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Económico and Instituto Valenciano de Investigaciones Económicas, Universidad de Alicante, 03071 Alicante, Spain; §Departament de Economı́a i Empresa,
Universitat Pompeu Fabra, 08005 Barcelona, Spain; and ¶Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague,
Czech Republic

Edited by Kenneth W. Wachter, University of California, Berkeley, CA, and approved December 9, 2003 (received for review September 5, 2003)

In a well networked community, there is intense social interaction,
and information disseminates briskly and broadly. This is impor-
tant if the environment is volatile (i.e., keeps changing) and
individuals never stop searching for fresh opportunities. Here, we
present a simple model that attributes the rise of a dynamic society
to the emergence of some key features in its social network. We
also explain the apparently paradoxical observation that although
such features do not necessarily materialize even under favorable
conditions they display a significant resilience to deteriorating
conditions. We interpret these findings as a discontinuous phase
transition in the network formation process.

There is ample empirical evidence supporting the importance
of social networks as the channel through which many

socioeconomic phenomena unfold. This idea is particularly
apparent, for example, in the way in which economic agents find
new opportunities, such as jobs or investments. It has been
consistently shown by sociologists and economists alike (1, 2)
that personal acquaintances or neighborhood effects play a
prominent role in individual search. This, in turn, leads to
significant correlations across friends, relatives, or neighbors in
a variety of different socioeconomic dimensions. The common
thesis proposed to explain this evidence is that, in the presence
of economic volatility, the quantity and quality of one’s social
links, sometimes referred to as social capital (3, 4), is a key basis
for search and adaptability to change.

The study of complex networks has attracted much attention
(5–9), but it has been concerned mainly with simple phenome-
nological models reproducing some stylized facts in either
stationary or nonstationary (e.g., growing) contexts. In contrast,
sociological (10) and economic literature (11) has traditionally
placed emphasis on understanding the main features and impli-
cations of stable social structures. Recently, however, much
effort has been devoted as well to studying the dynamic forces
(essentially, purposeful agent adjustment) that underlie the
evolution and formation of networks in stationary social envi-
ronments (12–15). Here, our objective is to integrate these
approaches by proposing a simple model of a society that
embodies the following three features: agent interaction, search
cum adjustment, and volatility (i.e., random link removal).
Individuals are involved in bilateral interaction, as reflected by
the prevailing network. Through occasional update, the value of
some of the existing links deteriorates and is therefore lost. In
contrast, the individuals also receive opportunities to search
that, when successful, allow the establishment of fresh new links.
Over time, this leads to an evolving social network that is always
adapting to changing conditions.

The model studied here is a simplification of a more complex
model proposed by one of the authors (16) to understand how
the network dynamics impinges on strategic behavior. One of the
key ingredients of our model is creation of links to friends of
friends, a mechanism that was introduced by Vazquez (17) in the
context of growing networks. The model is also similar to that
proposed in ref. 18 to explain the emergence of the small-world
property (5) in social networks. In our context, we find as well

that the small-world property arises when the social network is
dense, but our focus is quite different. Our aim is to understand
how a highly connected network may emerge from social inter-
actions and to develop a comprehensive picture of the network’s
macroscopic statistical properties. In particular, we find quite
nontrivial clustering properties that appear to play a key role in
the dynamics. In contrast with ref. 18, our model does not
reproduce a scale-free topology, which is instead typical of
growing networks (8) and static random networks with fitness-
driven attachment rules (19). Rather we find single-scale net-
works consistent with the empirical evidence of refs. 20 and 21
on several social networks, giving support to their conjecture that
link-constrained dynamics leads to single-scale distribution. Fi-
nally, among the vast recent literature on network dynamics, our
work also relates to ref. 22 that found a ‘‘topological’’ phase
transition in networks and refs. 23–25 that discuss robustness of
the network with respect to removal of links or nodes and
transition from highly connected to diluted networks in various
contexts.

The model may be described as follows. There is a population
of n agents involved in a set of bilateral interactions, as specified
by the prevailing social network. This network is defined, at any
given point in time t, by the (undirected) graph �(t) � {N,g(t)},
where N � {1, 2, . . . , n} is the population of nodes (or agents)
and g(t) � N � N represents the set of links. The social
interaction taking place across a link ij � g between i and j may
be conceived as, say, a collaboration that is profitable for both
parties.

In any time interval [t, t � dt) any existing link ij � g(t) vanishes
with probability �dt. This is interpreted as a random perturbation
of the environment, or volatility for short. In addition, with
independent probability �dt every agent i is given the opportu-
nity of establishing a new link with some other agent j, randomly
drawn from the population. Links can also be formed through
search via friends: every agent i, with a probability �dt, asks one
of his neighbors j, randomly chosen, to introduce him to one of
j’s neighbors, say k. If k is not already a neighbor of i the link ik
is established. Naturally, nothing occurs if i has no neighbors or
j has no other neighbor but i.

At a heuristic level, the link formation process can be decom-
posed into two complementary components. On the one hand,
there is the force of volatility that stamps out the value of some
preexisting links and thus, in effect, destroys them. On the other
hand, there are fresh new opportunities that arise through either
global search or communication with neighbors. This 2-fold
interpretation of the process makes the role of information clear.
The dynamics of network formation can be viewed as a contin-
uous struggle against volatility, with the information arising on
new profitable opportunities partially mediated (thus con-
strained) by the existing network. In the stationary state agents’
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constant search must compensate volatility, as articulated by the
so-called Red Queen Principle (26, 27): ‘‘. . . it takes all of the
running you can do, to keep in the same place’’ (see more on this
below).

The three rates (�, �, and �) are the parameters of our model,
but one of them can be eliminated by an appropriate time
rescaling. We are interested in the properties of the network g(t)
in the stationary state as t 3 �. Relevant magnitudes in this
respect are the density of the network and its clustering. Network
density at any t is measured by the average node degree z(t),
where the degree zi(t) of a node i is defined by the number of
neighbors it has. On the other hand, network clustering C(t) is
obtained by averaging the clustering coefficient Ci(t) of all nodes
i, which is the fraction of pairs of neighbors of i who are also
neighbors among themselves. Although random networks have
Ci � 1�n, social networks typically have a clustering coefficient
(5) bounded above zero.

We carried out extensive numerical simulations by using a
discrete time Markov chain to approximate the continuous time
process. The results were found to depend very weakly on the
specific discretization scheme used (see Fig. 1). For � � 0, the
dynamics is very simple and the stationary network is a random
graph with average degree z � 2��� (see below). For � �� � the
network is composed of many disconnected parts. Fig. 1 shows
what happens in a computer experiment where the local search
rate � is first increased and then decreased very slowly (see Fig.
1 legend). For small �, network growth is limited by the global
search process that proceeds at rate �. Clusters of more than two
nodes are rare, and when they form local search quickly saturates
the possibilities of forming new links. Suddenly, at a critical value
�2, a giant component connecting a finite fraction of the nodes

emerges. The average degree z indeed jumps abruptly at �2. The
network becomes more and more densely connected as � in-
creases further. But when � decreases, we observe that the giant
component remains stable also beyond the transition point (� �
�2). Only at a second point �1 does the network lose stability and
the population gets back to an unconnected state. There is a
whole interval [�1, �2] where both a dense-network phase and one
with a nearly empty network coexist. The coexistence region
[�1, �2] shrinks as � increases and it disappears for � � 0.03�. This
behavior attains already for moderately small n, even though in
this case finite size effects are strong; these effects essentially
vanish when n � 1,000 (see Fig. 1). The average clustering
coefficient C shows a nontrivial behavior. In the unconnected
phase, C increases with � as expected. In this phase, C is close to
one because the expansion of the network is mostly carried out
through global search, and local search quickly saturates all
possibilities of new connections. On the other hand, in the
dense-network phase, C takes relatively small values. This makes
local search very effective. Remarkably, we find that C decreases
with � in this phase, which is rather counterintuitive: by increas-
ing the rate � at which bonds between neighbors form through
local search, the density C of these bonds decreases.

The stability of the dense network phase in the coexistence
region confers resilience to the system. It implies that a dense
network is robust with respect to deteriorating conditions (higher
� or smaller �) and it may resist even under conditions in which a
stable dense network would not form. In fact, similar behavior is
found, fixing � and �, as a function of the volatility rate �.

The system behavior observed in Fig. 1 is typical of first-order
phase transitions and is remarkably similar to the rise of hys-
teresis in physics, a phenomenon that has its origins in the
ergodicity breakdown. Even if, in principle, the process is
ergodic, because all configurations can be reached from any
other configuration, when n is large the configuration space gets
broken into different ergodic components. Transitions across the
boundaries of these components require large deviations that
occur only with a probability that is exponentially small in n (they
require fluctuations out of equilibrium in a collection of local
neighborhoods whose number is of order n; see below). Strictly
speaking, transitions between the two components will occur,
but one typically has to wait astronomically large times. The
occurrence of phase coexistence in our model is also intuitive
and has many analogies with that of a real f luid: the local process
(�) mimics short-range attractive interaction, whereas the � and
� processes capture the effects of temperature and random
collisions. Increasing � is analogous to compressing the fluid
(reducing the volume), which increases the chances that two
molecules enter into the range of mutual interaction. An im-
portant difference is that interaction is long ranged in our model,
which, as discussed in ref. 28, makes it impossible to have bubbles
of one phase into the other: the system is either all in one or in
the other phase.

To shed light on these numerical results, we study the dynam-
ics of the distribution P(z�, C� , t) of the degrees z� and clustering
coefficients C� . Specifically, we study a mean field approximation
that assumes Ci � C for all i � 1, . . ,n and

P	z�, C� , t
 � �
i�1

n

p	zi, t
�	Ci � C
. [1]

It is convenient to set � � 1, by an appropriate time rescaling.
Then, the transition rates that enter into the master equation for
p are:

w	zi 3 zi � 1
 � 2� � 	
	zi
 � �zi [2]

w	zi 3 zi � 1
 � zi, [3]

Fig. 1. Average degree z (Upper) and clustering coefficient C (Lower) from
numerical simulations with � � 0.001 and � � 0.1 for populations of size n �
100, 1,000, and 2,000. The process was discretized as follows. At each time step,
with probability �, a long-range link was added between two nodes taken at
random. With probability �, a local search process was attempted on a ran-
domly selected site. Finally, a set of randomly selected links were removed,
their number being drawn from a Poisson distribution with mean �c(t)�2.
After n such time steps, simulation time was increased by one unit. Each point
in the plots was obtained by taking averages over the nodes and over time, in
the stationary state (for each run, we let the system equilibrate for a time teq �
3,000��, which is much larger than typical relaxation times). Once the station-
ary state for a particular value of � was reached and averages were taken, the
value of � was changed to � � �� without reinitializing the network, thus
‘‘sweeping’’ the � axis first from left to right (�� � 0) and then from right to
left (�� � 0), as shown by the arrows.
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where 
(x) � 0 for x � 0 and 
(x) � 1 for x � 0. In Eq. 2, the
first term accounts for long-distance search (the factor 2 arises
because site i can be either the origin or the destination of the
process). The second term arises from local search, and it
requires that zi � 1. Here 	 � �(1 � C)P{zj � 1ij � g} is
proportional to the conditional probability that zj � 1 given that
ij � g. Finally, the last term accounts for indirect local search
opportunities given to a friend k of a friend j of i. This process
is proportional to zi and � � �(1 � C)�zk

�1� accounts for the
probability that i is not a friend of k and that k selects j.

Both 	 and � will be determined self-consistently. Using the
generating function method, the master equation for p(z) in the
stationary state can be solved with the result

	s
 � �
z

szp	z
 �
	 � 2�	1 � �s
��

	 � 2�	1 � �
�� , [4]

where � � (2� � 	)��. Simple algebra shows that

p	z
 �
1

	 � 2�	1 � �
�� �	�z,0 �
2��	� � z


�	�
z!
�z� . [5]

where p0 and p1 are constants. Notice that p(z) � z� has a power
law behavior for small z and decays exponentially p(z) � e�ln�z

for large z, in perfect agreement with the behavior observed in
numerical simulations.

Eq. 4 allows us to compute the distribution P{zj � uij � g} �
p̃(u) for the degree zj of a neighbor j of i. The larger zj the more
likely is j a neighbor of i. Thus, p̃(u) � up(u), which, in terms of
the generating function implies ̃(s) � s�(s)�� (1). This makes
it possible to compute P{zj � 1ij � g} � 1 � ̃�(0) � 1 �
�(0)��(1) and the factor �ck

�1� � [1 � (0)]��(1), which
enters the definition of �, thus leaving us with the self-consistent
equations:

	 � �	1 � C
 �1 �
�	0


�	1
� [6]

� � �	1 � C

1 � 	0


�	1

. [7]

As we should, in the limit �3 0 we find 	, �3 0, and we recover
a pure Poisson distribution with mean 2�. Under � � 0, local
search makes the degree distribution loose its Poisson character.
But with constant C Eqs. 6 and 7 are not able to reproduce the
observed behavior. It just predicts a smooth crossover and no
phase coexistence. This finding means that, to shed light on the
observed behavior, it is essential to allow for C to depend on the
parameters of the model.

To derive an equation for C, we focus on a particular site i and
analyze the process that governs the number Qi � Cizi(zi � 1)�2
of pairs of neighbors of i, which are also neighbors among
themselves. Local search contributes to an increase in Qi in two
ways. The first is when a local search opportunity is given to site
i itself, which has already been discussed above. Its rate is W1(Qi

3 Qi � 1) � 	. The second occurs when a local search
opportunity is given to some friend j of i, who then asks i about
his other friends k (k � j). This may lead to the formation of the
link between j and k, thus increasing Qi by one. The rate of this
process is given by W2(Qi3 Qi � 1) � ��zi
(zi � 1)��zj

�1�(1 � C).
Here, 1�zj is the probability that j picks i from his neighbors and
1 � C is the probability that k is not a friend of j. This rate should
be multiplied by the number zi of neighbors of i, but is zero unless
zi � 2. Finally, we must account for the link-decay process that,
contrary to the former two, decreases Qi. The rate at which this
happens is W�(Qi 3 Qi �1) � �zi(zi � 1)�C�2.

If we now take the averages on zi and zj with probability
distributions p and p̃, respectively, we can impose stationarity on
Qi, i.e., ��Qi� � W1 � W2 � W� � 0. After some algebra, this
condition becomes the desired equation for C:

C
2

�	1
 � �	1 � C
�2 � 	0
� �1 �
�	0


�	1
� . [8]

Using Eq. 4, we arrive at a set of three self-consistent equations
for 	, �, and C.

The solution of Eqs. 6–8 is shown in Fig. 2. We recover the
main qualitative features observed in numerical simulations. In
particular, our solution correctly reproduces the behavior of C in
the two phases: C increases with � in the dilute network phase,
whereas it decreases with � when a giant component forms. Our
approach shows that this is not just a by-product of our analysis
but rather an essential ingredient for understanding the net-
work’s dynamics. The degree distribution is close to Poissonian
in the diluted phase, where 	 and � are small, whereas it is
markedly non-Poissonian in the dense phase. Fig. 2 also depicts
the phase diagram predicted by the mean field. In the shaded
region, Eqs. 6–8 have three solutions, two of which are stable and
correspond to the two coexisting phases. The third is an unstable
state, shown as dashed lines in the plots of z and C of Fig. 2, and
it separates the basins of attraction of the two stable states.
Within the mean-field theory, if the initial average degree z(0)
is below the unstable solution z*, the dynamics will f low to the
diluted network solution, whereas if z(0) � z* a dense network
will form. Likewise, a network in either phase can ‘‘f lip’’ to the
other phase because of random fluctuations. For this to occur
the spontaneous fluctuation �z in the average degree must be
large enough to cross the boundary. These fluctuations are
extremely rare events that typically occur with a probability that
is exponentially small in n, as shown by large deviation theory
(29).†† Interestingly, the unstable solution z* turns out to be very

††The predictions of large deviation theory can be worked out by assuming that zi are
independently and identically distributed variables with distribution p(z). In parametric
form, a deviation �z � y�(y)�(y) � �(1) from the average connectivity z occurs with a
probability � enS(�z), where S(�z) � log(y) � y(logy)�(y)�(y). Note that S � 0 and S � 0
when �z � 0 (y � 1). It is worth noting that, strictly speaking, the derivation of p(z) applies
only to equilibrium states, whereas large deviations are out-of-equilibrium phenomena.
Hence the above derivation provides just a crude approximation to the transition
probabilities.

Fig. 2. Mean degree z (Top) and clustering coefficient C (Middle) as a
function of ��� for ��� � 0.19. (Bottom) Phase diagram in the mean field
approximation. The behavior of z and C along the dashed line corresponds to
the simulation scenario reported above.
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close to the diluted network solution when � is close to �2. This
finding suggests that, in this region, transitions from diluted to
dense networks are more probable than transitions in the other
direction, as also observed in numerical simulations.

The behavior of the system as a function of � (with � and �
fixed) can also be read from the phase diagram. It can be traced,
as � increases, by moving toward the origin on a line with
constant slope ���. The coexistence region culminates in a
second-order phase transition point at the critical point �c�� 	
0.226. Beyond this point, the discontinuous transition turns into
a smooth crossover. The specific critical values of the parameters
are inaccurate, as is often the case in mean field calculations. The
coexistence interval [�1, �2] predicted by the mean field theory is
larger than that observed in numerical simulations, as can be
seen by comparing Figs. 1 and 2, because mean field theory
underestimates fluctuations and neglects correlations. On the
other hand, all qualitative features are very well reproduced
within the mean-field approximation.

It is straightforward to repeat our derivation for the model of
ref. 18. There the network grows by a mixture of local and global
search. In addition, volatility affects sites instead of removing
bonds, i.e., Eq. 3 is replaced with w(zi 3 1) � 1. This changes
things considerably, since then stationarity in the master equa-
tion implies p(z) � a � z � 1�a � b � z p(z � 1) for z � 1, with
a, b � 0 constants that should be determined self-consistently.
The network then acquires a scale-free behavior p(z) � z�b�1, in
agreement with what observed in ref. 18. However, the solution
of the self-consistent equations is always unique, confirming that
there is no phase transition in the model of ref. 18. This finding
illustrates the usefulness of the present approach to the analysis
of general network dynamics and its potential for contrasting the
implications of different assumptions.

The former derivations clarify, in particular, that the alterna-
tive assumptions of node-based and link-based volatility have
profound effects on the dynamics of network formation. Not
only do they affect the nature of the transition but also the kind
of degree distribution displayed at stationary states. When
volatility affects links, the situation can be regarded as akin to
that prevailing in many social networks, i.e., the agents are
severely limited in their ability to maintain an ever increasing

number of links, because of the impossibility of suitably com-
pensating for their steady unavoidable deterioration. Instead,
matters are often quite different in other kinds of networks
(biological, technological, or informational) and even in those
social networks whose links embody a once-and-for-all choice
(say, collaboration in scientific networks). These considerations
have been highlighted in refs. 20 and 21, where empirical
evidence is discussed that is consistent with the predictions of
our model. It is reported, for example, that while the degree
distribution of certain social networks of the first kind display a
rather sharp characteristic scale, those of the latter tend to be
much broader. In a certain sense, the contrast between both
scenarios could be tailored to the main basis (links or nodes) on
which volatility operates.

To sum up, we have proposed and studied a simple model of
network formation that displays a first-order transition between
a sparsely connected phase and a densely connected one. Close
to the transition, it may just take a slight change in the envi-
ronmental conditions for a virtuous or vicious circle to set in.
This is reminiscent of the ‘‘miracles’’ and ‘‘anti-miracles’’ that are
still an unresolved puzzle for the modern theory of economic
development (cf. ref. 30). Within a sizable parameter range, both
situations coexist and are metastable, which suggests that exter-
nal intervention (in the form of a nucleation event) may be
needed to trigger the growth of the new phase. The model also
underscores the importance of effective search to offset envi-
ronmental volatility in a highly connected network. This, as
explained above, is in line with what is known as the Red Queen
Principle in evolutionary biology (27). In our network setup, the
effectiveness of search is directly associated to low clustering.
This explains that the abrupt transition to the high-dense phase
must be mirrored (otherwise it would not be stable) by a
corresponding shift to a social network with low clustering.
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