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Diabetes is a disease characterized by a relative or absolute lack of insulin, leading to hyperglycaemia. There are two main
types of diabetes: type 1 diabetes and type 2 diabetes. Type 1 diabetes is due to an autoimmune destruction of the
insulin-producing pancreatic beta cells, and type 2 diabetes is caused by insulin resistance coupled by a failure of the beta cell
to compensate. Animal models for type 1 diabetes range from animals with spontaneously developing autoimmune diabetes
to chemical ablation of the pancreatic beta cells. Type 2 diabetes is modelled in both obese and non-obese animal models
with varying degrees of insulin resistance and beta cell failure. This review outlines some of the models currently used in
diabetes research. In addition, the use of transgenic and knock-out mouse models is discussed. Ideally, more than one animal
model should be used to represent the diversity seen in human diabetic patients.

Abbreviations
NOD, non-obese diabetic; SPF, specific pathogen-free; STZ, streptozotocin

Introduction
Diabetes mellitus is a chronic disease that is characterized by
a relative or absolute lack of insulin, resulting in hypergly-

caemia. Chronic hyperglycaemia can lead to a variety of
complications such as neuropathy, nephropathy and retin-
opathy and increased risk of cardiovascular disease. Recent
figures suggest the worldwide prevalence of diabetes is
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9.2% in women and 9.8% in men, with approximately 347
million people suffering from the disease worldwide in 2008
(Danaei et al., 2011). There are several different classifica-
tions of diabetes, the most common being type 1 and type 2
diabetes.

Type 1 diabetes is an autoimmune disease leading to the
destruction of the insulin-producing pancreatic beta cells in
the islets of Langerhans. Type 1 diabetes is most commonly
diagnosed in children and young adults, and by the time of
diagnosis, patients have very little endogenous insulin pro-
duction. Insulin therefore has to be replaced by regular sub-
cutaneous injections, and blood glucose levels must be
frequently monitored to manage the risk of hypoglycaemia.
Concordance of the disease in identical twins is around 27%
(Hyttinen et al., 2003), indicating that although there is a
genetic influence, environmental factors play a role in disease
development. Indeed, most newly diagnosed patients have
no first-degree relatives with the disease. Incidence of type 1
diabetes ranges up to 100-fold, depending on the country and
is estimated to be approximately 15–20 per 100 000 in the
United Kingdom (Patterson et al., 2009). The incidence in
Europe is increasing, with a predicted doubling of children
under 5 developing the disease by 2020 (Patterson et al.,
2009).

Type 2 diabetes is the most common type of diabetes with
prevalence in the United Kingdom of around 4%. It is most
commonly diagnosed in middle-aged adults, although more
recently the age of onset is decreasing with increasing
levels of obesity (Pinhas-Hamiel and Zeitler, 2005). Indeed,
although development of the disease shows high hereditabil-
ity, the risk increases proportionally with body mass index
(Lehtovirta et al., 2010). Type 2 diabetes is associated with
insulin resistance, and a lack of appropriate compensation by
the beta cells leads to a relative insulin deficiency. Insulin
resistance can be improved by weight reduction and exercise
(Solomon et al., 2008). If lifestyle intervention fails, there are
a variety of drugs available to treat type 2 diabetes (Krentz
et al., 2008), which can be divided into five main classes:
drugs that stimulate insulin production from the beta cells
(e.g. sulphonylureas), drugs that reduce hepatic glucose pro-
duction (e.g. biguanides), drugs that delay carbohydrate
uptake in the gut (e.g. a-glucosidase inhibitors), drugs that
improve insulin action (e.g. thiazolidinediones) or drugs tar-
geting the GLP-1 axis (e.g. GLP-1 receptor agonists or DPP-4
inhibitors).

As endocrine disorders, type 1 and type 2 diabetes repre-
sent quite complex diseases where different bodily systems
are involved. Thus, animal models should be chosen care-
fully, depending on what aspect of the disease is being inves-
tigated. In this review, specific models of type 1 and type 2
diabetes are discussed. In addition, models of beta cell regen-
eration are outlined, and the use of knock-out and transgenic
models in diabetes research is considered.

Animal models of type 1 diabetes

The main characteristic of type 1 diabetes is an autoimmune
destruction of the pancreatic beta cells, leading to lack of
insulin production. In animal models, this deficiency in
insulin production is achieved by a variety of different

mechanisms, ranging from chemical ablation of the beta cells
to breeding rodents that spontaneously develop autoimmune
diabetes. Some of the most commonly used models of type 1
diabetes are outlined in Table 1.

Chemically induced type 1 diabetes
In chemically induced models of type 1 diabetes, a high
percentage of the endogenous beta cells are destroyed, and
thus, there is little endogenous insulin production, leading to
hyperglycaemia and weight loss. Chemically induced diabe-
tes not only provides a simple and relatively cheap model of
diabetes in rodents but can also be used in higher animals
(Dufrane et al., 2006). Diabetes is usually induced around 5–7
days prior to the start of the experiment to ensure stable
hyperglycaemia. Two main compounds are used to induce
diabetes: streptozotocin (STZ) or alloxan. Due to their simi-
larity in structure to glucose (Bansal et al., 1980), glucose can
compete with alloxan and STZ, and thus, fasting animals
tend to be more susceptible. Both alloxan and STZ are rela-
tively unstable, and the solutions should ideally be made
immediately prior to injection.

Chemically induced diabetes is appropriate to use when
testing drugs or therapies where the main mechanism of
action is lowering blood glucose in a non-beta-cell-dependent
manner; for example to test new formulations of insulin
(Jederstrom et al., 2005; Sheshala et al., 2009). This is also an
appropriate model for testing transplantation therapies
where the end point is lowering of blood glucose (Jansson
et al., 1995; Makhlouf et al., 2003; Deeds et al., 2011). At
the end of the experiment, any ‘cured’ animal should be
nephrectomized of its graft bearing kidney and reversal to
hyperglycaemia observed to rule out regeneration of the
endogenous beta cells (Baeyens et al., 2005; Rackham et al.,
2011). In addition, the endogenous pancreas can be removed
for histological examination for insulin-positive cells or for
insulin content to be measured (Rackham et al., 2011),
although it should be noted that anatomical presence of beta
cells is not necessarily correlated to beta cell function (Kargar
and Ktorza, 2008).

One disadvantage with chemically inducing diabetes is
that the chemicals can be toxic at other organs of the body. It
should also be noted that changes in P450 isozymes in the
liver, kidney, lung, intestines, testis and brain have been
reported after administration of STZ or alloxan, and thus, this
should be considered when drugs are being tested in these
models (Lee et al., 2010).

STZ. STZ [2-deoxy-2- (3- (methyl -3-nitrosoureido) -D-
glucopyranose] is synthesized by Streptomycetes achromogenes.
After i.p. or i.v. administration, it enters the pancreatic beta
cell through the Glut-2 transporter and causes alkylation of
the DNA (Szkudelski, 2001). Subsequent activation of PARP
leads to NAD+ depletion, a reduction in cellular ATP and
subsequent inhibition of insulin production (Sandler and
Swenne, 1983). In addition, STZ is a source of free radicals
that can also contribute to DNA damage and subsequent cell
death. STZ tends to be administered as a single high dose or
as multiple low doses.

High-dose STZ. The dose for a single high dose in mice
ranges from 100 to 200 mg·kg-1 (Srinivasan and Ramarao,
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2007; Dekel et al., 2009), depending on the mouse strain
(Hayashi et al., 2006), and in rats 35–65 mg·kg-1 (Srinivasan
and Ramarao, 2007). This leads to a rapid ablation of the beta
cells and hyperglycaemia. It should be noted, however, that it
has been suggested that regeneration of the pancreatic islets
can occur after STZ treatment; and thus sufficient controls
should be in place to determine that any improvement in
glycaemia is not due to spontaneous regeneration of endog-
enous beta cells (Grossman et al., 2010). High-dose STZ is
often used in transplantation models, where islets (Deeds
et al., 2011) or putative stem cells (Song et al., 2009) are
transplanted under the kidney capsule. It should be noted
that STZ has recently been shown to cause lymphopenia and
a relative increase in T-regulatory cells (Muller et al., 2011),
which could interfere with the interpretation of studies
involving immune tolerance to transplants.

Multiple low-dose STZ. STZ can be administered as multiple
low doses over 5 days to induce insulitis in mice (Like and
Rossini, 1976; Wang and Gleichmann, 1998) or rats (Lukic
et al., 1998). Doses range from 20 to 40 mg·kg-1 per day,
depending on the species and strain. A reduction in islet
number and volume is apparent with concomitant reduction
in insulin secretion capacity (Bonnevie-Nielsen et al., 1981).
Macrophages are the first cells to infiltrate the islets, and the
development of diabetes is dependent on cytokine produc-
tion (Lukic et al., 1998). Diabetes develops even in the
absence of T and B cells, and therefore, it does not model the
human disease as closely as spontaneous models of autoim-
munity (Reddy et al., 1995). Therapies targeting cytokines

(Sandberg et al., 1994) and NO (Flodstrom et al., 1999) tend
to be successful in reducing diabetes development in this
model, indicating their role in the beta cell destruction.

Alloxan. The diabetic effect of alloxan (2,4,5,6-
tetraoxypyrimidine; 5,6-dioxyuracil) is mainly attributed to
rapid uptake by the beta cells and the formation of free
radicals, which beta cells have poor defence mechanisms to
(Nerup et al., 1994). Alloxan is reduced to dialuric acid and
then re-oxidized back to alloxan, creating a redox cycle for
the generation of superoxide radicals that undergo dismuta-
tion to form hydrogen peroxide and thereafter highly reac-
tive hydroxyl radicals that cause fragmentation of beta cell
DNA (Szkudelski, 2001). Alloxan is also taken up by the
liver, but it has better protection to reactive oxygen species
(Malaisse et al., 1982; Mathews and Leiter, 1999) and there-
fore is not as susceptible to damage. Other mechanisms of
beta cell damage by alloxan include oxidation of essential
–SH groups, especially that of glucokinase (im Walde et al.,
2002) and disturbances in intracellular calcium homeostasis
(Kim et al., 1994). Doses in mice range from 50 to
200 mg·kg-1 and in rats from 40 to200 mg·kg-1, depending
on the strain and the route of administration with i.p and
s.c. administration requiring up to three times as high a dose
as the i.v. route (Szkudelski, 2001). A dose of 100 mg·kg-1 has
been used to create a long-term diabetes models in rabbits
(Wang et al., 2010). It should be noted that alloxan has a
narrow diabetogenic dose, and even light overdosing can
cause general toxicity, especially to the kidney (Szkudelski,
2001).

Table 1
Summary of rodent models of type 1 diabetes

Induction
mechanism Model Main features Possible uses

Chemical Induction High dose streptozotocin Simple model of hyperglycaemia. New formulations of insulin

Alloxan Transplantation models.

Multiple low dose
streptozotocin

Model of induced insulitis. Treatments that may prevent beta cell death

Spontaneous
autoimmune

NOD mice Beta cell destruction due to an
autoimmune process

Understanding genetics of type 1 diabetes

BB rats Understanding mechanism of type 1 diabetes

LEW.1AR1/-iddm rats Treatments that may prevent beta cell death

Treatments that may manipulate autoimmune
process

Genetically induced AKITA mice Beta cell destruction due to ER
stress. Insulin dependent.

New formulations of insulin

Transplantation models.

Treatments to prevent ER stress

(could also be used in type 2 diabetes research)

Virally-induced Coxsackie B virus Beta cell destruction induced by
viral infection of beta cells

Establish potential role of viruses in the
development of type 1 diabetesEncephalomyocarditis virus

Kilham rat virus

LCMV under insulin promoter

BJPAnimal models of diabetes
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Spontaneous autoimmune models of
type 1 diabetes
The most commonly used autoimmune models of type 1
diabetes are the non-obese diabetic (NOD) mouse and
the Biobreeding (BB) rat (Yang and Santamaria, 2006). In
addition, another rat model of autoimmune type 1 the
LEW.1AR1/Ztm-iddm rat was described in 2001 (Lenzen et al.,
2001). However, the NOD mouse still dominates the litera-
ture as the autoimmune model of choice.

NOD mice. The NOD mouse was developed at the Shionogi
Research Laboratories in Osaka, Japan in 1974 (Hanafusa
et al., 1994). NOD mice develop insulitis at around 3–4 weeks
of age. In this pre-diabetic stage, the pancreatic islets are
infiltrated by predominately CD4+ and CD8+ lymphocytes,
although B cells and NK cells are also present (Yoon and Jun,
2001).

The insulitis causes beta cell destruction, but the onset of
overt diabetes is usually not until apparent until approxi-
mately 90% of pancreatic insulin is lost at around 10–14
weeks, although diabetes can develop up to 30 weeks of age.
Diabetes is more prevalent in the females with an incidence
in females, ranging from 60% to 90% in most colonies,
whereas the incidence in males ranges from 10% to 30% in
most colonies (Pozzilli et al., 1993; Hanafusa et al., 1994).
When these mice become overtly diabetic, they rapidly lose
weight and require insulin treatment. The MHC class 2 in
NOD mice share structural similarities to that in humans,
which may confer resistance or susceptibility to the disease in
both NOD mice and humans (Todd and Wicker, 2001; Wicker
et al., 2005). This parallel in type 1 diabetes genes between
NOD mice and humans has been extremely useful in dissect-
ing some mechanisms and pathways behind type 1 diabetes
(Yang and Santamaria, 2006; Driver et al., 2011). Thus, these
mice are potentially suitable for testing therapies in which
modulation of the autoimmune response is being targeted. It
should however been noted that there are a number of drugs
that are effective in NOD mice, which were then shown to be
ineffective in humans (von Herrath and Nepom, 2009). One
of the major issues is the time point of intervention. Many
drugs that have been shown to be successful in NOD mice
were administered early on, and it has been suggested that is
relatively easy to prevent diabetes in young NOD mouse
(Roep, 2007). Another difficulty in the translation of thera-
pies tested in NOD mice is that whereas the pancreas of the
NOD can be removed for examination after a study, there is a
lack of biomarkers in the peripheral blood in humans that
could be used to verify the success of the intervention (von
Herrath and Nepom, 2005). There are also problems in trans-
lating dosing from the NOD mouse to humans (von Herrath
and Nepom, 2005).

Development of diabetes is the NOD mouse is negatively
associated with microbial exposure; thus, the mice therefore
should be kept in specific pathogen-free (SPF) conditions to
maintain diabetes incidence. Due to the gender differences,
unpredictability of disease onset and the requirement for SPF
conditions, these mice are expensive to maintain as a model
of type 1 diabetes compared with chemical induction of
diabetes.

A more predictable and accelerated onset can be achieved
in NOD mice by injecting the mice with cyclophosphamide

(Caquard et al., 2010). In addition, adoptive transfer can
prove useful, where T cells from diabetic NOD mice are
injected into non-diabetic recipient mice, causing the recipi-
ent mouse to develop diabetes (Christianson et al., 1993).
Also, NOD mice can be used in a recurrence of autoimmunity
model, where syngeneic islets from young non-diabetic NOD
mice are transplanted into diabetic NOD mice (Rydgren et al.,
2007). The graft is rapidly destroyed by autoimmune mecha-
nisms. All three of these models allow the timing of the
autoimmune response to be controlled. The NOD mouse is
often used in intervention studies in attempts to prevent or
delay the onset of the autoimmune disease (Montane et al.,
2011; Tai et al., 2011; Lee et al., 2011b).

Strategies to improve the NOD model include using spe-
cific genetic manipulation of NOD mice (Yang and Santama-
ria, 2003) or the creation of humanized mouse models with
components of the human immune system (King et al., 2008;
Niens et al., 2011). Despite the limitations of the NOD mouse,
it is still used extensively as it does represent many aspects of
the human disease and is a model that has helped identify
many of the genetic and signalling pathways that can lead to
type 1 diabetes.

BB rats. BB rats were derived from outbred Wistar rats. Spon-
taneous autoimmune diabetes in a Canadian colony was first
identified in 1974 and lead to the creation of two founder
colonies from which all substrains have derived, one inbred
(BBDP/Wor) and one outbred (BBdp) (Mordes et al., 2004).
Diabetes resistant BB rats have also been bred to act as controls.

BB rats usually develop diabetes just after puberty and
have similar incidence in males and females. Around 90% of
rats develop diabetes between 8 and 16 weeks of age. The
diabetic phenotype is quite severe, and the rats require
insulin therapy for survival. Although the animals have insu-
litis with the presence of T cells, B cells, macrophages and NK
cells, the animals are lymphopenic with a severe reduction in
CD4+ T cells and a near absence of CD8+ T cells (Mordes et al.,
2004). Lymphopenia is not a characteristic of type 1 diabetes
in humans or NOD mice (Mordes et al., 2004) and is seen to
be a disadvantage in using the BB as a model of type 1
diabetes in humans. Also, in contrast to NOD mice, the insu-
litis is not preceded by peri-insulitis. However, the model has
been valuable in elucidating more about the genetics of type
1 diabetes (Wallis et al., 2009), and it has been suggested
that it may be the preferable small animal model for islet
transplantation tolerance induction (Mordes et al., 2004). In
addition, BB rats have been used in intervention studies
(Hartoft-Nielsen et al., 2009; Holmberg et al., 2011) and
studies of diabetic neuropathy (Zhang et al., 2007).

LEW.1AR1/-iddm rats. This rat model of type 1 diabetes arose
spontaneously in a colony of congenic Lewis rats with a
defined MHC haplotype (LEW.1AR1), which were being bred
at the Institute of Laboratory Animal Science of Hannover
Medical School (Ztm). These rats exhibit insulitis, and overt
diabetes manifests at around 8–9 weeks. Originally, the inci-
dence of diabetes was approximately 20% (Lenzen et al.,
2001); however, with further inbreeding of diabetic rats, the
incidence increased to around 60% with equal incidence in
both genders (Jorns et al., 2005). The animals exhibit a pre-
diabetic period with islet infiltration approximately a week
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before animals become hyperglycaemic. This relatively short
pre-diabetic period allows for effective analysis of different
stages of the immune cell infiltration (Jorns et al., 2005). In
contrast to the NOD mouse and BB rat, the LEW-iddm rat
does not exhibit other autoimmune diseases. It also survives
well after the onset of overt diabetes and thus can be used to
study diabetic complications (Mathews, 2005). However,
most studies in this rat model so far have been investigating
the mechanisms involved in the development of diabetes
(Jorns et al., 2004; 2005; Peschke et al., 2011) and interven-
tion studies (Arndt et al., 2009; Jorns et al., 2010).

Genetically induced
insulin-dependent diabetes
AKITA mice. The AKITA mouse was derived in Akita, Japan
from a C57BL/6NSlc mouse with a spontaneous mutation in
the insulin 2 gene preventing correct processing of pro-
insulin. This causes an overload of misfolded proteins and
subsequent ER stress. This results in a severe insulin-
dependent diabetes starting from 3 to 4 weeks of age, which
is characterized by hyperglycaemia, hypoinsulinaemia, poly-
uria and polydipsia. Untreated homozygotes rarely survive
longer than 12 weeks. The lack of beta cell mass in this model
makes it an alternative to streptozotocin-treated mice in
transplantation studies (Mathews et al., 2002). It has also
been used as a model of type 1 diabetic macrovascular disease
(Zhou et al., 2011) and neuropathy (Drel et al., 2011). In
addition, this model is commonly used to study potential
alleviators of ER stress in the islets and in this respect models
some of the pathology of type 2 diabetes (Chen et al., 2011).

Virus-induced models of diabetes
Viruses have been implicated in the pathogenesis of type 1
diabetes (van der Werf et al., 2007). Therefore, several animal
models have used viruses to initiate beta cell destruction. The
destruction can be either due to direct infection of the beta
cell or initiation of an autoimmune response against the beta
cell (Jun and Yoon, 2003). Viruses used to induce diabetes in
animal models include coxsackie B virus (Yoon et al., 1986;
Kang et al., 1994; Jaidane et al., 2009), encephalomyocarditis
virus (Craighead and McLane, 1968; Baek and Yoon, 1991;
Shimada and Maruyama, 2004) and Kilham rat virus (Guber-
ski et al., 1991; Ellerman et al., 1996).

In addition, a transgenic virus model has been described
in which a defined viral antigen (the nucleoprotein or glyco-
protein) of lymphocytic choriomeningitis virus (LCMV) is
expressed under the rat insulin promoter (von Herrath et al.,
1997). These mice do not spontaneously develop any signs of
beta cell destruction, but if the mice are then injected with
LCMV, the immune response cross-reacts with the antigen
expressed in the beta cells, leading to beta cell destruction.

However, the virus-induced model can be complicated as
the outcome is dependent on replication levels of the virus as
well as timing of the infection. Indeed, it has been shown
that viruses can both induce autoimmunity as well as prevent
it, depending on the conditions (von Herrath et al., 2011).
Although some cases of human type 1 diabetes have been
linked to viruses (van der Werf et al., 2007; Richardson et al.,
2009), it is unclear to what extent viruses are involved in the
pathogenesis of type 1 diabetes.

Non-rodent models of type 1 diabetes
In addition to the extensively studied rodent models of type
1 diabetes, several large animal models have been developed.
In large animal models, spontaneous diabetes is relatively
rare and unpredictable in onset, and thus, induced models of
type 1 diabetes are required. The most common method of
inducing insulin dependence in large models is either by
pancreatectomy or STZ.

Pancreatectomy. Pancreatectomy has been used to induce
hyperglycaemia in pigs (Morel et al., 1991; Mellert et al.,
1998), dogs (Fisher et al., 2001) and primates (He et al., 2011).
When carried out by a skilled surgeon, this model is a reliable
method to induce hyperglycaemia. However, this is very
invasive surgery for the animal, increases the chances of
hypoglycaemia and also leads to pancreatic exocrine defi-
ciency in the animal (He et al., 2011). However, pancreatec-
tomy in pigs followed by autotransplantation of the isolated
islets (Emamaullee et al., 2009) is a reasonably accurate model
of autotransplantation of islets in humans (Matsumoto,
2011).

Chemical ablation of beta cells in large animals. There is inter-
species variation in the beta cell toxicity of alloxan (Tyrberg
et al., 2001) and STZ (Eizirik et al., 1994; Dufrane et al., 2006),
which may be due to differences in expression in GLUT-2
(Dufrane et al., 2006). It has been reported that while a dose
of 50 mg·kg-1 can produce irreversible diabetes in the
rat and Cynomolgus monkey, pigs require a higher dose
(150 mg·kg-1) and despite this, a partial correction to hyper-
glycaemia was seen in pigs 4 weeks after STZ injection
(Dufrane et al., 2006). Increasing the dose to 200 mg·kg-1 in
pigs leads to renal and hepatic toxicity, suggesting a narrow
window of efficacy. It should be noted that other studies have
successfully used 150 mg·kg-1 STZ in pigs (Grussner et al.,
1993; Jensen-Waern et al., 2009), thus underlining the diffi-
culties in establishing a STZ-induced model of diabetes in
larger animals.

Some models in higher animals combine a partial pancre-
atectomy with STZ treatment, thus reducing the dose of STZ
(Wise et al., 1985; He et al., 2011). In addition, a multiple
low-dose STZ model has been described in primates (Wei
et al., 2011).

Animal models of type 2 diabetes

Type 2 diabetes is characterized by insulin resistance and
the inability of the beta cell to sufficiently compensate.
Therefore, animal models of type 2 diabetes tend to include
models of insulin resistance and/or models of beta cell
failure. Many animal models of type 2 diabetes are obese,
reflecting the human condition where obesity is closely
linked to type 2 diabetes development. Some of the most
commonly used models for type 2 diabetes are outlined in
Table 2.

Obese models of type 2 diabetes
As type 2 diabetes is closely linked to obesity, most of the
current animal models of type 2 diabetes are obese. Obesity
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can be the result of naturally occurring mutations or genetic
manipulation. Alternatively, obesity can be induced by high
fat feeding.

Monogenic models of obesity. Although obesity in humans is
rarely caused by a monogenic mutation, monogenic models
of obesity are commonly used in type 2 diabetes research. The
most widely used monogenic models of obesity are defective
in leptin signalling. Leptin induces satiety, and thus, a lack of
functional leptin in these animals causes hyperphagia and
subsequent obesity. These models include the Lepob/ob mouse,
which is deficient in leptin and the Leprdb/db mouse and
Zucker Diabetic Fatty rat, which are deficient in the leptin
receptor. These models are often used to test new therapies
for type 2 diabetes (Yoshida et al., 2010; Gault et al., 2011;
Park et al., 2011).

Lepob/ob mouse. The Lepob/ob mouse is a model of severe
obesity and derives from a spontaneous mutation discovered
in an outbred colony at Jackson Laboratory in 1949. The
phenotype was bred into C57BL/6 mice, but it was not until
1994 the mutated protein was identified as leptin (Zhang
et al., 1994). The weight increase starts at 2 weeks of age, and
the mice develop hyperinsulinaemia. By 4 weeks, hypergly-
caemia is apparent, with blood glucose concentrations con-
tinuing to rise, peaking at 3–5 months, after which they fall
as the mouse becomes older (Lindstrom, 2007). Other meta-
bolic aberrations include hyperlipidaemia, a disturbance in
temperature regulation and lower physical activity (Lind-
strom, 2007). In addition, these mice are infertile (Chehab
et al., 1996).

The pancreatic islet volume is dramatically increased in
these mice (Bock et al., 2003). Although there are some
abnormalities in insulin release (Lavine et al., 1977), islets
maintain insulin secretion, and the lack of complete beta
cell failure in this model means diabetes is not particular
severe and indeed not completely representative of
human type 2 diabetes. It should be noted that on the
C57Bl/KS background, a much more severe diabetes devel-
ops with regression of islets and early mortality (Coleman,
1978).

Leprdb/db mice. The Leprdb/db mouse originated from the
Jackson Laboratory (Hummel et al., 1966) and is due to an
autosomal recessive mutation in the leptin receptor (Chen
et al., 1996). These animals are hyperphagic, obese, hyperin-
sulinaemic and hyperglycaemic. Obesity is evident from 3–4
weeks of age with hyperinsulinaemia becoming apparent at
around 2 weeks of age and hyperglycaemia developing at 4–8
weeks. The most commonly used background used is on the
C57BLKS/J, and they develop ketosis after a few months of
age and have a relative short lifespan (Srinivasan and
Ramarao, 2007).

Zucker fatty rats and Zucker diabetic fatty rats. The Zucker
Fatty rats were discovered in 1961 after a cross of Merck
M-strain and Sherman rats. They have a mutated leptin recep-
tor (Phillips et al., 1996) that induces hyperphagia, and the
rats become obese at around 4 weeks of age. These rats also
are hyperinsulinaemic, hyperlipidaemic and hypertensive.
They have impaired glucose tolerance (Srinivasan and
Ramarao, 2007).

Table 2
Summary of rodent models of type 2 diabetes

Induction mechanism Model Main features Possible uses

Obese models (monogenic) Lepob/ob mice Obesity-induced hyperglycaemia Treatments to improve insulin resistance

Leprdb/db mice Treatments to improve beta cell function

ZDF Rats

Obese models (polygenic) KK mice Obesity-induced hyperglycaemia Treatments to improve insulin resistance

OLETF rat Treatments to improve beta cell function

NZO mice Some models show diabetic complications

TallyHo/Jng mice

NoncNZO10/LtJ mice

Induced obesity High fat feeding
(mice or rats)

Obesity-induced hyperglycaemia Treatments to improve insulin resistance

Desert gerbil Treatments to improve beta cell function

Nile grass rat Treatments to prevent diet-induced obesity

Non-obese models GK rat Hyperglycaemia induced by insufficient
beta cell function/mass

Treatments to improve beta cell function

Treatments to improve beta cell survival

Genetically induced models
of beta cell dysfunction

hIAPP mice Amyloid deposition in islets Treatments to prevent amyloid deposition

Treatments to improve beta cell survival

AKITA mice Beta cell destruction due to ER stress. Treatments to prevent ER stress

Treatments to improve beta cell survival
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A mutation in this strain lead to the derivation of a
substrain with a diabetogenic phenotype: the inbred Zucker
Diabetic Fatty Rats (ZDF). These rats are less obese than the
Zucker fatty rats but have more severe insulin resistance,
which they are unable to compensate for due to increased
apoptosis levels in the beta cells (Pick et al., 1998). This is
characterized by initial hyperinsulinaemia at around 8 weeks
of age followed by decreased insulin levels (Shibata et al.,
2000). Diabetes usually develops at around 8–10 weeks in
males, but females do not develop overt diabetes (Srinivasan
and Ramarao, 2007). These rats also show signs of diabetic
complications (Shibata et al., 2000).

Polygenic models of obesity. Polygenic models of obesity may
provide a more accurate model of the human condition. A
variety of different polygenic mouse models of obesity,
glucose intolerance and diabetes exist, allowing a variety of
genotypes and susceptibilities to be studied. However, unlike
the monogenic models, there are no wild-type controls. In
addition, the male sex bias is more extreme in these models
(Leiter, 2009). These polygenic models have been used in a
wide variety of studies that have aimed to reverse the symp-
toms of type 2 diabetes (Chen et al., 2009; Fukaya et al., 2009;
Guo et al., 2010; Mochizuki et al., 2011; Yoshinari and Iga-
rashi, 2011), understand more about the interplay of obesity
and glucose homeostasis (Kluth et al., 2011) (Jurgens et al.,
2007) or study diabetic complications (Cheng et al., 2007;
Fang et al., 2010; Buck et al., 2011; Lee et al., 2011a).

KK mice. KK mice are a mildly obese and hyperleptinaemic
strain derived from wild-derived ddY mice in Japan by Kondo
in 1957 (Clee and Attie, 2007). They develop severe hyperin-
sulinaemia and demonstrate insulin resistance in both
muscle and adipose tissue. The pancreatic islets are hyper-
trophic and degranulated. This mouse strain also shows signs
of diabetic nephropathy (Ikeda, 1994).

A derivative of this strain is the KK-AY mice, which was
created by introducing the yellow obese AY gene into the KK
strain (Chakraborty et al., 2009). This model develops
maturity-obesity and has more severe hyperinsulinaemia and
more prominent changes in the pancreatic islets. This is due
to the ectopic expression of the agouti protein antagonizing
the melanocortin receptor 4 (MCR4) in the hypothalamus.

OLETF rats. The Otsuka Long-Evans Tokushima Fat rat
(OLETF) was derived from a spontaneously diabetic rat dis-
covered in 1984 in an outbred colony of Long Evans Rats.
Selective breeding at the Tokushima Research Institute lead to
the OLETF strain that has mild obesity and late onset hyper-
glycaemia (after 18 weeks). Diabetes is inherited by the males.
The pancreatic islets undergo three stages of histological
change. At an early stage (6–20 weeks old), cellular infiltra-
tion and degeneration is seen. This is followed by a stage of
hyperplasia between 20 and 40 weeks. The final stage is char-
acterized by islets becoming fibrotic and become replaced by
connective tissue (Kawano et al., 1994). These rats also
exhibit renal complications (Lee et al., 2011a).

New Zealand Obese (NZO) mice. The NZO mouse is a poly-
genic model of obesity, created by selective breeding. It is
hyperphagic and obese, which may be a consequence of

leptin resistance as these mice are hyperleptinaemic by 9–12
weeks of age (Leiter and Reifsnyder, 2004). Indeed, they are
resistant to peripheral leptin administration but sensitive to
centrally administrated leptin (Halaas et al., 1997), indicating
a defect in leptin transport across the blood–brain barrier.
These mice are also hyperinsulinaemic, which stems from
hepatic insulin resistance from an early age, which seems to
result from impaired regulation of hepatic fructose-1,6-
bisphosphatase (Andrikopoulos et al., 1993). Blood glucose
concentrations are elevated, and they show impaired glucose
tolerance, which worsens with age and approximately 50% of
males develop diabetes (Haskell et al., 2002). Islets are hyper-
plastic and hypertrophic at 3–6 months of age, but beta cell
loss occurs at later time points and there are signs of ‘latent
autoimmune diabetes of adults’ (Junger et al., 2002).

TallyHo/Jng mice. The TallyHo mouse is a naturally occurring
model of obesity and type 2 diabetes derived from selective
breeding of mice that spontaneously developed hyperglycae-
mia and hyperinsulinaemia in an outbred colony of Theiler
Original mice (Kim et al., 2005). In these mice, adiposity is
increased, and plasma triglycerides, cholesterol and free fatty
acid levels are elevated. Hyperglycaemia is limited to male
mice, which develops as early as between 10 and 14 weeks of
age. The pancreatic islets are hypertrophied and degranu-
lated, and hyperinsulinaemia is evident. The TallyHo mouse
has not yet been completely characterized for diabetic com-
plications (Leiter, 2009), although a recent study has used this
model to study diabetic wound healing (Buck et al., 2011).

NoncNZO10/LtJ mice. This strain was created by combining
independent diabetes risk-conferring quantitative trait loci
from two unrelated strains of NZO mice with nonobese non-
diabetic mice (NON/Lt) (Cho et al., 2007). These mice
develop liver and skeletal muscle insulin resistance at 8 weeks
before developing chronic hyperglycaemia from about 12
weeks (Leiter, 2009). Islet mass initially increases before beta
cell loss occurs. Diabetic nephropathy has been observed in
some males aged about one year (Leiter, 2009), and it has also
been suggested that this model is suitable for studies in dia-
betic wound healing (Fang et al., 2010)

High fat feeding
The model of high fat feeding to C57BL/6 mice was first
described in 1988 (Surwit et al., 1988). High fat feeding can
lead to obesity, hyperinsulinaemia and altered glucose
homeostasis due to insufficient compensation by the islets
(Winzell and Ahren, 2004). Normal chow (on a caloric basis
usually around 26% protein, 63% carbohydrate and 11% fat)
is exchanged for a diet where the number of calories from fat
is increased substantially (around 58% of energy derived from
fat). The amount of food eaten should be monitored to
ensure that the mice do not compensate by eating less. It has
been shown that high-fat-fed mice can weigh more than
chow-fed controls within a week of starting the high-fat diet
(Winzell and Ahren, 2004), although typically mice are fed
the high-fat diet for several weeks to induce a more pro-
nounced weight gain. The weight gain is associated with
insulin resistance, and lack of beta cell compensation leads to
impaired glucose tolerance.
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Since the obesity is induced by environmental manipula-
tion rather than genes, it is thought to model the human
situation more accurately than genetic models of obesity-
induced diabetes. High fat feeding is often used in transgenic
or knock-out models, which may not show an overt diabetic
phenotype under normal conditions, but when the beta cells
are ‘pushed’, the gene may be shown to be of importance.
It should be noted that the background strain of the mice
can determine the susceptibility to diet-induced metabolic
changes, and thus, effects could be missed if a more resistant
strain is used (Surwit et al., 1995; Bachmanov et al., 2001;
Almind and Kahn, 2004). It has also been reported that there
is heterogeneity of the response to high fat feeding within the
inbred C57BL/6 strain, indicating that differential responses
to a high-fat diet are not purely genetic (Burcelin et al., 2002).

Other diet-induced rodent models of type 2 diabetes. Although
rats and mice are the most commonly used models for studies
of type 2 diabetes, other rodents have also been identified as
useful models. These include the desert gerbil and the newly
described Nile grass rat, both of which tend to develop
obesity in captivity.

Desert gerbil. The desert gerbil (Psammomys obesus) was
originally discovered to develop diabetes in captivity in the
1960s. The diabetes ranged from mild hyperglycaemia with
hyperinsulinaemia to severe hyperglycaemia with hypoin-
sulinaemia and ketoacidosis. Indeed, four stages were subse-
quently identified in the Jerusalem colony: stage A (normal
glycaemic normoinsulinaemic), stage B (normoglycaemic
hyperinsulinaemic), stage C (hyperglycaemic and hyperin-
sulinaemic) and stage D (hyperglycaemic insulinopenic). Pro-
gression from stage A to stage C can be prevented with food
restriction, but there is no recovery from stage D (Shafrir
et al., 2006). This animal is not hyperphagic, but when high-
energy nutrition is made available in a laboratory setting,
obesity, hyperinsulinaemia and subsequently diabetes
develop (Ziv et al., 1999). Due to its poor adaption to excess
nutrition, it has been suggested that the Psammomys repre-
sents an ideal model of the ‘thrifty gene’ effect and could be
used for studying populations where insulin resistance and
metabolic syndrome is common after a rapid evolution from
scarcity to nutritional abundance. Researchers have used
these animals in studies that aim to prevent nutritionally
induced diabetes (Mack et al., 2008; Bodvarsdottir et al., 2010;
Vedtofte et al., 2010).

Nile grass rat. The Nile grass rat (Arvicanthis niloticus) has
recently been suggested as a model for metabolic syndrome
(Noda et al., 2010). Most of these animals spontaneously
develop obesity, dyslipidaemia and hyperglycaemia by one
year of age when kept on a normal chow diet in captivity.
They show other signs of diabetes and metabolic syndrome
such as reduced beta cell mass, atherosclerosis and liver
steatosis.

Nonobese models of type 2 diabetes
Not all type 2 diabetes patients are obese, and thus, it is
important that lean animal models of type 2 diabetes are also
studied. These include models that have beta cell inadequacy,

which is what ultimately leads to overt type 2 diabetes in
humans (Weir et al., 2009).

Goto–Kakizaki rats. Goto–Kakizaki (GK) rats were created by a
Japanese group by repetitive breeding of Wistar rats with the
poorest glucose tolerance (Goto et al., 1976). This leads to the
development of a lean model of type 2 diabetes, which is
characterized by glucose intolerance and defective glucose-
induced insulin secretion. The development of insulin resis-
tance does not seem to be the main initiator of hyperglycaemia
in this model, and the defective glucose metabolism is
regarded to be due to aberrant beta cell mass (Portha et al.,
2001) and/or function (Ostenson and Efendic, 2007).

However, islet morphology and metabolism seem to differ
between differing colonies of these rats. In some colonies
(Stockholm and Dallas), the volume and density of beta cells
is similar to controls; thus the hyperglycaemia seems to result
from insulin secretory defects. However, in the Paris colony
of GK rats, it has been reported that there is a reduction in
beta cell mass (Ostenson and Efendic, 2007). GK rats have
been used in studies ranging from investigations of beta cell
dysfunction in type 2 diabetes (Movassat et al., 2007; Ehses
et al., 2009; Portha et al., 2009; Dolz et al., 2011; Giroix et al.,
2011) to diabetic complications (Liepinsh et al., 2009; Car-
neiro et al., 2010; Okada et al., 2010).

hIAPP mice. A characteristic of type 2 diabetes is the forma-
tion of amyloid within the islet tissue, which derives from
islet amyloid polypeptide (IAPP). Rodent IAPP is not amyloid-
genic, and thus, rodents normally do not model this aspect of
the disease (Hoppener et al., 1994). However, transgenic mice
have been created to express human IAPP (hIAPP) under the
insulin promoter (Matveyenko and Butler, 2006), which can
form amyloid within the islets. A variety of hIAPP models
have been created, and it has been demonstrated that increas-
ing the expression of hIAPP increases beta cell toxicity
(Matveyenko and Butler, 2006). In addition, replicating beta
cells are more susceptible to hIAPP toxicity, and thus, beta
cell adaption to increased insulin demand in this model is
restricted (Matveyenko et al., 2009).

Non-rodent models of type 2 diabetes
Larger animals have also been utilized in type 2 diabetes
research. Type 2 diabetes in cats resembles the human con-
dition in several aspects, including clinical, physiological
and pathological aspects. Some characteristics common to
humans include that type 2 diabetes in cats develops in
middle age, is associated with obesity and insulin resistance,
and subsequent beta cell loss occurs (O’Brien, 2002). In addi-
tion, cats are one of the few species other than humans and
macaques that form amyloid in islets, making them a good
model for studying islet amyloidosis (Henson and O’Brien,
2006). Old-world non-human primates can also develop type
2 diabetes, which has similarities to the human condition
and thus be useful as a model (Wagner et al., 2006). In addi-
tion, several strains of pigs have a phenotype that resembles
type 2 diabetes (Bellinger et al., 2006). A novel model of
obesity and mild type 2 diabetes has recently been estab-
lished in the dog (Ionut et al., 2010) by combining a high-fat
diet with STZ.
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Models of beta cell function

The beta cell plays a central role in the development of both
type 1 and type 2 diabetes as well as playing a key role in less
common classifications of diabetes such as maturity onset
diabetes of the young (MODY), gestational diabetes, neonatal
diabetes and other beta cell syndromes such as hyperinsulin-
ism. Therefore, models of beta cell function are highly
relevant in understanding pathways that can lead to the
inability of beta cells to secrete appropriate amounts of
insulin. Such models are often genetically manipulated, such
as mutations of Kir6.2 to study KATP channel function (Girard
et al., 2009) or mutations in glucose kinase to understand the
function of the glucose sensor in beta cells (Fenner et al.,
2011). A role for serotonin in the expansion of islets in
pregnancy has recently been elucidated by studying the islets
of mice lacking the serotonin receptor Htr2b (Kim et al.,
2010). Studies such as these can increase our knowledge of
beta cell function and its role in a variety of conditions.
However, it should be pointed out that the same mutation in
humans can lead to different symptoms in mice as recently
shown by Hugill et al., where a mutation in Kcnj11 (encoding
a subunit of the KATP channel) caused hypersecretion of
insulin and hypoglycaemia in their patient, but glucose intol-
erance and reduced insulin secretion in mice (Hugill et al.,
2010). However, this may prove useful in understanding the
transition from hyperinsulinism of infancy (HI) to diabetes in
some patients (Hugill et al., 2010).

Models of beta cell regeneration

Both type 1 and type 2 diabetes can be regarded as conditions
when beta cell mass is insufficient to cope with demand for
insulin. Therefore, a lot of effort has focused on understand-
ing how beta cell mass is regulated. In these models, beta cell
mass tends to be partially or nearly completely ablated by a
variety of means, and the mechanisms of beta cell mass
renewal are investigated.

Pancreas injury models
Pancreas injury models are often used in studies investigating
the regenerative capacity of beta cells or beta cell progenitors.
These models of injury include pancreatectomy and duct
ligation and due to technical difficulties are more frequently
carried out in rats than in mice. Sixty percent pancreatectomy
does not lead to an increase in blood glucose concentrations,
and there is only a moderate increase in beta cell mass (Leahy
et al., 1988). However, a 90% pancreatectomy in the rat leads
to moderate hyperglycaemia followed by extensive regenera-
tion of the pancreas (Bonner-Weir et al., 1983). By 60 h after
pancreatectomy, duct-enriched areas appear. By 4 weeks, the
endocrine portion of the pancreas has increased by eightfold
and the exocrine portion by sixfold.

Ligation of the tail portion of the pancreas, which
accounts for 50–60% of the pancreas, leads to a significant
decrease in mass of this part of the pancreas (Wang et al.,
1995). The acinar tissue in the tail portion is replaced by small
ductal structures by day 3, which is associated with a fibrotic
and inflammatory reaction. By day 5, the tissue predomi-

nately consists of ductal tissue and small islets in connective
tissue. In the first week after the duct ligation, the beta cell
mass in the tail portion nearly doubles, making it an ideal
model to study beta cell regeneration. In this model, blood
glucose levels in the animal do not rise; indeed, for 2 weeks
after the duct ligation, blood glucose levels were significantly
lower (Wang et al., 1995). A disadvantage of these models is
the invasiveness, which makes them technically difficult and
a rather extreme model so any regeneration seen is not physi-
ological. However, they have lead to useful information on
the regenerative capacity of the pancreas, at least in rodents.

Neonatal STZ administration
STZ administration to neonatal rats (2 days old) induces a
regeneration and/or type 2 diabetes model in the adults
(Portha et al., 1974). In this model, a peak of hyperglycaemia
is seen 2 days after STZ administration (100 mg·kg-1, i.v. or
i.p.), which is followed by regeneration of beta cells and
normoglycaemia by day 10. However, hyperglycaemia
returns by 6 weeks, which is thought to be due to inadequate
beta cells mass and beta cell dysfunction (Bonner-Weir et al.,
1981). Therefore, in the later phase, this model can be used to
study type 2 diabetes (Tourrel et al., 2001).

Regeneration after ablation of beta cells using
genetic approaches
It has been noted that genetic ablation of beta cells can be
followed by extensive beta cell regeneration. However, com-
plete beta cell ablation from birth is not compatible with life
as indicated by insulin knock-out mice (Duvillie et al., 1997)
and pdx-1 knock-out mice (Jonsson et al., 1994; Duvillie
et al., 1997). Therefore, genetically modified mice have been
created to allow ablation of beta cells in adult mice.

In these models of beta cell ablation, the gene itself does
not induce beta cell death unless a specific compound is
injected to activate the gene. This allows temporal control of
the beta cell death. Interestingly, these models often show
recovery with extensive beta cell replication and thus can be
used to study beta cell regeneration (Herrera et al., 1994; Nir
et al., 2007; Cano et al., 2008; Wang et al., 2008). Some
examples are outlined below.

Doxycycline-induced expression of diphtheria toxin in beta
cells. In these mice, a reverse tetracycline-dependent trans-
activator (rtTA) is expressed in beta cells (Insulin-rtTA; in
which rtTA expression is driven by 9.5 kb of the 5′ flanking
region of the rat insulin II gene). In addition, diphtheria
toxin A is expressed under an rtTA responsive promoter.
Administration of doxycycline to the mice causes rtTA to
induce the expression of diphtheria toxin A, causing beta cell
apoptosis (Nir et al., 2007). Approximately 80% of beta cells
were lost, and the mice became overtly diabetic. However, on
doxycycline withdrawal, beta cell regeneration was evident
with beta cell mass increasing and mice reverting to nor-
moglycaemia.

Diphtheria toxin receptor-RIP mice. In this model, the beta
cells have been genetically modified to express the diphtheria
toxin receptor under the rat insulin promoter. Thus, diphthe-
ria toxin can be administered and will selectively ablate the
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insulin producing cells as mouse cells do not normally
express the DT receptor, and thus, other cells are not suscep-
tible to damage (Buch et al., 2005). Using this method, >99%
of the beta cells are ablated. There is extensive beta cell
regeneration after ablation, and by 10 months, there is
between a 10- and 44-fold increase in beta cells. However, this
corresponds to just 4–17% beta cell mass compared with
non-treated control mice (Herrera et al., 1994).

PANIC-ATTAC mice. The PANIC-ATTAC (pancreatic islet
b-cell apoptosis through targeted activation of caspase 8)
mouse is a model for inducible and reversible ablation of beta
cells. A mutated FK506 binding protein (FKBP) that is fused to
caspase 8 is expressed under the insulin promoter. The
expression of the FKBP-caspase 8 protein in its monomeric
form does not give rise to a phenotype, but dimerization, by
administration of a dimerizer compound, leads to apoptosis.
Up to a 90% reduction in pancreatic insulin content can be
observed with histology, also demonstrating a marked reduc-
tion in beta cells. The mice become hyperglycaemic, but there
is a recovery, and by 8 weeks, the mice return to normogly-
caemia, although still show signs of impaired glucose-
stimulated insulin secretion (Wang et al., 2008).

Knock-out and transgenic mice in
diabetes research

Transgenic mice have been used to create specific models of
type 1 and type 2 diabetes, including hIAPP mice, humanized
mice with aspects of the human immune system and mice
allowing conditional ablation of beta cells, as outlined above.
Beta cells expressing fluorescent proteins can also provide
elegant methods of tracking beta cells for use in diabetes
research (Hara et al., 2003).

In addition, knock-out and transgenic mice have
become powerful tools in elucidating the influence of spe-
cific genes in glucose metabolism and the pathogenesis of
diabetes. This includes understanding which transcription
factors are involved in pancreas development (Habener
et al., 2005) and elucidation of insulin signalling pathways
(Kahn, 2003; Wang and Jin, 2009). Tissue-specific knock-
outs have proven to be particularly useful in studying
insulin signalling (Neubauer and Kulkarni, 2006) as the
global insulin receptor knock-out is non-viable (Accili et al.,
1996).

As mentioned previously with diet-induced metabolic
aberrations, caution should be used when interpreting data as
different background strains have differing susceptibilities to
obesity and alterations in blood glucose homeostasis. This
could potentially lead to the effect of a gene being missed or
alternatively the relative importance of a gene being overes-
timated. An example of the impact of background strain of
the mouse has been demonstrated using mice heterozygous
for the insulin receptor knockout and heterozygous for the
insulin receptor substrate-1 (IRS-1) knockout. When the back-
ground is C57BL/6, 85% of the mice are overtly diabetic by 6
months, whereas in 129Sv and DBA mice the incidence of
overt diabetes is much lower at 2% and 64% respectively
(Kulkarni et al., 2003).

Another consideration with knock-out and transgenic
mice in diabetes research is that pancreatic promoters such as
the rat insulin promoter (RIP), Ngn3 and Pdx-1 can be
expressed at low levels in the hypothalamus (Song et al.,
2010). Indeed, it has been suggested that RIP-Cre mice per se
have disturbed glucose tolerance (Lee et al., 2006), although
another study did not see any metabolic aberration in their
RIP-Cre mice (Fex et al., 2007). It was suggested this was due
to genetic differences as their mice had been rigorously back-
crossed onto a C57BL/6 background. Nevertheless, this
underlines the importance of including control RIP-Cre mice
in experiments.

It is likely that more knock-out models of interest for the
study of diabetes will be created due to the efforts of the
International Knockout Mouse Consortium (IKMC), which
aims to mutate all protein-coding genes in the mouse (http://
www.knockoutmouse.org/). In addition, the Mouse Genome
Informatics website is a rich source of information that pro-
vides an international database resource for the laboratory
mouse, providing integrated genetic, genomic and biological
data to facilitate the study of human health and disease
(http://www.informatics.jax.org/).

Modelling genome-wide association studies
genes in mice
Recently, genome-wide association studies (GWAS) in
humans have led to a number of susceptibility loci in the
pathogenesis of diabetes and obesity to be identified. Such
studies have been instrumental in identifying susceptibility
genes in the disease. but their function has not always been
clear. Mouse models have allowed mechanistic studies to be
carried out to elucidate the function of genes identified in
GWAS such as FTO (Church et al., 2009; 2010) and the
SLC30A8 gene that encodes the zinc transporter (ZnT8)
(Wijesekara et al., 2010). The use of mouse models in the
interpretation of human GWAS in type 2 diabetes and obesity
has recently been elegantly reviewed by Cox and Church
(2011).

End-points to study in animal models
of diabetes

When testing therapies in animal models of diabetes, the
most common end-point of measurement is blood glucose
concentrations. It should be pointed out that different species
tend to have different blood glucose concentrations than
humans, and thus, definitions for diabetes in humans should
not necessarily be applied to animals. For example, mice tend
to have higher blood glucose concentrations than humans,
and it has been suggested that a non-fasting blood glucose
concentration over 250 mg·dL-1 (13.8 mM) or preferably a
chronic elevation over 300 mg·dL-1 (16.7 mM) is appropriate
to consider a mouse diabetic (Leiter, 2009). Normal mice
fasted for 16 h during the entire dark period when they
usually feed and usually have blood glucose of between 50
and 100 mg·dL-1 (2.8–5.6 mM), whereas mice with type 2
diabetes will have fasting blood glucose levels of around
150–300 mg·dL-1 (8.3–16.7 mM).
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Detection of glucose in the urine can also be measured as
a sign of diabetes. However, in a complex disease such as
diabetes, other end-points should be investigated. Other end-
points will depend on the putative mechanism of the drug
and the model being used. In models of type 1 diabetes, it is
critical that the animals are also weighed to ensure that
decreased blood glucose concentrations are not associated
with weight loss. This indicates that decreases in blood
glucose concentrations are not due to toxic effects of the
therapy and possible cessation of eating. However, it should
be noted that in models of type 2 diabetes, the mechanism of
the drug lowering blood glucose levels may include weight
loss (Knudsen, 2010). Glucose tolerance tests are often used
to investigate beta cell function. This can allow impaired
glucose tolerance to be identified, which is generally regarded
as a pre-diabetic state. This is often done after an overnight
fast, although it should be noted that it has been suggested
that such a prolonged fast may be inappropriate in mice as it
induces a metabolic stress and enhances insulin action
(McGuinness et al., 2009), and thus, a 6 h fast may be pref-
erable. There are no clear definitions of impaired glucose
tolerance for rodents, but in normal nondiabetic mice, an
IPGTT reaches a peak at 15–30 min; and by 120 min, the
blood glucose should be close to the baseline value (Leiter,
2009). Serum insulin or c-peptide levels can be measured to
indicate beta cell function, although high insulin levels can
indirectly indicate insulin resistance. An insulin tolerance
test can be carried out as an approximate measure of insulin
resistance, or a more elegant hyperinsulinaemic–euglycaemic
clamp can be carried out (Declercq et al., 2010). It should be
noted that surrogate measures of insulin sensitivity such as
the homeostasis model index of insulin resistance (HOMA-IR)
can be used in rodents, although species specific adjustments
may need to be made (Mather, 2009).

Pancreas histology can be used to study the effects of a
therapy on the islets, which may be particularly relevant to
study in interventions on insulitis (Tian et al., 2010). Whole
pancreas insulin content can also be measured to indicate
beta cell mass, although ideally morphometric analysis is
preferable (Montanya and Tellez, 2009). Islets can also be
isolated and insulin secretion experiments carried out ex vivo
(Szollosi et al., 2010).

The time course of the disease should also be carefully
considered when considering end-points of a study. Some
models of type 2 diabetes show beta cell expansion
and hyperinsulinaemia prior to subsequent beta cell failure,
and the stage of disease may affect the parameters that are
being measured. It should also be noted that in humans,
type 2 diabetes tends to present later in life, and thus, the
use of older mice when studying this condition should be
considered.

Choosing an appropriate animal
model for diabetes research

A variety of animal models of type 1 and type 2 diabetes are
described above, each with their own characteristics. There
are several different purposes that these models of diabetes
could be used for including pharmacological testing, studies

of genetics and understanding disease mechanisms. The
choice of model will depend on the purpose of the study. For
example, in the case of pharmacological testing, the putative
mechanism of the drug being tested will be instrumental in
choosing an appropriate animal model.

In type 1 diabetes, the main determinant in choosing an
animal model is whether a model of autoimmunity is
required. The timing and predictability of onset is also vari-
able in different models of type 1 diabetes.

In type 2 diabetes, it is important to consider the mecha-
nisms underlying the hyperglycaemia and whether this is
relevant to your study. These mechanisms can include insulin
resistance and/or beta cell failure. Indeed, to determine
whether a drug intervention can improve symptoms in any
given model may depend on whether beta cells have failed.
Animal models of type 2 diabetes can be divided into those
that are obese and those that are nonobese. The majority of
type 2 diabetes models are obese, by either genetic or dietary
means. However, this usually comes with a variety of associ-
ated pathologies such as dyslipidaemia and artherosclerosis.
Although these co-morbidities are common in some humans
with type 2 diabetes, it only represents a portion of the
diabetic population. Also, it should be noted that not all
animal models of diabetes and strains develop diabetic com-
plications (e.g. the C57BL/6 strain is relatively resistant to
nephropathy)(Brosius III et al., 2009a), so care should be
taken in choosing an appropriate model if the end-point of
the study is to investigate diabetic complications such as
nephropathy or neuropathy (Breyer et al., 2005; Sullivan
et al., 2007; 2008; Brosius III et al., 2009b).

Strain and species differences should also be carefully
considered when choosing a model as different species and
background strains have different susceptibilities to diabetes
and treatments. Ideally, more than one species or strain
should be investigated. Gender should also be taken into
account (Franconi et al., 2008), with many models described
above having a gender bias (e.g. NOD, NZO and TallyHo
mice; OLETF, Zucker Diabetic rats), which does not exist in
humans. In addition, many knock-out and transgenic models
of diabetes show a gender bias (Franconi et al., 2008). It has
been suggested that in some cases this is due to the effects of
sex hormones (Inada et al., 2007), although the exact mecha-
nism of gender bias has not been elucidated. Indeed, sex
hormone effects can be contradictory in different mouse
models with, for example, male gonadectomy protecting
against diabetes in some models while being ineffective or
increasing incidence in other models (Franconi et al., 2008).
Indeed, gender bias could also involve mitochondria and
stress responses (Franconi et al., 2008). Care should also be
taken when using knock-out and transgenic mice to ensure
that potential hypothalamic expression is not affecting the
phenotype, and relevant controls should be included.

Models also differ in their physiological relevance. with
some models more closely resembling disease development
than others. Some models such as those of pancreas regen-
eration are rather extreme, and it remains to be elucidated
whether the mechanisms of beta cell expansion in these
models can play a role in humans. Indeed, when choosing a
model for either type 1 or type 2 diabetes, it is highly desir-
able that a variety of different models are used to represent
the diversity seen in human diabetic patients.
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