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SUMMARY

Decision making is often considered to arise out of
contributions from a model-free habitual system
and a model-based goal-directed system. Here, we
investigated the effect of a dopamine manipulation
on the degree to which either system contributes to
instrumental behavior in a two-stage Markov deci-
sion task, which has been shown to discriminate
model-free from model-based control. We found
increased dopamine levels promote model-based
over model-free choice.

INTRODUCTION

An overarching view of adaptive behavior is that humans and

animals act to maximize reward and minimize punishment as

a consequence of their choices. There are multiple ways this

can be realized, and mounting evidence indicates model-based

and model-free forms of reinforcement learning (RL) contribute

to behavioral control (Balleine and O’Doherty, 2010; Boureau

and Dayan, 2011; Daw et al., 2005; Doya, 1999; Redgrave

et al., 2010; Wunderlich et al., 2012). Model-free RL learns the

course of action leading to maximum long-run reward through

a temporal difference (TD) prediction error teaching signal

(Montague et al., 1996). By comparison, model-based choice

involves forward planning, inwhich an agent searches a cognitive

model of the environment to find the same optimal actions (Dick-

inson and Balleine, 2002).

An unresolved question is whether neuromodulatory systems

implicated in value-based decision making, specifically dopa-

mine, impact on the degree to which one or the other controller

is dominant in choice behavior. Phasic firing of dopaminergic

VTA neurons encodes reward prediction errors in reinforcement

learning (Hollerman and Schultz, 1998; Schultz et al., 1997).

In humans, drugs enhancing dopaminergic function (e.g.,

L-DOPA) augment a striatal signal that expresses reward predic-

tion errors during instrumental learning and, in so doing,

increases the likelihood of choosing stimuli associated with

greater monetary gains (Bódi et al., 2009; Frank et al., 2004; Pes-

siglione et al., 2006).

While previous research has focused on the role of dopamine

in model-free learning, and value updating via reward prediction

errors, its role in model-based choice remains poorly under-
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stood. For example, it is unknown if and how dopamine impacts

on performance in model-based decisions and on the arbitration

between model-based and model-free controllers. This is the

question we address in the present study, in which we formally

test whether dopamine influences the degree to which behavior

is governed by either control system.
RESULTS

We studied 18 subjects on a two-stage Markov decision task

after being treated with Madopar (150 mg L-DOPA plus

37.5 mg benserazide) or a placebo in a double-blind, fully coun-

terbalanced, repeated-measures design. We used a task previ-

ously shown to distinguish model-based and model-free

components of human behavior and in which subjects’ choices

pertain to a mixture of both systems (Daw et al., 2011). These

properties render this task optimally suited to test the influence

of a pharmacological manipulation on the degree to which

choice performance expresses model-based or model-free

control.

In each trial, subjects made an initial choice between two

fractal stimuli, leading to either of two second-stage states in

which they made another choice between two different stimuli

(see Figures 1A and 1B). Each of the four second-stage stimuli

was associated with probabilistic monetary reward. To incen-

tivize subjects to continue learning throughout the task, we

changed these probabilities slowly and independently accord-

ing to Gaussian random walks. The choice of each stimulus on

the first stage led predominantly (70% of the time) to one of

the two associated second-stage states, a relationship that

was fixed throughout the experiment. The logic of the task

was that a dependence on model-based or model-free strate-

gies predicts different patterns by which feedback obtained

after the second stage should impact future first-stage

choices.

We first considered stay-switch behavior as a minimally con-

strained approach to dissociate model-based and model-free

control. A model-free reinforcement learning strategy predicts

a main effect of reward on stay probability. This is because

model-free choice works without considering structure in the

environment; hence, rewarded choices are more likely to be

repeated, regardless of whether that reward followed a common

or rare transition. A reward after an uncommon transition would

therefore adversely increase the value of the chosen first-stage

cue without updating the value of the unchosen cue. In contrast,
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C Figure 1. Task Design

Task. (A) On every trial, a choice between two

stimuli (left-right randomized) led probabilistically

to one of two second-stage states, each of which

then demanded another choice between two

different stimulus pairs. Importantly, each first-

stage stimulus was more strongly (70% versus

30%) associated with a particular second-stage

state throughout the experiment, imposing a task

structure that could be exploited in model-based

choice. All stimuli in stage 2 were associated with

probabilistic reward, which changed slowly and

independently according to Gaussian random

walks. This forced subjects to continuously learn

and explore the second-stage choices throughout

the experiment. (B) Timings in a single trial. (C)

Model-based and model-free strategies for RL

predict different patterns by which outcomes

experienced after the second stage should impact

first-stage choices on subsequent trials (based on

Daw et al., 2011). If choices were driven by the

model-free system, then a reward should increase

the likelihood of choosing the same stimulus

on the next trial, regardless of the type of

transition (left). Alternatively, if choices were driven

by a model-based system, we would expect

an interaction between transition type and

reward (right).
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under a model-based strategy, we expect a crossover interac-

tion between the two factors, because a rare transition inverts

the effect of a subsequent reward (Figure 1C). Under model-

based control, receiving a reward after an uncommon transition

increases the propensity to switch. This is because the rewarded

second-stage stimulus can be more reliably accessed by

choosing the rejected first-stage cue than by choosing the

same cue again.

Using repeated-measures ANOVA, we examined the proba-

bility of staying or switching at the first stage dependent on

drug state (L-DOPA or placebo), reward on previous trial (reward

or no reward), and transition type on previous trial (common or

uncommon) (see Figure 2A). A significant main effect of reward,

F(1,17) = 23.3, p < 0.001, demonstrates amodel-free component

in behavior (i.e., reward increases stay probability regardless of

the transition type). A significant interaction between reward

and transition, F(1,17) = 9.75, p = 0.006, reveals a model-based

component (i.e., subjects also take the task structure into

account). These results show both a direct reinforcement effect

(model-free) and an effect of task structure (model-based) and

replicate previous findings (Daw et al., 2011).

The key analyses here concernedwhether L-DOPAmodulated

choice propensities. Critically, we observed a significant drug 3

reward3 transition interaction, F(1,17) = 9.86, p = 0.006, reflect-

ing increased model-based behavior under L-DOPA treatment.

We also observed a main effect of the drug, F(1,17) = 7.04,

p = 0.017, showing that subjects are less perseverative under

L-DOPA treatment. Interactions between drug and transition,

F(1,17) = 4.09, p = 0.06, or drug and reward (which would indi-
cate a drug-induced change in model-free control), F(1,17) =

1.10, p = 0.31, were not significant.

Figure 2B shows the difference in stay probability between

drug states corrected for a main effect of drug. Note that dopa-

mine treatment particularly affected choices after unrewarded

trials and a post hoc contrast; testing for a differential drug effect

after unrewarded compared to rewarded trials confirmed this

was significant, F(1,17) = 12.68, p = 0.002. Figures 2C–2F illus-

trate how a number of hypothesized effects of L-DOPA might

manifest itself in a stay-switch analysis (see Figure S1 available

online for a validation of these hypotheses using computational

modeling). Qualitatively, the data in Figure 2B resemble a shift

toward model-based control, most notable after unrewarded

trials. In contrast, our results do not resemble any of the putative

model hypotheses that invoke modulation of a model-free

system.

Given the broad effects of drug in this analysis, we next

employed computational modeling to provide an in-depth under-

standing of this pharmacological effect. The value of using such

an approach is that a stay-switch analysis only considers vari-

ables on trial n � 1, while a computational model encompasses

an integration over a longer reward history and attributes any

behavioral change to a specific computational process.

Model comparisons (Table S2) between a fully parameterized

hybrid model (Daw et al., 2011; Gläscher et al., 2010) and

various reduced nested versions favored a model with the

parameters learning rate a, softmax temperature b, persever-

ance p, and relative degree of model-based/model-free control

u as best fit. We then fitted parameters individually for each
Neuron 75, 418–424, August 9, 2012 ª2012 Elsevier Inc. 419
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Figure 2. Results Stay-Switch Analysis

(A) Subjects’ task behavior showed characteristics of both model-free

and model-based influences, demonstrating that subjects combined both

strategies in the task. The reward 3 transition interaction (a measure of the

extent to which subjects consider the task structure) was significantly larger in

L-DOPA compared to placebo, indicating stronger model-based behavior.

Error bars represent SEM. (B) Difference in stay probability between L-DOPA

and placebo condition, corrected for the main effect of drug. The observed

interaction indicates a shift toward model-based choice (see F) but shows no

resemblance to any of the three effects implicating the model-free system

(see C–E). (C–F) Illustration of expected differences in stay probability for

hypothetical drug effects. See Figure S1 and Table S1 for validation of these

hypotheses. (C) Trials after uncommon transitions (second and fourth bar)

are discriminatory between model-free and model-based choice, whereas

both models make equal predictions for trials after common transitions

(cf. Figure 1C). A shift toward model-free control would be indicated by an

increased propensity to stay with the chosen pattern after uncommon re-

warded trials and an increase in switching after uncommon unrewarded trials.

(D) Stronger or faster model-free learning would increase the reward-depen-

dent effect and be expressed as a general increase to stay after rewarded trials

and general decrease to stay after unrewarded trials. (E) A selective

enhancement of positive updating paired with impairment in negative updating

might not change mean-corrected stay probabilities. This is because

enhanced positive updating leads to a stronger propensity to stay after

rewarded trials, while impaired updating of unrewarded trials decreases the

propensity to switch after such trials. (F) Opposite to (C), a shift toward model-

based control is expressed by enhanced sensitivity to the task structure.
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Figure 3. Results Computational Learning Model

(A) Group-averaged parameter differences in the computational learning

model between L-DOPA and placebo. Parameter w represents a measure of

model-based over model-free control. Error bars represent SEM. (B) Single-

subject data for parameter values in (A). Each data point represents the

parameter value of a single subject. Subjects above the diagonal (circles) had

higher parameter values in the L-DOPA compared to placebo condition, while

subjects below (crosses) had smaller parameter values. The relative degree

of model-based control was higher in the L-DOPA condition in 14 out of

18 subjects. See Figure S1 and Table S1 for validation of the winning model

and Table S2 for model comparison details.
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subject and drug state after applying logistic or exponential

transformations to bounded model parameters (a, b, p, u)

to gain Gaussian distributed fitted parameter values (a, b, p,

w), permitting the use of parametric tests for differences

between sessions. All reported p values are from two-tailed

paired t tests.
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In line with the stay-switch results, we found a significant

increase in the model-based weighting parameter w, p =

0.005, (positive in 14 out of 18 subjects) and a trend-level

decrease in the perseverance parameter p, p = 0.06, under

L-DOPA compared to placebo. Learning rate a, p = 0.45, and

softmax temperature b, p = 0.34, did not differ between drug

states (Figure 3). We note that, overall, fitted parameter

values were in a similar range as those in Daw et al. (2011)

(Table 1). As model-based choice is superior to model-free

choice in this task, we found a significant positive correlation

between subjects’ relative degree of model-based control (w)

and total earnings, r = 0.4, p = 0.01 (Figure S2). There was no

evidence for differences in drowsiness or general alertness

(Bond et al., 1974) between sessions (paired t tests over each

score; smallest p > 0.1) or in average response times between

drug states (first stage RTL-DOPA = 593 ms, RTPlacebo = 586 ms;

paired t test, p = 0.70).

Note that in the preceding analysis we employed the same

computational models as the authors in the original study

utilizing this task (Daw et al., 2011). We also constructed

additional computational models to further explore the observed

shift in control and to examine whether dopamine asserts its

effect predominantly on the model-free or model-based system.

Some studies have suggested that dopamine levels might

have differential effects on positive and negative updating

(Frank et al., 2004; Pessiglione et al., 2006). We therefore tested

a model with separate learning rates for positive (a+) and nega-

tive (a�) updating. The learning rates were not significantly

different between L-DOPA and placebo (paired t test: a+, p =

0.52 and a�, p = 0.43). The use of the same values at the second

stage for both model-free and model-based systems ignores

evidence that model-based and model-free learning use

different neural structures (Balleine and O’Doherty, 2010;



Table 1. Best-Fitting Parameter Estimates, ShownSeparately for

Both Drug Conditions as Median and Quartiles across Subjects

a b p u

Placebo

25th percentile 0.25 3.4 0.63 0.07

Median 0.45 5.4 1.37 0.58

75th percentile 0.57 7.3 2.20 0.79

L-DOPA

25th percentile 0.25 1.8 0.28 0.14

Median 0.37 4.7 0.70 0.78

75th percentile 0.59 7.7 1.50 0.95
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Wunderlich et al., 2012) and, as such, might learn the second-

stage values separately. To test this, we implemented a model

containing separate representations of second-stage values

and learning rates for the model-based and model-free system.

The model-based learning rate was higher than the model-free

learning rate (p = 0.001). However, concurring with the results

from our original computational implementation, there was no

change in either learning rate with drug condition (a model-free

p = 0.33, model-based p = 0.76). An alternative computational

implementation of model-free RL, the actor-critic model, learns

values and action policies separately (Sutton and Barto, 1998).

To test whether L-DOPA might alter updating of action policies

rather than impacting on value updating, we implemented

a hybrid model in which the original model-free component

was replaced with an actor-critic component. In line with the

absence of a significant difference in the parameters of the orig-

inal model-free implementation, this analysis did not show any

significant difference between drug states in either the learning

parameter a (p = 0.17) for state value or h for policy updating

(p = 0.51).

Finally, we tested for order effects by repeating the analyses

with session instead of drug as factor. There were no significant

differences in either stay-switch behavior (repeated-measures

ANOVA; main effect of session F(1,17) < 1; session 3 reward,

F(1,17) < 1; session 3 (reward 3 transition), F(1,17) = 1.37,

p = 0.26) or parameter fits in the computational analysis with

session as a grouping factor (two-tailed paired t tests; a:

p = 0.15; b: p = 0.31; p: p = 0.97; w: p = 0.37). Thus, our results

provide compelling evidence for an increase in the relative

degree of model-based behavioral control under conditions of

elevated dopamine.

DISCUSSION

It is widely believed that both model-free and model-based

mechanisms contribute to human choice behavior. In this study,

we investigated a modulatory role of dopamine in the arbitration

between these two systems and provide evidence that L-DOPA

increases the relative degree of model-based over model-free

behavioral control.

The use of systemic L-DOPA combined with a purely behav-

ioral approach precludes strong conclusions about the precise

physiological underpinnings of the observed shift to model-

based control. Nevertheless, we provide a number of possible
explanations for how this effect might be mediated in the brain

that could guide further studies. First, increased dopamine levels

may improve performance of component processes of a model-

based system. Dopamine has previously been associated with

an enhancement of cognitive functions such as reasoning, rule

learning, set shifting, planning, and working memory (Clatworthy

et al., 2009; Cools and D’Esposito, 2011; Cools et al., 2002;

Lewis et al., 2005; Mehta et al., 2005), and these processes

are most likely coopted during model-based decisions. Previous

theoretical considerations link a system’s performance to its

relative impact on behavioral control, such that the degree of

model-based versus model-free control depends directly on

the relative certainties of both systems (Daw et al., 2005).

Increased processing capacity might enhance certainty in the

model-based system and would thus predict the observed shift

in behavioral control that we detail here.

Second, a more conventional account is that increased dopa-

mine exerts its effect through an impact on a model-free system.

According to this view, excessive dopamine disrupts model-free

reinforcement learning, which is then compensated for by

increased model-based control. Specifically, elevated tonic

dopamine levels may reduce the effectiveness of negative

prediction errors (Frank et al., 2004; Voon et al., 2010). However,

this explanation fails to account for the results presented here.

First, a disruption of negative prediction errors under L-DOPA

would change stay probabilities independent of transition type

(Figure 2E), which is incompatible with the drug3 reward3 tran-

sition interaction observed here (Figure 2B). Second, any such

model-free impairment would have impacted learning of

second-stage values (which in this task are assumed to be learnt

via prediction errors irrespective of the control on the first stage;

Daw et al., 2011) and manifested in noisier choices or altered

learning rates. We did not observe such an effect on the softmax

temperature b or learning rate a. This effect was still absent when

we fit alternative models employing separate learning rates and

temperatures for the first and second stage or separate learning

rates for positive and negative updating. Together, this argues

against the idea that L-DOPA in our study enhanced the relative

degree of model-based behavior through a disruption of the

model-free system.

Finally, dopamine could facilitate switching from one type of

control to the other akin to the way it decreases behavioral

persistence (Cools et al., 2003). It is known that over the course

of instrumental learning, the habitual system assumes control

from the goal-directed system (Adams, 1982; Yin et al., 2004),

but the goal-directed system can quickly regain control in

unforeseen situations (Isoda and Hikosaka, 2011; Norman and

Shallice, 1986). This could explain why we observe a stronger

switch to model-based behavior after unrewarded trials: the

lack of rewarding feedback may prompt the need to reevaluate

available options and invest more energy to prevent another

nonrewarding event by switching to model-based control. Note

that it is possible and indeed likely that a facilitation of control

switching under L-DOPA works in concert with an enhancement

of the model-based system itself.

The predominant view in computational and systems neuro-

science holds that phasic dopamine underlies model-free

behavior by encoding reward prediction errors. On the other
Neuron 75, 418–424, August 9, 2012 ª2012 Elsevier Inc. 421
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hand, animal and cognitive approaches emphasize a role for

dopamine in model-based behavior such as planning and

reasoning (Berridge, 2007; Clatworthy et al., 2009; Cools and

D’Esposito, 2011; Robbins and Everitt, 2007). Contrasting with

interest in the model-free and model-based system separately

is the lack of data on the arbitration between these two behav-

ioral controllers. Our experiment fills this gap by pitting model-

free and model-based control against each other in the same

task and in so doing provides strong evidence for an involvement

of dopamine in the arbitration between model-free and model-

based control over behavior.

Our findings advocate an effect of L-DOPA on the arbitration

between model-based and model-free control, without a modu-

lation of the model-free system itself. Note that the majority of

studies reporting enhanced or impaired learning under dopami-

nergic drugs used either Parkinson’s disease (PD) patients

(Frank et al., 2004; Voon et al., 2010) or involved agents that

primarily act at D2 receptors (Cools, 2006; Frank and O’Reilly,

2006). In contrast with these studies, we did not find evidence

for any modulation by L-DOPA of model-free learning rates or

indeed evidence of impaired model-free choices. These devia-

tions might partly be explained by PD patients’ more severely

reduced dopamine availability off their dopamine replacement

therapy (in contrast to our placebo condition) and the much

higher doses of medication involved in PD treatment. Consistent

with this explanation is that the effect of L-DOPA on instrumental

learning in healthy volunteers was found to be significant only

when compared to an inhibition of the dopamine system (via

haloperidol) but not when compared to placebo (Pessiglione

et al., 2006).

Our task does not allow us to dissociate between learning and

performance effects. Previous work has suggested interactions

between model-based and model-free systems during learning.

In this framework, reward prediction errors that are in line with

model-based predictions are enhanced, while reward prediction

errors that are in opposition with model-based predictions are

attenuated (confirmation bias) (Biele et al., 2011; Doll et al.,

2009, 2011). In support of this, neuroimaging findings based

on the present task showed evidence that ventral striatal

BOLD at the time of feedback, typically associated with predic-

tion error signals, contained a model-based component (Daw

et al., 2011). This raises the possibility that model-free and

model-based systems are not segregated systems whose influ-

ence is weighted at the time of choice. Instead, choices could

also be made by a model-free system in which learning is modu-

lated by transition probabilities. In this study, we cannot unam-

biguously differentiate between these accounts and further

fine-grained investigations, in part motivated by the present

data, are required to understand this complex issue.

Dopamine itself is a precursor to norepinephrine and epineph-

rine, potentially contributing to the observed effects. However,

L-DOPA administration causes a linear increase in dopamine

levels in the brain without affecting norepinephrine levels (Everett

and Borcherding, 1970). Another possibility would be that

L-DOPA exerts effects through interactions with the serotonin

system. Such an interaction, between dopamine and serotonin,

is known to play a role in a range of higher-level cognitive func-

tions (Boureau and Dayan, 2011).
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By implicating dopamine in behavioral control, we open the

door to further experiments aimed at elucidating the precise

neural mechanisms underlying the arbitration between both

controllers. While theoretical considerations afford a number of

ways for how this arbitration might be implemented in the brain

(Daw, 2011; Keramati et al., 2011), our results provide empirical

evidence that dopamine influences the relative degree between

model-free and model-based control.

EXPERIMENTAL PROCEDURES

Subjects

Eighteen healthy males (mean age: 23.3 [SD: 3.4]) participated in two separate

sessions. Data from two additional subjects were not included in the analysis

as those subjects misunderstood instructions and performed at chance level.

The UCL Ethics committee approved the study and subjects gave written

informed consent before both sessions.

Dopamine Drug Manipulation

Subjects were tested in a double-blind, fully counterbalanced, repeated-mea-

sures setting on L-DOPA (150 mg L-3,4-dihydroxyphenylalanine / 37.5 mg

benserazide; Madopar, Roche) and on placebo (500 mg calcium carbonate;

Calcit, Procter and Gamble) dispersed in orange squash. The task was admin-

istered 55.0 (SD: 4.7) min after drug administration. Sessions one and twowere

approximately 1 week apart (at least 4, but no more than 14 days), with both

sessions at the same time of day. All subjects except one participated in the

morning to minimize time-of-day effects. We assessed drug effects on self-

reported mental state using a computerized visual analog scale immediately

before starting the task (Bond et al., 1974).

Task

We drew on Daw et al. (2011)’s two-step choice task to assess the relative

degree of model-based versus model-free decision making. Our version of

the task was identical to Daw et al.’s except for different stimulus images

(semantically irrelevant fractals), a slightly larger dynamic range of reward

probabilities, and more rapid trial timings. Subjects completed 201 trials

and were given a break after trials 67 and 134. Please see Supplemental

Experimental Procedures for full task description.

Stay-Switch Behavior

Stay probabilities at the first stage (the probability to choose the same stimulus

as in the preceding trial), conditional on transition type of the previous trial

(common or uncommon), reward on the previous trial (reward or no reward),

and drug state (L-DOPA or placebo) were entered into a three-way

repeated-measures ANOVA.

Computational Modeling

We fit a previously described hybrid model (Gläscher et al., 2010; Daw et al.,

2011) to choice behavior. This model contains separate terms for model-

free and model-based stimulus values at the first stage. These values

are weighted by a parameter w to compute an overall value for each stimulus.

The first-stage choice is then made using a softmax function dependent

on relative stimulus values and the subject’s choice on the previous trial.

For a full description of the model, see Supplemental Experimental

Procedures.

Model Fitting

We used a hierarchical model-fitting strategy, which takes into account the

likelihood of individual subject choices ci given the individual subject parame-

ters ai, bi, pi, wi and also the likelihood of the individual subject parameters

given the parameter distribution in the overall population across conditions.

This regularizes individual subjects’ parameter fits, rendering them more

robust toward overfitting.

This two-stage hierarchical procedure is a simplified estimation strategy of

the iterative expectation � maximization (EM) algorithm (see Supplemental
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Experimental Procedures for details, and for an in-depth discussion see also

Daw, 2011).

Importantly, our main results are independent of the parameter regulariza-

tion: the weighting parameter w was significantly (p = 0.02) higher in the

L-DOPA condition compared to placebo, even when testing individual subject

parameters from the maximum likelihood fit during the first step.

Parameter Covariance

Covariance between parameters would indicate that two parameters might be

redundant, potentially rendering parameter values more difficult to interpret.

There were no significant pairwise correlations between any of our parameters

across subjects (paired t tests: all individual p > 0.05).
SUPPLEMENTAL INFORMATION

Supplemental Information includes two figures, two tables, and Supplemental

Experimental Procedures and can be found with this article online at http://

dx.doi.org/10.1016/j.neuron.2012.03.042.
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Takáts, A., Bereczki, D., and Gluck, M.A. (2009). Reward-learning and the

novelty-seeking personality: a between- and within-subjects study of the

effects of dopamine agonists on young Parkinson’s patients. Brain 132,

2385–2395.

Bond, A.J., James, D.C., and Lader, M.H. (1974). Physiological and psycho-

logical measures in anxious patients. Psychol. Med. 4, 364–373.

Boureau, Y.L., and Dayan, P. (2011). Opponency revisited: competition and

cooperation between dopamine and serotonin. Neuropsychopharmacology

36, 74–97.

Clatworthy, P.L., Lewis, S.J., Brichard, L., Hong, Y.T., Izquierdo, D., Clark, L.,

Cools, R., Aigbirhio, F.I., Baron, J.C., Fryer, T.D., and Robbins, T.W. (2009).

Dopamine release in dissociable striatal subregions predicts the different

effects of oral methylphenidate on reversal learning and spatial working

memory. J. Neurosci. 29, 4690–4696.

Cools, R. (2006). Dopaminergic modulation of cognitive function-implications

for L-DOPA treatment in Parkinson’s disease. Neurosci. Biobehav. Rev. 30,

1–23.

Cools, R., and D’Esposito, M. (2011). Inverted-U-shaped dopamine actions on

humanworkingmemory and cognitive control. Biol. Psychiatry 69, e113–e125.
Cools, R., Stefanova, E., Barker, R.A., Robbins, T.W., and Owen, A.M. (2002).

Dopaminergic modulation of high-level cognition in Parkinson’s disease: the

role of the prefrontal cortex revealed by PET. Brain 125, 584–594.

Cools, R., Barker, R.A., Sahakian, B.J., and Robbins, T.W. (2003). L-Dopa

medication remediates cognitive inflexibility, but increases impulsivity in

patients with Parkinson’s disease. Neuropsychologia 41, 1431–1441.

Daw, N.D. (2011). Trial-by-trial data analysis using computational models. In

Affect, Learning and Decision Making. Attention and Performance, E.

Phelps, T. Robbins, and M. Delgado, eds. (Oxford: Oxford University Press).

Daw, N.D., Niv, Y., and Dayan, P. (2005). Uncertainty-based competition

between prefrontal and dorsolateral striatal systems for behavioral control.

Nat. Neurosci. 8, 1704–1711.

Daw, N.D., Gershman, S.J., Seymour, B., Dayan, P., and Dolan, R.J. (2011).

Model-based influences on humans’ choices and striatal prediction errors.

Neuron 69, 1204–1215.

Dickinson, A., and Balleine, B.W. (2002). The role of learning in the operation of

motivational systems. In Stevens’ Handbook of Experimental Psychology, H.

Pashler and R. Gallistel, eds. (New York: John Wiley & Sons), pp. 497–533.

Doll, B.B., Jacobs, W.J., Sanfey, A.G., and Frank, M.J. (2009). Instructional

control of reinforcement learning: a behavioral and neurocomputational inves-

tigation. Brain Res. 1299, 74–94.

Doll, B.B., Hutchison, K.E., and Frank, M.J. (2011). Dopaminergic genes

predict individual differences in susceptibility to confirmation bias.

J. Neurosci. 31, 6188–6198.

Doya, K. (1999). What are the computations of the cerebellum, the basal

ganglia and the cerebral cortex? Neural Netw. 12, 961–974.

Everett, G.M., and Borcherding, J.W. (1970). L-DOPA: effect on concentra-

tions of dopamine, norepinephrine, and serotonin in brains of mice. Science

168, 847–850.

Frank, M.J., and O’Reilly, R.C. (2006). A mechanistic account of striatal dopa-

mine function in human cognition: psychopharmacological studies with caber-

goline and haloperidol. Behav. Neurosci. 120, 497–517.

Frank, M.J., Seeberger, L.C., and O’Reilly, R.C. (2004). By carrot or by stick:

cognitive reinforcement learning in parkinsonism. Science 306, 1940–1943.
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