
Analytical expressions for the homotropic binding of ligand to
protein dimers and trimers

Scott T. Lefurgy1 and Thomas S. Leyh*

Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY
10461, USA

Abstract
Cooperative binding of a ligand to multiple subsites on a protein is a common theme among
enzymes and receptors. The analysis of cooperative binding data (either positive or negative) often
relies on the assumption that free ligand concentration, L, can be approximated by the total ligand
concentration, LT. When this approximation does not hold, such analyses result in inaccurate
estimates of dissociation constants. Presented here are exact analytical expressions for equilibrium
concentrations of all enzyme and ligand species (in terms of Kd values and total concentrations of
protein and ligand) for homotropic dimeric and trimeric protein–ligand systems. These equations
circumvent the need to approximate L and are provided in Excel worksheets suitable for
simulation and least-squares fitting. The equations and worksheets are expanded to treat cases
where binding signals vary with distinct site occupancy.
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Protein–ligand interactions are fundamental to numerous biological processes, including
hormone signaling, allosteric regulation, metabolism, and cell-to-cell communication. A key
metric for such interactions is the dissociation constant (Kd), which is often determined in
equilibrium binding titrations where the concentration of saturated receptor or bound ligand
is measured as a function of the total ligand (LT) concentration. Methods used to obtain
ligand binding information include various forms of spectroscopy [1], surface plasmon
resonance [2], calorimetry [3], radioactivity [4], and assays that couple protein saturation to
biological or chemical– enzymatic signals. Such measurements report on the concentration
of bound and/or free ligand and are often interpreted as the fractional saturation (Y) of
protein.

The simplest equations for fitting ligand binding data (cf. Eq. (1)) require knowledge of free
ligand (L), which may be either measured directly or estimated by virtue of experimental
designs in which L can be approximated by LT such as when protein concentration (ET) is
very low relative to Kd or LT. Signal detection limits often preclude the use of such designs.
When L is not known, the data are best modeled using an expression for Y in terms of LT,
ET, and Kd (Eq. (2)). Eq. (2) (obtained from mass conservation laws and the quadratic
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formula) provides such an analytical expression for the elementary case of ligand binding to
a single site (or multiple noninteracting sites). Using such an expression, a best-fit Kd value
can be extracted from titration data by least-squares fitting.

For higher order processes, such as cooperative binding to a multimeric protein (where
ligand occupancy at one protomer alters ligand affinity at the others), fitting methods must
take into account each of the multiply liganded forms. Such behavior manifests
experimentally as multiphasic saturation curves or nonlinear Hill and Scatchard plots, whose
shapes indicate enhanced (positive cooperativity) or diminished (negative cooperativity)
binding of successive ligands [5,6]. Among the many proteins and protein classes that
exhibit homotropic cooperativity are the dimeric G-protein-coupled receptors [7],
sulfotransferases [8], trimeric metabolic enzymes [9–12], monomeric cytochrome P450s
[13], AcrB bacterial drug efflux pump [14], bacteriorhodopsin trimers [15], and DegS
protease that regulates the Escherichia coli stress response [16].

The Hill [17,18] and Adair [19] equations (Eqs. (3) and (4)) address the cases where L is
known and report cooperativity either indirectly as the Hill coefficient (n) or explicitly as Kd
values (given by Ki for the ith ligand to bind) that reflect changes in affinity between
successive binding steps. Derivation of parallel analytical equations in terms of LT is
nontrivial given that the equilibrium concentration of any species of a dimeric or trimeric
protein is the root of a cubic or quartic polynomial, respectively. Analytical solutions for
higher order oligomers are not possible, and fitting the titrations of such systems requires the
use of numerical methods [20]:

(1)

(2)

(3)

(4)

(5)

Although analytical expressions for the roots of cubic and quartic functions have been
known for 400 years [21–23], they require knowledge of advanced algebra. Recent articles
have treated the cubic polynomial in ligand binding systems; Wang and Sigurskjold
described competitive binding of two ligands to identical independent binding sites [24,25],
and Whitesides and co-workers used exact analysis to describe binding of homodivalent
ligands to monomeric proteins, producing expressions that apply equally to homodimeric
proteins binding to monovalent ligands [26]. However, to our knowledge, application of the
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quartic polynomial to trimer–ligand binding has not yet been addressed, and no exact
analysis has been applied to heteroligomers that exhibit homotropic cooperativity.

Current approaches to modeling trimeric systems rely on numerical methods that employ
differential equations or stochastic models to estimate the equilibrium distributions of
enzyme forms. Typically, these algorithms require the user to provide total reactant
concentrations and equilibrium or rate constants [27–29]. Equilibrium distributions are then
calculated at each “point” or condition in a titration, and the concentrations of the relevant
species from the distributions are then compared with experimental measurements to assess
how well a given set of input constants predicts binding behavior. These procedures can be
iterated to produce a best-fit set of constants. Notably, such efforts typically require high-
level mathematical software or original programming [30]. The analytical equations
described here provide a relatively simple means of obtaining exact distributions. The
equations take into account both positive and negative cooperativity and can be applied to
any chemical equilibrium involving homotropic binding to a diva-lent or trivalent species.
For convenience, the equations are provided in Excel worksheet implementations suitable
for prediction and multiparameter estimation by least-squares fitting. An expansion of the
equations and worksheets to treat spectroscopic titration is also described.

Results and discussion
The models

Early models of allostery proposed that linked subunits undergo concerted transitions
between two conformational states, each with a different ligand affinity [31]. Later models
allowed subunits to undergo independent, substrate-induced conformational changes and
held that affinities at the unoccupied sites would change progressively as ligands added to
the complex [19,32]. Even more general models allowed subunits to undergo conformational
transitions with or without bound ligand and allowed the affinity of all sites to vary with
each unique configuration of the system [33,34].

The dimer and trimer ligand binding models used as the basis for the algebra described
below are presented in Fig. 1A and B. Oligomers are represented by intersecting lines; each
line represents a subunit. Dotted lines indicate the subunits that may inter-convert via
isomerization; however, subunits need not be identical. Site and dissociation constants are
given by ki and Ki, respectively, where i represents the ith subunit to bind. Site constants are
given for each subunit in all possible configurations and are related by cj values, which
define the magnitude and nature of the cooperative interactions. The cj values are related by
the fact that the product of the site constants connecting any two enzyme forms is path
independent, a consequence of the first law of thermodynamics. The model assumes that
ligand binding, which is stochastic, stabilizes a subunit in the state that it was in when
binding occurred; hence, dotted lines become solid on the addition of ligand.

Theory
The equilibria describing binding of the first and second ligands L to a dimeric protein E are
shown in Fig. 1A. When considering ligand binding to a multisubunit system, it is important
to note that binding measurements yield aggregate constants (e.g., Kd values) that report on
all enzyme forms capable of transitioning between two stoichiometric states (e.g., singly to
doubly liganded) [35]. The dissociation constants for binding of the first (K1) and second
(K2) ligands to a dimer are given by Eqs. (6) and (7). The denominator of Eq. (6) is the sum
of all the singly liganded enzyme forms:

Lefurgy and Leyh Page 3

Anal Biochem. Author manuscript; available in PMC 2013 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(6)

(7)

Complexes EL and LE represent ligand bound to different subunits of a heterodimer or to
either symmetric subunit of a homodimer. By treating the subunits separately, we isolate the
interaction of ligand with a single protomer. This interaction is defined by a “site”
dissociation constant [35] that reports directly on the strength of the interaction at a
particular binding site. These constants are given by lowercase ki for the ith ligand to bind
and are modified by coefficients cj for heterodimeric proteins (Eq. (8)):

(8)

The aggregate constants Ki (Eqs. (6) and (7)) are a function of the individual site ki values at
each ligand binding step. For multimeric proteins with n equivalent binding sites, cj = 1 and
dissociation constants are related by a statistical coefficient (Eq. (9)):

(9)

where i corresponds to the ith ligand to bind [36]. Equivalencies among aggregate and site
constants in cases where cj ≠ 1 are described below (trimers) and in the Supplementary
material.

For a trimeric protein, binding of both the second and third ligands may show ligand
occupancy dependence. In this case, one additional equilibrium relationship is needed (Eq.
(10)):

(10)

Binding of ligand to a trimeric protein is shown in Fig. 1B. The affinity of the first ligand to
bind is given by any of three site binding constants, k1 with or without coefficients c0 and
c1. The site constant coefficients will differ in cases where, for example, isomerized subunits
have distinct binding attributes prior to binding (cf. half- or third-site mechanisms [8,10,11]
or the conformational coupling of energetics [37]) or where the protein is heteroligomeric.
The second ligand may be presented with multiple binding sites of varying affinities
depending on which subunit was bound first. Thus, the second binding step is composed of
six possible site constant values, where variation in k2 is captured by the five coefficients c2
to c6. The third ligand binds to one of three possible protomers, with site constant k3
modified by coefficients c7 and c8 to describe these multiple forms; the end result of each
process is the identical triply liganded species. Because the change in chemical potential of
any of the six paths from unliganded to triply liganded is identical, the product of the
equilibrium constants for one path is equal to that of any other path. The complete system
can be described by 10 parameters: ET, LT, site constants k1 to k3, and coefficients c0 to c4.
The values of coefficients c5 to c8 are defined by the following relationships:
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The relationships between aggregate (Ki) and site constants (ki) for a trimeric protein were
obtained by deriving Eq. (16) using each kind of constant and then equating coefficients
(Eqs. (11)–(13)):

(11)

(12)

(13)

where

The mass conservation relationships for the trimeric system are given by Eqs. (14) and (15):

(14)

(15)

The system of equations (Eqs. (6), (7) and (10)–(15)) can be rearranged, resulting in a
quartic polynomial in L (Eq. (16)):

(16)

where

The solution of this quartic equation yields L (see Supplementary material), which is then
used to determine the equilibrium concentrations of all other species in terms of the constant
parameters (Eqs. (17)–(20):

(17)
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(18)

(19)

(20)

The L ≈ LT approximation
The Adair equation describes solution equilibria for cooperative binding to multi-subunit
proteins (Eq. (3), dimer; Eq. (4), trimer). This equation can be rearranged, using mass
conservation equations, into a polynomial in L (Eq. S5 in Supplementary material, dimer;
Eq. (16), trimer) that can be solved to determine the equilibrium concentrations of species as
a function of ET, LT, and ki values (Eqs. S6–S8 in Supplementary material, dimer; Eqs.
(17)–(20), trimer). To demonstrate how the equilibrium distributions predicted by the Adair
equation deviate from exact distributions (given by the analytical solutions) as L deviates
from LT, distributions were simulated for a noncooperative trimer at four different ET/ki
ratios (0.01–10). ET was held fixed (1.0 μM), and ki values were decreased in 10-fold
increments from 100 μM to 100 nM. The results, given as fraction protein saturated (Y)
versus concentration LT, are presented in Fig. 2A. At ET/ki = 10, the concentration of LT in
the vicinity of ki is much greater than that of ET, the L = LT approximation holds well, and
the two methods agree. However, as ET/ki increases, the bound ligand concentration
becomes significant relative to LT when LT ≈ ki and the approximation begins to fail. As
this happens, the Adair equation predicts saturation at erroneously low LT concentrations.
For example, when ET/ki = 1, the ki values estimated by fitting fractional saturation to the
Adair equation are more than 3-fold higher than the true ki and invoke 4-fold cooperativity
for the third binding step where none exists. As can be seen in Fig. 2B, the fold difference in
the Ki values predicted by the Adair and exact methods is significant when ET/ki ≈ 1 and
increases sharply above this value. Thus, in situations where dissociation constants are
comparable to the protein concentrations needed to observe signal, or in complex mixtures
where affinities are high and protein concentrations are not known, the exact solutions are a
far more accurate and reliable means of analyzing binding data.

The solution to the quartic equation provides a simple, virtually errorless means of
simulating equilibrium distributions of species in complex binding scenarios that involve a
single type of ligand. As such, it can be useful in optimizing experimental conditions. It is
often of interest to maximize the concentration of a particular enzyme form, so that the
properties of that species can be studied, or to understand the concentration dependence of a
species; such dependencies can be used to test for the existence of a putative complex and/or
to validate a given model. As an example, consider the LT dependence of the species of a
trimer in a scenario where ligand binding at the high-affinity site results in a 100-fold
negative cooperativity at the unoccupied sites and binding of the second and third ligands is
independent (Fig. 3). The model clearly demonstrates how LT can be used to optimize,
isolate, or otherwise control the level of a particular species. Notably, the behavior of
systems in which successive ligand binding events do not contribute equally to the measured
signal is readily simulated using the roots of the quartic equation by simply applying a
scaling factor for each enzyme form and binding constant (see below); treating data in this
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way allows untransformed data to be fit directly without altering the error structure
associated with the dataset.

The Excel worksheets
Excel worksheets designed to simulate and/or least-squares fit homotropic ligand binding
data for allosteric dimers and trimers are provided in the Supplementary material. As an
example, these worksheets were used to simulate binding data for a negatively cooperative
trimeric protein and to least-squares fit the resulting output (Fig. 4). ki values were chosen
such that the affinities of the second and third ligands were 10- and 1000-fold weaker,
respectively, than that of the first ligand (i.e., k2 = 10 × k1; k3 = 1000 × k1). The fractional
saturation (Y) values were calculated with ±2% random error. The resulting best-fit ki
estimates were within 7% of the true values. The worksheets can also treat models where the
signals that report binding differ as each subunit becomes occupied.

Application to spectroscopic methods
Ligand binding is frequently monitored by spectral changes in the protein (e.g., absorbance,
fluorescence, or magnetic resonance) across a range of ligand concentrations [1,38]. It is
frequently assumed that the signal associated with the binding of a ligand to a given
protomer is independent of ligand occupancy at the distal sites. The analytical method
readily accommodates situations where bound species contribute different intensities to that
signal. In this case, each protein species is assigned a relative signal value (Qi), which is
analogous to the quantum yield in fluorescence. The signal intensity of the solution at a
given concentration of protein and ligand (I) relative to that of the unliganded protein (I0) is
equal to the fraction of bound protein, where each species is weighted by its Qi value (Eq.
(21)):

(21)

Q0 (free protein) is defined as unity, Qi is equal to the I/I0 value for the species ELi, and Qn
(fully liganded protein of n subunits) is equal to I/I0 at saturation. In the simplest case, where
each ligand binding event contributes equally to the change in signal, the intermediate Qi
values are proportional to ligand occupancy (Eq. (22)):

(22)

When the intermediate Qi values diverge from the proportional values, least-squares fitting
may be used to estimate them if ki values are known. Conversely, if preliminary experiments
can establish Qi values, these can be taken into account when fitting for ki. In this way,
spectroscopically silent steps may be accounted for in the model. As an example,
cytochrome P450 3A4, an enzyme that metabolizes more than one-third of common drugs,
exhibits cooperative homotropic binding of up to three ligands (e.g., testosterone), where
each enzyme form ELi catalyzes the reaction at a different rate and exhibits an altered spin
state of the heme iron [13]. Electron paramagnetic resonance experiments that report on the
spin state require enzyme concentrations much greater than Kd, thereby precluding use of
the Adair equation in analysis [29]. The method presented here allows both kinetic and
spectral data to be fit (simultaneously if desired) to parameters that provide a detailed
description of the system, including the heterogeneity and interaction of the binding sites as
well as differential properties of each enzyme form. Finally, spectroscopic signals coming
from the ligand may be monitored instead of protein; this modality may be treated by
substituting L for E and LT for ET in Eq. (21).
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Conclusions
Equations describing the exact concentrations of ligand and protein species at equilibrium as
a function of their total concentrations and dissociation constants have been presented for
the dimeric and trimeric cases. The equations provide a simple means of calculating the
distribution of species in complex allosteric systems and of fitting ligand binding data to LT
rather than assuming L = LT. Removing this assumption can significantly enhance accuracy
of the fit estimates. The method is general in that it takes into account positive and negative
cooperativity at each step and allows discrete signal contributions from each of the enzyme
forms.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig.1.
Binding of ligand to protein dimers (A) and trimers (B). Proteins are represented by
intersecting lines, each of which represents a subunit. Site constants and dissociation
constants are given as ki and Ki, respectively, where i represents the ith ligand to bind (e.g., i
= 2 indicates the addition of the second ligand). All arrows correspond to reversible
equilibria. Site constants are related by coefficients, cj, that are themselves related by the
fact that the product of the site constants connecting any two complexes must be equal and
independent of the path that connects them (a consequence of the first law of
thermodynamics). The k1, k2, and k3 coefficients are not shown and have arbitrarily been set
to 1. Dotted arrows indicate subunits that may interconvert via isomerization.

Lefurgy and Leyh Page 11

Anal Biochem. Author manuscript; available in PMC 2013 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig.2.
Comparison of exact and approximate models of fractional saturation versus LT for a
homotrimeric protein with no cooperativity. (A) Fractional saturation of enzyme with ligand
was calculated using the exact model (filled symbols) or the Adair equation assuming L =
LT (open symbols) for a noncooperative homotrimeric enzyme (1.0 μM trimer) with values
of the site dissociation constants (k1 = k2 = k3) set to 100 μM (◆), 10 μM (●), 1 μM (■),
or 0.1 μM (▲). (B) Deviation in estimated ki value as a function of the ratio ET/ki when
using the Adair equation and assuming L = LT.
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Fig.3.
Calculated concentrations of enzyme species for a trimeric protein with negative
cooperativity as a function of LT. The ELi species, where i = 0 (○), 1 (●), 2 (■), or 3 (▲),
were calculated for a homotrimeric protein (1.0 μM trimer) in which binding of one ligand
causes 100-fold negative cooperativity at both of the other subunits and binding of the
second and third ligands is independent. k1 = 0.1 μM; k2 = k3 = 10 μM.
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Fig.4.
Simulation of cooperative binding to a trimeric protein with negative cooperativity. Data
were generated in silico based on parameters ET = 1 μM dimer, k1 = 0.01 μM, k2 = 0.1 μM,
and k3 = 10 μM with ±2% random error. Line represents least-squares fit of the data. k1 =
0.01 μM; k2 = 0.107 μM; k3 = 9.39 μM.
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