects judged whether an object in the target orientation was present. For PE
(bottom), a naming task was used which required subjects to name each individual object.
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Figure 3.

The task used in the scanner. In the visual search run (top), a target object was first
presented for 2s, followed by 6 trials in which subjects were required to indicate whether
objects in the same orientation as the target object was present (all objects in the display
were identical in shape as the target object). In the shape matching run (bottom), subjects
judged whether the two objects presented in each trial were identical in shape.

J Exp Psychol Gen. Author manuscript; available in PMC 2013 November 01.



duasnuely Joyiny vVd-HIN 1duosnuey JoyIny vd-HIN

duasnuely Joyiny vd-HIN

Wong et al.

Page 22

Orientation x Training Contrast

(Trained - Inverted Orientation) x (Post - Pre scan)

Visual Search Shape Matching

(A (B)L

o

'.ﬁ
>

PL
‘ e \‘
) : y
‘P = %Y
= ~m&~f
(C)L (D)
°° P
’)
'
PE
anterior ~eg—————p posterior
Figure4.

Areas showing significant increase (orange) or decrease (blue) using the Orientation x
Training contrast during visual search or shape matching. Only the regions included in the
whole brain analyses (posterior half of the brain, y = -20 to the occipital pole) were shown.
Results were superimposed on the flattened cortical map of the left hemisphere of one of the
PE subjects, only one subject was used to present results for both groups to maximize the
ease of comparison in the figures. PCS — post-central sulcus; STS — superior temporal
sulcus; pFs — posterior fusiform gyrus.
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Figureb.

Areas showing significant increase (orange) or decrease (blue) using the Category x
Training contrast during visual search or shape matching. The flattened maps are presented
in the same manner as in Figure 4.
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Figure®6.

Scatter plots showing significant correlations for the PE group between behavioral
improvement in shape matching (indicated by the difference in noise level for 80% matching
accuracy for trained and novel object categories after training) and category selectivity
during shape matching (defined by the Category x Training contrast) in the left middle
temporal area (A), LFFA (B), LLO (C) and RPG (D).
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Figure7.

Inversion effects during pre-scan (open squares) and post-scan (closed circles) for the two
groups in the LFFA (A), LPG (B) and RPG (C). Error bars show the 95% CI of the Group x
Orientation x Training interaction.
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Figure8.

Areas showing significant increase (orange) or decrease (blue) using the Orientation contrast
(trained — inverted) during visual search at pre-scan (left) or post-scan (right). PCS — post-
central sulcus; STS — superior temporal sulcus; pFs — posterior fusiform gyrus.
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Figure9.

Areas showing significant increase in response using the Orientation x Category x Training
contrast during visual search for PL. PCS — post-central sulcus; STS — superior temporal
sulcus; pFs — posterior fusiform gyrus.
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Table 2

Performance (in terms of the estimated level of Gaussian noise required for about 80% accuracy) for PL and
PE during the shape matching test before and after training (for upright objects only). For both groups, shape
matching performance improved for the trained category but not for the novel category after training.

pretest posttest

trained category trained category novel category

PL 0.917 2.67 1.33
PE 0.917 2.17 1.75
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