Skip to main content
. 2012 May;166(2):420–433. doi: 10.1111/j.1476-5381.2011.01796.x

Table 2.

Functional consequences of disrupting AKAP-dependent protein–protein interactions

Type Name Target Model system Physiological effect
Peptide Ht-31 AKAP–PKA Mouse oocytes Stimulation of oocyte maturationa
Rat hearts (in vivo) Increased β-AR-stimulated contractilityb
Hippocampal neurons Reduced AMPA/kainate channel currentsc
CD4(+) T cells Reduced antigen presentation, inhibition of TNF-α and IL-10 productiond
S-Ht31 AKAP–PKA Renal inner medullary collecting duct (IMCD) cells Inhibition of forskolin-stimulated AQP-2 translocatione,f
TAT-AKAD AKAP–PKA Cardiac myocytes Reduced contractilityg
Mouse hearts (ex vivo) Negative effect on chronotropy, inotropy and lusitropyg
AKAP15-LZ AKAP18 – L-type Ca2+ channel Mouse skeletal muscle cells (MM14, DZ1A) Inhibition of voltage-dependent potentiation of L-type Ca2+ channelh
AKAP18δ-wt AKAP–PKA Rat neonatal cardiac myocytes Reduced β-adrenoceptor-induced L-type Ca2+ currentsi
Arg9-11-PLN AKAP18δ–PLN Rat neonatal and adult cardiac myocytes Reduced adrenoceptor-induced Ca2+ reuptake into the SRj
RIAD-Arg11 AKAP–PKA (I) T cells Uncoupling of cAMP-mediated inhibition of T-cell functionk
Mouse Y1 adrenocortical cells Reduced ACTH-stimulated progesterone productionk
AKAP-IS AKAP–PKA HEK293 cells Attenuation of GluR1 (AMPA receptor subunit) currentsl
CD4(+) T cells, KG-1 dendritic progenitor cells Reduced antigen presentationd,m
TAT-AKAP-IS AKAP–PKA INS-1 Pancreatic β-cells Inhibition of glucagon-induced potentiation of insulin secretionn
Superakap-IS AKAP–PKA (II) Hippocampal neurons Attenuation of AMPA-responsive currentso
Peptido-mimetic Unnatural RIAD AKAP–PKA (I) in vitro Not determinedp
Small molecule FMP-API-1 AKAP–PKA Rat neonatal cardiac myocytes Increased contractilityq
Rat hearts (ex vivo) Increased contractilityq