
Reduced-order modelling of biochemical networks: application
to the GTPase-cycle signalling module

M.R. Maurya,
San Diego Supercomputer Center, 9500 Gilman Drive MC 0505, La Jolla, CA 92093, USA

S.J. Bornheimer,
Departments of Chemistry and Biochemistry and Cellular and Molecular Medicine, University of
California, San Diego, 9500 Gilman Drive La Jolla, CA 92093, USA

V. Venkatasubramanian, and
Laboratory for Intelligent Process Systems, School of Chemical Engineering, Purdue University,
West Lafayette, IN 47907, USA

S. Subramaniam
San Diego Supercomputer Center, 9500 Gilman Drive MC 0505, La Jolla, CA 92093, USA, the
Departments of Chemistry and Biochemistry and Cellular and Molecular Medicine, University of
California, San Diego, 9500 Gilman Drive La Jolla, CA 92093, USA and the Department of
Bioengineering, University of California, San Diego, 9500 Gilman Drive La Jolla, CA 92093, USA
S. Subramaniam: shankar@ucsd.edu

Abstract
Biochemical systems embed complex networks and hence development and analysis of their
detailed models pose a challenge for computation. Coarse-grained biochemical models, called
reduced-order models (ROMs), consisting of essential biochemical mechanisms are more useful
for computational analysis and for studying important features of a biochemical network. The
authors present a novel method to model-reduction by identifying potentially important parameters
using multidimensional sensitivity analysis. A ROM is generated for the GTPase-cycle module of
m1 muscarinic acetylcholine receptor, Gq, and regulator of G-protein signalling 4 (a GTPase-
activating protein or GAP) starting from a detailed model of 48 reactions. The resulting ROM has
only 17 reactions. The ROM suggested that complexes of G-protein coupled receptor (GPCR) and
GAP – which were proposed in the detailed model as a hypothesis – are required to fit the
experimental data. Models previously published in the literature are also simulated and compared
with the ROM. Through this comparison, a minimal ROM, that also requires complexes of GPCR
and GAP, with just 15 parameters is generated. The proposed reduced-order modelling
methodology is scalable to larger networks and provides a general framework for the reduction of
models of biochemical systems.

1 Introduction
Biochemical reaction networks are comprised of numerous chemical species with complex
reactions and interactions spanning multiple timescales and spatial domains, making the
networks complicated non-linear systems. For example, heterotrimeric G-protein signalling
networks comprise hundreds of G-protein coupled receptors and several G-proteins,
GTPase-activating proteins (GAPs) and effectors that interact at the plasma membrane and
regulate [cAMP], [Ca2+], mitogen-activated protein (MAP) kinase cascades [1–3], and other
proteins and small molecules in multiple compartments, in addition to regulating gene
expression [4]. To understand these complex networks, they can be depicted as biochemical
reaction schemes (mechanisms) that can be formulated mathematically and analysed
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computationally. Analytical expressions can be derived only for reaction networks of
moderate size (e.g. derivation of steady-state rate expression using the King–Altman method
[5] and its modifications, and derivation of closed-form solution for dynamic response of
small dynamic systems with only few state variables). In specific cases, dynamic models can
be simplified by applying appropriate assumptions such as (a) fast kinetics of a reversible
reaction (equilibrium assumption), (b) little variation in slowly evolving states over a short-
time span and (c) pseudo-steady-state assumption about states with very rapid dynamics. For
example, these approaches have been used to derive simplified models for the kinetics of
inositol 1,4,5-triphosphate (IP3) channels for calcium release from endoplasmic reticulum
[6], and for the study of receptor–ligand–G-protein ternary complex [7]. For most of the
biological systems, computational analysis is the only feasible approach. However,
computational analysis of large biochemical networks is impractical because of
unavailability of data and the computational complexity of simulation required for the
estimation of unknown parameters. The complexity of such computational models of
biochemical networks is exemplified by a detailed model for the activation of the MAP
kinase pathway by platelet-derived growth factor proposed by Bhalla et al. [8]. This model
consists of about 100 non-linear ordinary differential equations (ODEs) and algebraic
equations and about 200 parameters. Similarly, a detailed model for calcium signalling
consists of about 200 equations and even higher number of parameters [9]. The complexity
becomes even more appreciable when a network model corresponding to the whole cell,
possibly resulting in tens of thousands of non-linear mixed (both continuous and discrete
variables) equations with a similar number of parameters, needs to be studied. Still, most
models treat the cell as a well-mixed system; stochastic simulations to account for diffusion
effects and to make accurate predictions at small subcellular volumes [10, 11] add even
more complexity. To simplify, the networks can be broken down into distinct modules based
upon the underlying subprocesses (functional decomposition) and/or subcellular-location
[12–19].

The modules themselves can be quite complex. For example, Hoffmann et al. [20] have
developed a detailed quantitative model of the IκB–NF–κB signalling module involved in
the gene activation. This single module alone consists of about 20 ODEs and 50 parameters
of which five parameters were estimated using optimisation (mini-misation of the fit-error
between experimental data and model predictions). Saucerman et al. [21] have developed a
detailed model for beta-adrenergic pathway in cardiac myocyte. The model is a differential
algebraic equation system consisting of 49 equations. Detailed models have also been
developed for phototransduction pathways in human rod and cones, which involve the
activation of G-protein [22, 23]. A recent, detailed model of the GTPase-cycle module –
comprised of G-protein, receptor and GAP – contained 48 reaction rate parameters and 17
distinct chemical species [24]. In the future, it will be desirable to link these models of
modules into models of larger networks and eventually cells [25]; but at present, they
themselves are quite complex.

The above discussion argues for development of methods to reduce the size and complexity
of computational models of biochemical networks while retaining predictive accuracy. Such
a coarse-grained model is better suited for computational analysis as opposed to a model that
captures every possible detail. Hence, there is an opportunity for coarse-graining a given
detailed model for a biochemical system provided the aim is to be able to fit experimental
data and make predictions in a given context. In other words, the validity of a reduced-order
model (ROM) can be guaranteed only within the context of specific data, that is, the ROM
may not predict data accurately that is not covered by the data used for model-reduction.
The mechanisms encapsulated in such a simpler model could be putative coarse-grained
descriptions of corresponding detailed biochemical mechanisms.
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A biochemical model can be coarse-grained by systematically eliminating reactions and
species that are unimportant in the given context, and one-dimensional parametric sensitivity
analysis (or simply sensitivity analysis) can be used to identify potentially important
parameters (that show high sensitivity). However, as sensitivity analysis is local and hence
linear in nature, for highly non-linear systems (such as biochemical systems), the predicted
change in the model output on this basis is subject to error. Thus, sensitivity analysis is not
suitable and what is needed is a multiparametric sensitivity or variability analysis (MPVA)
strategy to analyse the effect of simultaneous perturbation on several parameters, so that
parametric interactions can be effectively taken into account. Also, most existing methods
assume that the parameters are known. However, for biochemical reaction networks, often
no more is known than upper and/or lower bounds on the parameters. Hence, a methodology
is needed that can address both these issues. The reason for using the term ‘variability
analysis’ as opposed to ‘sensitivity analysis’ is that sensitivity is not explicitly calculated in
the approach used in this work.

In this article, first the existing approaches for model-reduction are summarised. Then, a
MPVA approach to study the relative importance of various parameters and an algorithm
that uses this information to generate ROMs are presented. In the proposed method, the
result obtained during genetic-algorithm (GA)-based parameter estimation for the detailed
model is used to carry out MPVA. In turn, the results of MPVA are used to drive the
elimination of reactions, and the least important reactions in the network, that is, the ones for
which large changes in the rates do not affect model output, are eliminated. Finally, the
method is used to develop a ROM for the GTPase-cycle signalling module of m1 muscarinic
acetylcholine receptor, Gq, and the GAP-named regulator of G-protein signalling 4 (RGS4)
starting with the detailed dynamic model recently developed by Bornheimer et al. [24].

2 Approaches for model reduction
The generation of ROMs for linear systems is well studied [26]; however, for non-linear
systems including most biological systems, model reduction is not well studied and is not as
straightforward as for linear systems [27, 28]. The main factors leading to complexity in
biological systems are the presence of multiple reactions and processes, multiple timescales,
and many species. Based on Tikhonov’s theorem [29], a well-known principle of model
reduction in this context is to eliminate biochemical processes that are very fast (using
quasi-steady-state approximation) or very slow (assuming constant) compared with the
characteristic timescale of interest of a biochemical system [30]. In the process of model-
reduction, care should be taken to maintain all the important context-specific biochemical
and physiological species and constraints. Some examples of constraints are (1)
thermodynamic constraints imposed on rate constants involved in thermodynamic cycles
(second law of thermodynamics), (2) maximum values of rate constants as dictated by
diffusion limits, (3) constraints (e.g. on rate constants) gleaned from previous experiments
available in the literature and (4) constraints on the maximum and minimum values of data
to reflect noise or error. A serious complication with respect to biological models is that,
although the network structure may be surmised, the model parameters (reaction rates, etc.)
are rarely well known. The issues set forth above should be carefully treated by any method
to reduce models of biochemical systems.

A number of methods have been proposed to reduce models of chemical systems. Edwards
et al. [31] used GA for the reduction of kinetic models that include bimolecular and
trimolecular rate expressions, but they assume that all parameter values are known, which is
seldom true of biological systems. Parametric sensitivity analysis (assessment of the
sensitivity of the model to variation in parameters) can be helpful to identify important
parameters in complex models, but Petzold and Zhu [27] have stressed that parametric
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sensitivity analysis can be sometimes misleading, particularly for stiff systems involving
multiple time constants over a wide range, which include many models of biological
systems. They proposed an optimisation-based approach for eliminating reactions from a
detailed kinetic model, leading to a ROM that retains the dynamic and non-linear properties
of the original system. The drawback is that the user must decide the number of reactions to
be retained. Okino and Mavrovouniotis [32] have reviewed several approaches such as
species/parameter lumping, sensitivity analysis and timescale analysis for order reduction
starting with a detailed model. Vora and Daoutidis [28] proposed a method for reducing
non-linear kinetic models with more than one timescale. The fast dynamics and stiffness is
restricted to a single or few parameters using singular perturbation and the ROM is derived
by retaining the slow dynamics. The drawback is that lumping terms in this manner may
result in species or reactions that do not correspond to actual species or reactions in the
biochemical network. Androulakis [33] proposed an integer-programming-based two-step
approach to reduce both the number of species and reactions in a reaction network
(parameters related to the reactions were known). Bhattacharjee et al. [34] proposed an
integer-programming-based framework for eliminating reactions in large-scale kinetic
models. The basis is that the solution of the formulated integer program guarantees global
optimality. However, it is assumed that the values of all the parameters are known and hence
no parameter estimation is needed. Conzelmann et al. [25] have concluded that the existing
approaches for model-reduction are inadequate and they have presented a simulation-based
approach for model-reduction. Recently, Maurya et al. [35] proposed a bottom-up strategy
for modelling of reaction networks; this is not a model-reduction method, instead it builds
models starting from a skeletal model using minimal knowledge about the system.

As evident from the above review, most existing methods for reduction of detailed models
assume that the parameters are known or use sensitivity analysis, neither of which is
justified or suitable for most biological systems. Thus, an MPVA in which several
parameters are changed simultaneously is suitable for sensitivity analysis of computational
models for biological systems. Earlier, Blower and Dowlatabadi [36] have used Latin
Hypercube Sampling [37] for multiparametric sensitivity analysis to characterise the effect
of uncertainty in the inputs on outputs in an HIV model for disease transmission. Recently
Latin-Hypercube-Sampling-based multipara-metric sensitivity analysis, in which importance
is characterised through Kolmogorov–Smirnov (K–S) statistic, has been used to characterise
important steps/reactions in Janus activated kinase-signal transducer and activator of
transcription (JAK-STAT) signalling pathway [38]. Latin Hypercube Sampling requires that
an estimate of all parameters be known. Samples are scanned randomly around the estimate
to characterise the sensitivity of output to variation in parameters. However, as mentioned
earlier, an accurate estimate of all parameters is rarely known for biological systems.

To address the issue of unknown parameters, the proposed method combines parameter
estimation and sensitivity analysis. A GA is used to estimate parameters by fitting
experimental data while satisfying all relevant constraints on the parameters. The good
samples scanned during the GA search are themselves used for MPVA. Earlier, in a similar
effort, Takahashi et al. [39] used the results of stochastic search to characterise a sensitivity
ellipsoid around the best solution. The results of MPVA are used to develop ROMs. Thus,
the novel contributions of this work are: (1) implicit MPVA: development of a methodology
to utilise the good samples scanned during GA for MPVA (this avoids the necessity for
additional sampling of the search space) and (2) development of a methodology to generate
ROMs using the results of MPVA.
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3 Methods: MPVA-based framework for model-reduction
The framework consists of (1) parameter estimation for the detailed model, (2) MPVA and
(3) elimination of parameters/reactions to generate a ROM. They are discussed below. The
entire algorithm is shown in the flow-chart of Fig. 1.

3.1 Parameter estimation using hybrid GA-based pseudo-global optimisation
Model parameters are estimated between constraints by minimising the mismatch between
the experimental data and the corresponding model prediction using a hybrid GA-based
pseudo-global optimisation. GA is an evolutionary stochastic-search strategy [40] useful for
non-linear optimisation. In the hybrid GA-based optimisation, promising candidates (see
below) are identified using a GA [41–44] and then locally optimised by the Levenberg–
Marquardt optimiser [45] or a sequential quadratic programming-based general non-linear
optimiser [46]. These procedures (GA followed by local optimisation) result in a pool of
parameter sets that fit the experimental data well. This pool consists of two parts: the
parameter values generated during evolution of the population through many generations as
genetic operators are applied and the parameter values obtained by local optimisation.
Below, first a concise description of hybrid GA-based parameter estimation is presented and
then various issues related to this method are discussed.

3.1.1 Parameter estimation—In the present GA, the parameters in the genome (the
string representation) are represented through real-number notation proposed by Wolf and
Moros [47]. The initial population is chosen randomly from parameters distributed
uniformly on a normal-or a log-scale depending upon the specific parameter ranges. The
population evolves into the next generation by transferring good candidates from the current
generation (elitism [48]) and generating new members by applying crossover and/or
mutation operators to parents; one parent genome is selected based on fitness and the other
randomly. Thus, a fitter member is more likely to be used for crossover. The offspring
genomes are evaluated by calculating the objective function (described below) and are
included in the next generation. Finally, the population is sorted and members are rank-
ordered according to fitness. This process is repeated for a fixed number of generations. At
the end of evolution, all members of the final generation and the best members of each
generation (promising candidates) undergo local optimisation as described above.
Additional details on GA are provided in Section 4 of the Supplementary Material. More
and exact details of hybrid GA can be found in Katare et al. [42].

3.1.2 Choice of objective function—The mismatch between the simulated and
experimental data is calculated by an objective function. The objective function used in the
GTPase-cycle module case study is a weighted sum of squared errors between experimental
data and model predictions. This function also includes a penalty term if constraints on the
parameter values are violated. Thus, there is flexibility of assigning different priorities to
different constraints, allowing the user to decide the important data or features that the
model must fit.

The objective function chosen affects the estimated values of the parameters. Hence, the
choice of the objective function is important. For most of the applications involving
development of mathematical models using experimental data (i.e. the model must fit
experimental data well), the above approach of formulating an objective function works
quite well. In certain applications capturing the right qualitative shape of the curve depicting
the experimental data (e.g. linear increase, convex decrease, etc.) may be more important
than the fit to the data. In such cases, the objective function can be appropriately modified to
include an error term corresponding to the differences in the qualitative shapes/features in
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the experimental data and the corresponding predicted data [49]. However, at times,
formulation of an appropriate objective function can be challenging. An example is the
requirement of good fit to data corresponding to several scenarios (e.g. several data sets). A
rule of thumb is to weigh the fit error for each data set by the inverse of the variance of the
noise in the data. Thus, the acceptable fit error for data sets with lower noise would be lower
as compared with that for data sets with higher noise level. With a complex objective
function, it is possible that the parameter set with a lower value of the objective function
may not fit the data as good as a set with slightly higher value of the objective function. To
allow for such imperfections in the objective function, in the present case study, several
parameter value sets whose objective value is close to the lowest fit error are regarded as
good candidate parameter sets and analysed visually to select the best parameter set. After
some initial trials, an error threshold was selected to automatically decide whether or not a
parameter value set should be included in the pool of good sets. This error threshold is
usually equal to the measurement error in experimental data or can be chosen on the basis of
the variance of the noise present in experimental data. In the present case study, this
information was not explicitly available.

3.1.3 Global against local optima—The issue whether local or global optima are found
is relevant to all stochastic-search-based optimisation methods, including GA, Monte Carlo
sampling [50], or related approaches such as differential evolution [51] and particle-swarm
optimisation [52]. In these methods, there is no guarantee of finding the global optima.
However, the best or some of the near-best solutions found by these methods were found to
be close to global optima with respect to the position in space and the value of the objective
function in many practical applications such as modelling [47, 49], protein folding [53],
scheduling [54], circuit design [52] and control applications [51].

In the hybrid GA approach used here, as discussed above, the promising candidates obtained
at the end of GA-based search represent promising regions in the search space. These
promising candidates are further refined by local search in which depending upon how far a
candidate is from its respective local minima, the candidate moves trivially (if already close)
or substantially (if located far to start with). Hence, the final solutions correspond to various
local minima in the search space (no guarantee that all local minima are found). Some of
these local minima are actually the global minima or are quite close to the global minima
[42]. Thus, a collection of near-optimal solutions is obtained, one of which is likely that
global minimum. Access to a collection of near-optimal solutions is advantageous because it
is possible that the solution with lowest objective function is not the best solution for the
model because of measurement errors in the experimental data and difficulty in choosing
appropriate (complex) objective functions.

3.1.4 Effect of error or noise in data—Experimental data always contain some
measurement error or noise, which generally increases the fit error between predicted and
experimental data. Other effects may also occur: Katare et al. [42] observed that several
solutions with considerable difference in the values of the parameters may have similar
value of the objective function, and data containing normally distributed measurement errors
and/or random noise (white noise) may appear similar to error-or noise-free data (the same
may be true about the values of the parameters). Hence, in cases of measurement error or
noisy data, it is advisable to first raise the fit error threshold for accepting good candidate
parameter sets, and then to use additional experimental data or domain-specific knowledge
to differentiate between these good candidates.
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3.2 Multiparametric variability analysis
Use of MPVA in model-reduction is motivated by the idea that small changes in important
parameters have large impact on the system (high sensitivity with respect to these
parameters), whereas even large changes in unimportant parameters have small or negligible
effects (less sensitivity with respect to these parameters) [55]. In other words, even for small
changes in important parameters, large changes in other (unimportant or somewhat less
important) parameters would be required to bring the system to the original/desired state.
Similarly, small changes in important parameters should be able to compensate for relatively
much larger changes in unimportant parameters (Fig. 2).

The notion of sensitivity proposed above is different from the traditional notion in two
aspects. First, traditionally, sensitivity analysis is performed by changing one parameter at a
time and measuring the effect on model output. In contrast, in our implicit MPVA method,
sensitivity is characterised in terms of the overall deviations required in the parameters to
minimise the deviation in the value of the objective function. This should not be confused
with the dynamic analysis of sensitivity variables in a dynamic system [55]. Second, to
implement our MPVA method, we use the GA-based optimisation method to search the
entire parameter space and generate a pool of parameter value sets, many of which are good
candidates for a pseudo-global optimal solution. No additional perturbations and simulations
are needed because, due to GA-based search during optimisation, the good candidate
parameter sets adequately sample the various local optima that are close to the global optima
of the objective function. It can be noted that besides GA, any other stochastic-search-based
optimisation such as differential evolution [51] or particle-swarm optimisation [52] can be
used for MPVA.

Several good candidate parameter sets are generally available. Among these parameter sets,
the fit error of the parameter set with the highest fit error is chosen as a cutoff (the error
threshold introduced earlier). All parameter sets from GA and local optimisation with fit
error less than or equal to this error threshold are considered to fit the data well. Their
collection is called the MPVA pool. It can be noted that different parameter sets in this pool
can be in different local optima regions of the parameter space and not in the unimodal
region in the vicinity of the global minima. That is why this type of variability analysis is
different from the well-established local sensitivity analysis. One may refer to this as global
variability analysis. These sets are used as a basis to determine, for each parameter, the
minimum (MIN) and maximum (MAX) values, the range (the ratio MAX/MIN) of values
and the ratio of the standard deviation to the mean value. The parameters are ordered
according to increasing MAX/MIN in a sorted list. The order of parameters in the sorted list
is affected by several factors: (1) the amount of error or noise in the experimental data, (2)
the objective function, (3) pre-specified lower and upper bounds (LB and UB) on the values
of parameters in GA-based optimisation and (4) the amount of experimental data.

3.3 Generation of ROMs
3.3.1 Procedure—Parameters are knocked out either one at a time or in groups, starting
with the parameter with highest MAX/MIN in the sorted list. A crucial step after each
knockout is the verification of the structural integrity of the remaining model. For our
purposes, this means that all chemical species except those with fixed concentration have
influx and outflux reactions, allowing the system to reach steady state. If this is satisfied, the
parameters of the ROM are re-optimised within their constraints by the hybrid GA-based
optimisation to reflect the fact that parameter values found for the detailed model may not be
optimal for the ROM. If the ROM shows satisfactory performance (i.e. fits the experimental
data well or predicts the essential features), then additional parameters are knocked out. If
the ROM is not acceptable, then the previous knockout is invalid, the corresponding
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parameter is retained and the next parameter in the sorted list is knocked out. Finding the
minimal ROM can be hastened by knocking out several parameters at a time. In addition,
depending upon the biological context, one may require that the values (ranges) of the
parameters in the ROM should not be too different from the corresponding values (ranges)
in the detailed model. The user may specify a threshold on the acceptable change in the
values.

The proposed MPVA-based method emulates search along a certain branch of the search
tree of the structure space and thus does not examine all possible combinations of
knockouts. This can be done with integer-programming [34]. However, it is excessively
complex computationally because the parameters must be re-estimated every time a new
candidate ROM is tested. Thus, although the approach proposed here may not necessarily
find the minimal ROM, a good ROM is generated within reasonable computing time
because, in GA, the number of evaluations of the objective function, which is essentially the
product of the population size and the number of generations, is nearly linear with respect to
the number of unknown parameters. As knockout proceeds in a sequential manner, the total
number of evaluations of the objective function is nearly quadratic with respect to the
number of unknown parameters (some additional evaluations are needed because of local
optimisation).

3.3.2 Discussion on the use of the methodology—To ensure that the ROMs are
meaningful and they capture the essential features, it is suggested that all the experimental
data and (relevant) constraints that are used to estimate the parameters for the detailed model
should be used to estimate the parameters for the ROMs as well. This guideline has been
used in the case study in the following section. Nevertheless, if the experimentalist wants to
further restrict certain parameters (as deemed necessary because of the intended application
of the ROM), then additional experimental data corresponding to scenarios/conditions in
which the appropriate part of the network becomes important should be used.

The resultant ROM depends on the amount of data used for GA-based parameter estimation.
As this amount is increased, some of the parameters may get restricted to narrow ranges,
suggesting that such parameters are important to fit the new data. These will move up in the
sorted list where they are more likely to be retained in the ROMs. Thus, the size of the
smallest ROM increases (the reduction achieved decreases), although in a non-linear and
discrete manner, with increasing amount of data used to estimate the parameters and to
develop the ROMs. In the extreme case of using sufficient experimental data in which every
parameter becomes important to satisfy some of the data, most of the parameters may get
restricted assuming that GA identifies few candidates with good fit to all data sets. In this
case, the sorted list will have little meaning and no model-reduction may be achieved.
Hence, the information about the ultimate use of the model-reduction method and the
important data/features are necessary.

Once a good ROM has been found using the proposed method, one may manually test other
knockouts based upon insight about the biochemical system. These tests are biochemically
informative because all relevant constraints are retained when the parameter values are re-
optimised for the new model. Such synergy between computational analysis and biological
insight is a powerful model reduction method that can generate novel hypotheses as
discussed below in the case study of GTPase-cycle module.

3.4 Implementation
The elimination of parameters and the generation of ROMs are carried out in MATLAB [56]
for simplicity of implementation. Quantitative simulation and parameter estimation are
performed in C + + programming environment to achieve computational efficiency.

Maurya et al. Page 8

Syst Biol (Stevenage). Author manuscript; available in PMC 2012 August 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Numerical integration and local optimisation are performed using subroutines from the
International Mathematics and Statistics Library (IMSL) available from the Visual
Numerics, Inc. [57].

4 Results: reduction of a detailed dynamic model of the GTPase-cycle
module

In order to test our method for model-reduction, we needed a detailed model of a
biochemical reaction network including its reaction rate parameters, and a data set of
‘outputs’ of that network. Although the methodology can be used to reduce (coarse-grain)
the model of any biochemical system satisfying these requirements, we chose the GTPase-
cycle module recently modelled in detail in our laboratory [24] based on data from the
laboratory of Dr. Elliott Ross [58–61] as a test bed so that the outputs/properties of the
ROMs can be easily compared and validated with those for the detailed model. Below, first,
a succinct discussion on G-protein signalling and the necessary description of the detailed
model of the GTPase-cycle module are presented. Then, the ROMs and other models
available in the literature are discussed. In this case study, although only steady-state data
are available and is used to estimate the rate parameters, the resulting ROM should be able
to predict dynamic response. Hence, derivation of steady-state rate expressions, for example,
using King–Altman method [5] or its variants, is not sufficient. In the following section, it is
further explained why the traditional approaches for model simplification are not applicable
for most of the network.

4.1 Test case study: the GTPase-cycle module
The GTPase-cycle module is a key control point in numerous cellular signalling networks.
The GTPase-cycle module controls signal transduction in heterotrimeric G-protein
signalling networks by regulating the activity of heterotrimeric G-proteins. In the module, G
protein coupled receptors (GPCRs) activate G proteins by accelerating the exchange of GDP
for GTP, and GAPs deactivate G-proteins by accelerating hydrolysis of GTP to GDP.
Isolated G-proteins undergo GDP/GTP exchange and GTP hydrolysis at much slower rates.
Reviews of G-protein signalling and the GTPase-cycle module have been presented by De
Vries et al. [62], Gilman [63], Hall [64], Hollinger and Hepler [65], Krauss [66], Neves et al.
[4] and Ross and Wilkie [67]. Several computational models have been used to investigate
the effect of reaction rates, small molecule and protein concentrations, and other effects on
the activity of G-proteins [68–75]. These typically invoke an accepted mechanism in which
G-GDP binds agonist-bound receptor; receptor hastens exchange of GDP for GTP; G-GTP
dissociates from receptor; G-GTP is hydrolysed to G-GDP either with or without a GAP;
and the cycle begins anew. Recent evidence suggests an alternative mechanism in which
active receptors, G-proteins and GAPs are associated in a ternary complex [60, 65, 76].
These two hypotheses reflect that, currently, at issue is how G-proteins, receptors and GAPs
are organised at the plasma membrane and especially whether they form a ternary complex.

The detailed model of Bornheimer et al. [24] permits several mechanisms including the
accepted mechanism described above and the ternary complex (Fig. 3) and is based on data
from the mammalian GTPase-cycle module of m1 muscarinic acetylcholine receptor, Gq,
and the GAP named regulator of RGS4 [58–61]. The model’s biochemical mechanism
contains 17 chemical species and 24 reversible reactions and was mathematically
implemented with 17 ODEs and 48 reaction rate parameters. Seven of the parameters were
directly measured and another 41 were constrained between UBs and LBs evident from
experimental data; of these, 28 were optimised and 13 were calculated to maintain material
equilibrium using the GA-based parameter estimation procedure presented in the previous
section. The experimental data used, the specific constraints on parameters, and the
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objective function are described in the Supplementary Material (Tables 2 and 3 and Sections
1–4 in the Supplementary Material). The main simplifications of the biochemical
mechanism of the detailed model are that (a) all receptor is considered active (changing its
concentration mimics change in agonist binding to receptor), (b) the Gβγ subunit is not
modelled and (c) perfect mixing is assumed, meaning that diffusion effects and spatial
variations are not considered; these simplifications are retained in all ROMs described
below. The important outputs of the model are the fraction of active G-protein (Z), and GTP
turnover rate (v) [24]. The expressions for Z and v (at steady state) are

(1)

where [G]total is the sum of the concentrations of all species involving G-protein. The ‘+’ or
‘−’ sign in the parameter names (e.g. in P − 4) indicate that the corresponding reaction is an
association or dissociation reaction, respectively (Section 1 of Supplementary Material). The
identifier ‘*’ from G*T, RG*T and so on has been removed for simplicity. Z is
dimensionless. v is expressed as (mol Pi/s)/mol G (i.e. moles of phosphate produced or GTP
hydrolysed per second per mole of G-protein present in the system) and hence its overall
dimension is s−1.

In the study of the detailed model [24], the outputs Z and v were calculated over a wide
range of concentrations of R and GAP. This revealed four limiting signalling regimes
(LSRs): G, RG, RGA, and GA. In each, receptor and/or GAP are either saturating or absent,
GTP, GDP, and Pi (phosphate) are set at cellular concentrations (468 μM, 149 μM and 4.4
mM, respectively [77]; [GD] is initialised to 10.0 nM) and characteristic values of Z and v
result. In limiting signalling regime G, receptor and GAP are absent, Z = 0.0076 and v = 9.9
× 10−5 s−1; in RG, receptor is saturating, GAP is absent, Z = 0.98 and v = 0.012 s−1; in
RGA, both receptor and GAP are saturating, Z = 0.096 and v = 2.4 s−1; in GA, GAP is
saturating, receptor is absent, Z = 4.6 × 10−5 and v = 0.0012 s−1. Mechanistically, these
limiting signalling regimes arise by dominance of one of the four kinetic paths forming
horizontal edges of the mechanism shown in Fig. 3 (e.g. G → GT → GD → G). These
paths were called extreme paths. In the results described below, the ROMs are judged in part
for their ability to qualitatively produce the limiting signalling regimes at cellular nucleotide
concentrations.

The traditional methods of model simplification based on assumptions of equilibrium of
reversible reactions and quasi-steady-state assumption on enzyme–substrate complexes are
not applicable for the GTPase-cycle system. To verify this, a detailed comparative analysis
of the species concentration during transients was carried out across a wide range of the
concentration of the receptor and GAP covering the four LSRs (Section 5 and Fig. 10 in the
Supplementary Material). It was found that the equilibrium holds true only for the reactions
D2–D4. For other reactions, including D1, A1–A6 and R1–R6, neither linearity nor
Michaelis–Menten-like dependence is observed. Thus, the traditional approaches of model
simplification do result in some simplification, but for most of the network they are not
applicable during the initial transients which are considered important for cellular signalling.
This is not surprising as Bornheimer et al. [24] have shown the existence of two distinct
regimes (mass action regime and stoichiometric regime). It is true that the approach
proposed in this article and the traditional approaches can be used synergistically to achieve
more simplification/reduction as compared with the simplification achieved by one approach
alone.
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To develop ROMs of the GTPase-cycle module that fits the experimental data, the method
described in the previous section is used. The sorted list of parameters according to
increasing range is given in Table 1 (additional details provided in Table 4 in Supplementary
Material). ROMs are generated by eliminating reactions starting from the end in this list,
that is, D+1 is eliminated first, then R−1 and so on. All the data and (relevant)
thermodynamic constraints that were used with the detailed model are also used to estimate
the parameters for all the ROMs. For each ROM discussed below, the value of parameters
corresponding to the best set from GA-based estimation and the MAX and MIN values and
its comparison with the MAX and MIN for the base (detailed) model are provided in the
Supplementary Material (Section 5).

4.2 The ROMs developed using the MPVA-based framework
4.2.1 Automatically generated ROM 1—The method outlined in the previous section
automatically eliminated the following 27 reactions resulting in the biochemical mechanism
depicted in Fig. 4a: D + 1, R − 1, A − 1, A − 4, R − 4, P + 2, P + 1, P + 4, R − 3, R + 1, D +
4, D + 2, T − 1, T + 2, T − 3, P + 3, A − 6, R + 2, A + 1, R − 6, A + 4, A + 6, D + 3, A + 3,
R + 6, R − 5, T − 4. Most are the reverse of canonical GTPase-cycle reactions such as GTP
association, GTP hydrolysis, GDP dissociation and association of R and dissociation of
GAP from G-GDP species. Knockout of these reactions does not violate the bulk of data on
the function of the GTPase-cycle and is in keeping with simpler models of the GTPase-cycle
(e.g. [60, 66–68, 72]), thereby indicating the fidelity of the method in retaining key
mechanisms during model-reduction.

This ROM fitted the experimental data well and reproduced three of the four LSRs (Figs. 4b
and 4c). Fig. 4b shows the fit of predicted data to the experimental data. The three data sets
listed in Table 2 (Supplementary Material) are shown in the three plots. The fit of the
predictions of the detailed model is also shown. The experimental conditions for the data
sets shown in the three plots are: plot 1: low [GAP] and varying [GTP]; plot 2: no GAP and
varying GTP; plot 3: high [GTP] and varying [GAP]. The LSR GA is captured partially
(Fig. 4c); saturating [GAP] appears to be higher than the corresponding saturation level in
the detailed model. Notably, this ROM retained all ternary complexes of G-protein with R
and GAP.

Most parameter values were confined within less than one order of magnitude as determined
by sensitivity analysis (Fig. 4d, and Table 5 of Supplementary Material), indicating a
relatively well-constrained ROM. There were, however, some widely varying parameters.
The comparison shown in Fig. 4d reveals the following interesting facts:

1. Wider parameter ranges in the ROM: Although many parameter ranges in the ROM
are narrow, there are several, such as A − 3, T + 1, T − 2 and R + 4, which span 2–
3 orders of magnitude. This is because some of the eliminated reactions were
involved in thermodynamic cycles, and hence the corresponding thermodynamic
constraints are no longer applicable. Thus, the parameter space became less
restrictive. Still, all parameter ranges satisfy relevant constraints.

2. Difference in parameter ranges for the detailed model and the ROM: Based upon
comparison of parameter ranges in the detailed model and ROM, we define four
categories of parameters: (1) fixed parameters (D − 3, P − 2, etc.), (2) those for
which the range in the ROM contains the range in the detailed model or vice versa
(A − 2, A − 3, T − 2, etc.), (3) those for which the ranges partially overlap (A + 5)
and (4) those with non-overlapping ranges (R + 5, R + 4). The fourth category is
most surprising: it indicates that if one were to require that the parameters in the
ROM be restricted to the range for the parameters in the detailed model (for the
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good sets), then for the current reaction network no parameter values with
satisfactory fit would have been found. There is, however, no need to apply such a
restriction because the true values of the parameters could possibly lie outside their
range for the detailed model. It is noted that the detailed model is also an
approximation of the real biochemical system.

Regardless of the variation in parameters, all parameters satisfy known constraints. If this
were not the case, or if sufficient constraints were unavailable, then the values of some of
parameters of the ROM may exceed the limits observed in experimental systems. On this
note, in two cases – R + 4 and R + 5 – the maximum rate of the association reaction met or
slightly exceeded the diffusion limit (<109 M−1 s−1). In these cases, the maximum rate was
set at 1010 M−1 s−1 to compensate for uncertainties in the measurement of receptor
concentration; however, the rates determined by optimisation were still reasonable (R + 4 =
3.96 × 109 M−1 s−1 and R + 5 = 5.06 × 108 M−1 s−1) (Fig. 4d, and Table 5 in Supplementary
Material). If the theoretical limits must be imposed, then these constraints can be imposed
explicitly.

4.2.2 Automatically generated ROM 2—Next, the method attempted to eliminate an
additional eight parameters based on their order in the sorted list, failing in four cases (A −
3, T + 4, T + 1, A + 5) and succeeding in four cases (R + 5, T − 2, A − 2, A − 5). This shows
that some parameters were important despite a position in the sorted list above other
parameters that could be knocked out. Knockout of R + 5, T − 2, A − 2 and A − 5 does not
violate the bulk of data on the function of the GTPase-cycle. Retention of A − 3, T + 4, T+1
and A+5 is in agreement with the data that GAP binds G-GTP species and dissociates from
G-GDP species, and that GTP binds empty G-protein species; however, retention of T+4
also implies that RGA exists although there is little empirical evidence for it [78].

The resulting ROM is the minimal ROM that was generated automatically, containing 17
parameters (Fig. 5a). It fits the experimental data well in most cases (Fig. 5b) and produces
three of the four LSRs well and LSR GA partially (Fig. 5c). The experimental data on
GTPase rate during GAP titration (plot 3 in Fig. 5b) fits imperfectly. For this ROM too, the
general features of the ranges of the parameters with good fit are similar to those shown in
Fig. 4d (see Table 6 and Fig. 11 in the online supplementary material); hence, they are not
discussed explicitly.

4.3 Inability of the published models to fit the experimental data and capture key
predictions of the detailed model

Starting with an early model of the GTPase-cycle module proposed by Cassel et al. [68], as
more experimental data became available, several other models with additional details were
published [60, 66, 67, 72]; these models each have fewer interactions than in the detailed
model of Bornheimer et al. [24]. In terms of complexity (number of parameters), these
models are comparable in size to the 17-parameter ROM developed using the MPVA-based
method. Hence, we examined two of these models – a current textbook model [66] and a
hypothetical, more sophisticated model of Biddlecome et al. [60] – by simulating them
computationally (including parameter estimation) to test their ability to fit the experimental
data and predict the four LSRs. The experimental data and the methodology used for
parameter estimation for these models are exactly the same as for the detailed model and the
MPVA-based ROMs.

The textbook model (Fig. 6a) includes the GTPase-cycle of isolated G-proteins, the GEF
(guanine nucleotide (GDP/GTP) exchange factor) activity of the active receptor, and the
GTPase activity of GAP, and consists of 12 parameters and 13 ODEs. Unlike the 17-
parameter ROM, it excludes the ternary complex of G-protein with active receptor and GAP.
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The textbook model does not fit the experimental data well (Fig. 6b). For instance, when
GAP is saturating only 25% of the experimentally observed turnover rate is attained,
suggesting that RGA, RG*AT and RGAD are required. However, this model does capture
the LSRs G, RG, GA and RGA well (Fig. 12a in the online supplementary material); the last
is surprising given that extreme pathway RGA is not modelled. A putative explanation is
that the presence of parts of the extreme pathways RG and GA compensates for the absence
of the extreme pathway RGA. Results of sensitivity analysis are listed in Table 7 and are
shown in Fig. 12b of the online supplementary material.

A mechanistic explanation for poor fit to data sets 1 and 3 (plots 1 and 3, respectively, in
Fig. 6b) and good fit to data set 2 (plot 2) is as follows. In the data for plot 2, no GAP (A) is
present. Hence, the presence or absence of the reactions in which GAP associates has no
effect and fit to plot 2 is good. Alternatively, in the data for plots for 1 and 3, both GAP and
receptor are present. Hence, the reactions involving association of receptor and GAP
become important. As the model excludes the ternary complex RGAT and the reaction P − 4
(hydrolysis of RGAT), which accounts for substantial flux in the biochemical system (P − 4
= 25 s−1), the model is able to capture only part of the full GTP turnover rate. As P − 2 = P −
4 and that the reaction corresponding to P − 2 is included in the model, a crude analysis
validates the above observation assuming that, in the real biochemical system, steady-state
concentration of RGAT is about twice as that of GAT.

An alternative model was published by Biddlecome et al. [60] that includes the ternary
complex of G-protein with active receptor and GAP (Fig. 7a) but excludes extreme pathway
GA. This model consists of 12 parameters and 14 ODEs. The fit to experimental data is
impressive (Fig. 7b) for a relatively small model, suggesting that the ternary complex plays
a key role. Additionally, the LSRs G, RG and RGA are captured well (Fig. 13a in the online
supplementary material). LSR GA does not exist because extreme pathway GA is not
included in this model; put another way, at very low receptor concentration (10−15 M), there
is no change in Z for variation in [GAP]. Results of sensitivity analysis are listed in Table 8
and shown in Fig. 13b of the online supplementary material.

The ROM consisting of 17 reactions that were generated using the MPVA-based automated
method combines the best qualities of the textbook model and Biddlecome et al. [60] model
in capturing the experimental data (textbook model fails) as well as the four LSRs (the
Biddlecome et al. [60] model fails). Thus, in a semi-quantitative way, one can say that
structural superposition leads to superposition of the model predictions. More importantly,
the automated method arrived at a reasonable ROM that integrated and expanded upon key
proposed models from the literature although it was not biased towards them.

4.4 Importance of the ternary complex of active m1 MAchR – Gq*-GTP – RGS4
To further identify the relative importance of RGA, RGAD and RG*AT in the Biddlecome
et al. [60] model, we manually knocked out the inactive complex RGA and the reactions T +
4 and D − 4 from the Biddlecome et al. [60] model so that the RG*AT complex – which
stimulates fast GTP hydrolysis – must re-associate with each turn of the GTPase-cycle. This
resulted in a new ROM of 10 parameters and 13 ODEs (not shown). This model fit the data
relatively well (Fig. 7b, thin-dashed curve), capturing more than 75% of maximum v in all
data sets. Thus, RG*AT is extremely important and capable of partially rescuing the fit to
data (compare with Fig. 6) even if it must re-associate with each turn of the GTPase-cycle.
However, this ROM does not reproduce LSR GA (because extreme pathway GA is
completely knocked out) and is unlikely to fit data involving only G-protein and GAP,
suggesting that it is overly simplified (Fig. 13c in the online supplementary material). The
results of sensitivity analysis for the 10-parameter ROM are listed in Table 8 and are shown
in Fig. 13d in the online supplementary material. It was hypothesised that retaining parts of
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the pathway GA by including the reactions A + 2, P − 2 and A − 3 might capture LSR GA.
Indeed, when these three reactions are included in the Biddlecome et al. [60] model, an
ROM of 15 parameters (Fig. 8a) and 16 ODEs is formed that fits the experimental data well
(Fig. 8b) and captures all four LSRs (Fig. 8c). This ROM is the absolute minimal ROM. The
results of sensitivity analysis for the 10-parameter ROM are listed in Table 9 and are shown
in Fig. 14 in the online supplementary material. The predictions of this 15-parameter ROM
are only slightly better than the 17-parameter ROM generated automatically (Fig. 5)
demonstrating the strength of the MPVA-based reduced-order modelling.

To finally demonstrate whether the ternary complex of G-protein with active receptor and
GAP is required, only RG*AT and hence, the associated eight parameters T4, P4, A5 and
R5, were eliminated from the detailed model. This ROM consists of 40 parameters and 16
ODEs (Fig. 9a). Similar to the textbook model (Fig. 6), this model does not fit the data well
(Fig. 9b; the LSRs G, RG and GA exist (data not shown); results of sensitivity analysis
listed in Table 10 and shown in Fig. 15 of the online supplementary material). For example,
only ~25% of the maximum turnover rate is attained in data sets 1 and 3. This complements
the previous result that RG*AT – even if it must re-associate with each turn of the GTPase-
cycle – is required for the GTPase-cycle to reach ~75% of maximum v. Furthermore, it
demonstrates the necessity of retaining RG*AT (and at least one association reaction for
influx to RG*AT and one dissociation reaction for outflux from RG*AT) to fit the
experimental data.

5 Discussion
Restricting the size of computational models is a major problem in systems biology. We
devised a method to solve this problem and tested it on a detailed model of the GTPase-
cycle, leading to the key mechanistic insight that the ternary complex of G-protein with
receptor and GAP is required. As stated in Section 4.1, the proposed approach is needed for
the GTPase system because the traditional approaches are not applicable for a large part of
the network during transients. Below we will discuss separately the applicability and
advantages of the algorithm and the importance of the ternary complex.

5.1 Utility/novelty of the MPVA-based approach
The MPVA-based approach provides a novel and intuitively simple, yet powerful
quantitative framework for model-reduction. The notion of MPVA used in this work is
particularly suitable for the analysis of biological systems. The computational complexity of
the methodology scales well with increase in the size of the model and hence is suitable for
constraining biological systems for which a detailed model could run into thousands of
equations and parameters. Three important aspects of the approach are: (1) the ability to deal
with parameters whose exact values are unknown but constrained between certain bounds
and the ability to incorporate physiologically relevant and critical mechanistic information in
the form of suitable constraints, (2) for a single ROM, the availability of a pool of good
candidate parameter sets to choose from, and (3) the availability of several alternate ROMs
at the end of the procedure. These aspects help deal with uncertainty in both the
experimental data and the accuracy of the initial biochemical reaction scheme. For instance,
the alternate ROMs may fit specific experimental data for which very simple ROMs fail.
Additionally, new experimental data are continuously generated and therefore model update
is necessary [79]. Maurya et al. [35] proposed three types of model update: (1) update of the
parameters by re-optimisation, (2) update of the flux expressions, and (3) update of the
network structure. Notably, types 1 and 3 are included in our MPVA-based approach for
model-reduction. Thus, the methodology proposed here is suitable for developing ROMs for
the modules in biological systems. The MPVA approach can be used for a network of
modules too but the elimination achieved on the inter-module reactions would be low
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because of the complex effects of feedback and feed-forward mechanisms among the
modules.

As already discussed in Section 3, the amount of experimental data used – for both
constraining parameters within bounds and fitting during parameter estimation –and its
quality (reflected as the amount of noise in data and the coverage of various physiological
conditions which the model should be able to capture) strongly affect the ROM developed.
Similarly, aspects of the computational method, especially the design of the objective
function and interpretation of objective values, can also affect the results but not so much as
the amount of data itself.

5.2 Required ternary complex of receptor, G-protein and GAP
The collision coupling model is the traditional qualitative model of the early steps in G-
proteins signalling and posits that inactive G-proteins associate with active receptors that
stimulate GDP/GTP exchange, then dissociate as active G-proteins to stimulate downstream
signalling pathways via specific effector proteins [73, 80–82]. Our ROMs suggest instead
that G-proteins must interact at once with receptor and GAP in a ternary complex in which
G-proteins are rapidly turned on and off by receptors and GAPs. In this model, it is likely
that effectors and other protein interaction partners of G-proteins are co-localised with the
ternary complex, perhaps in larger signalling complexes. We specifically predict that the
ternary complex forms in the module comprising Gq, active m1 MAchR and RGS4 and
suggest that it may form in other GTPase-cycle modules.

Several other lines of evidence suggest the formation of a ternary complex. Recently it was
found that RGS2 and RGS4 bind the third intercellular loop of m1 MAchR independent of
G-proteins and that for RGS2 this interaction is maintained in the presence of Gq (RGS4 not
examined) [78]. The N-terminus of RGS4 potentiated RGS4 GAP activity in m1 MAchR –
Gq vesicles, suggesting a role in targeting the RGS4 to the receptors or G proteins [83].
Biddlecome et al. [60] proposed a mechanism that can be called kinetic scaffolding in which
m1 MAchR and RGS4 are assumed not to interact, but the GAP activity of RGS4 on
RG*AT is rapid enough to outcompete dissociation of the receptor–G*GTP complex,
yielding a functional ternary complex. Recently, Benians et al. [76, 84] showed, using
fluorescence resonance energy transfer microscopy, that a stable physical interaction occurs
between RGS8–yellow fluorescent protein and GoαA – cyan fluorescent protein in the
presence and absence of receptor activation in human embryonic kidney 293 cells.

The definition of RGA, RG*AT and RGAD in our model does not specify whether the
complex is maintained by a physical interaction or kinetic scaffolding mechanism. Hence,
the proposed reaction network represents both types of interaction. However, it does exclude
the possibility of an additional scaffolding protein because only the proteins Gq, m1 MAchR
and RGS4 were included in the experimental studies that generated the data used for our
models.

Ternary complexes of G-protein, receptor and GAP may occur in many GTPase-cycle
modules. In the analysis of the detailed model [24], it was concluded that extreme pathway
RGA is specialised for rapid signal modulation with substantial G-protein activity.
Therefore, this type of signalling is expected to extend beyond the muscarinic family of
receptors to other signalling pathways requiring rapid signal attenuation, such as other
receptors that regulate ion channels, rhodopsin in the phototransduction cascade and
receptors involved in neuronal processes. However, in these cases additional molecules may
be involved to maintain or regulate GTPase-cycle module signalling complexes as is the
case in the phototransduction cascade [85].
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Computational modelling is of increasing importance to biology as the size and detail of
data sets increases. Of equal importance is containing the size and complexity of the
computational models without losing fidelity. We have presented a method for reducing
biological models comprised of many parameters (where the value of each parameter need
not be known) and applied it to reduce a detailed model of the GTPase-cycle module. An
implicit MPVA is used to guide the model-reduction process. The MPVA is performed
using the results of a hybrid GA-based optimisation of the detailed model itself and, hence,
no additional perturbation simulations are required. The methodology is suitable to deal with
uncertainty in the values of model parameters and its complexity scales well with the model
size. Most importantly, the model-reduction framework allows for the inclusion of
constraints that are of physiological and biochemical relevance. The model-reduction
method presented here can be applied to reduce any computational model of a biochemical
system, regardless of its size and complexity. Further, the proposed approach can be used
with the traditional approaches synergistically to achieve more simplification/reduction as
compared with the simplification achieved by one approach alone.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
MPVA-based framework for model-reduction
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Fig. 2. Illustration of multidimensional sensitivity analysis
In this hypothetical example, a model contains five parameters (p1, …, p5), and four separate
parameter value sets were found to fit experimental data. The parameter values are shown on
vertical lines that represent their ranges and the specific parameter values in each parameter
set are connected by lines. Parameter 2 can bear only small changes and is thus relatively
important, whereas large changes can be made in parameters 1, 3, 4 and 5 and still good fit
would be obtained and so these parameters are relatively less important
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Fig. 3. Reaction network for the detailed model of the GTPase-cycle module [24]
G: G-protein, R: agonist-bound GPCR, A: GAP, T: GTP, D: GDP. G-proteins bind T,
hydrolyse it to D and D dissociates; in each state, G-proteins reversibly bind R (which
accelerates GDP/GTP exchange) or GAP (which accelerates GTP hydrolysis). G* denotes
the active form of G-protein. Free GTP, GDP and phosphate (Pi) are not shown for
simplicity. Each reaction is labelled with its name, where Ai (i = 1, 2, 3, etc.) denotes
exchange (association or dissociation) of GAP, Ri denotes exchange of GPCR, Ti denotes
exchange of GTP, Pi denotes exchange of a phosphate and Di denotes exchange of GDP
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Fig. 4. ROM with 21 parameters (27 parameters have been eliminated)
a Reaction network (the eliminated reactions are shown with grey arrows). Three of the
extreme (horizontal) pathways – G, RG, and RGA – are retained. In path GA, instead of the
forward reaction from GA to G*AT, the reverse reaction from G*AT to GA is retained
b Fit of the simulated data to experimental data: plot 1: low [GAP] and varying [GTP]; plot
2: no GAP and varying GTP; plot 3: high [GTP] and varying [GAP]
Simulations of experiments were performed as described in the Supplementary Material.
The data predicted by the detailed model (base model) are also shown. The horizontal
dashed line corresponds to half-maximum v. The dimension of v is mol/s of Pi per mol of G.
For simplicity, it is indicated as s−1

c Predicted Z (fraction of active G-protein) for varying [A] and [R]. The four LSRs are
shown
d Comparison of the ranges (MAX/MIN) for various parameters in the ROM with the ranges
of the corresponding parameters in the detailed model. The LB and UB used for
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optimisation and the value of the parameters corresponding to the best-fit are also shown.
The ‘+’ and ‘−’ signs in the parameter names denote association and dissociation reactions,
respectively (e.g. P − 1 is the rate constant for the hydrolysis of G*T (dissociation of Pi))
Text style for the parameter names: fixed parameters, bold-face; optimised parameters,
regular font-weight
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Fig. 5. Minimal ROM obtained using the MPVA-based automated approach has 17 parameters
a Reaction network. This ROM has four less reactions (R + 5, T − 2, A − 2, A − 5) as
compared with the ROM of Fig. 4a. Three of the extreme pathways – R, RG and RGA – are
retained; in path GA, reaction T2 is absent
b Fit of the data predicted by the ROM to experimental data
c Four LSRs are predicted
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Fig. 6. Textbook model [66]
a Reaction network. The extreme pathway RGA is not included and the pathways GA and
RG are partially included
b Fit of the predicted data to experimental data
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Fig. 7. Biddlecome et al. [60] model
a Reaction network for a 12-parameter model [60, 67]
b Predictions made by the 12-parameter model (continuous curve) and the predictions made
by a smaller ROM with 10 parameters that is derived by eliminating the parameters T + 4
and D − 4 (dashed curve)
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Fig. 8. 15-parameter model obtained by adding reactions A + 2, P − 2 and A−3 to the 12-
parameter model proposed by Biddlecome et al. [60]
With this modification, the LSR GA is also captured
a Reaction network
b Fit to the experimental data
c Prediction of the four LSRs
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Fig. 9. 40-parameter model in which RG*AT and eight associated parameters are eliminated
a Reaction network
b Poor fit in plots 1 and 3 indicates that RG*AT must be included in the model
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Table 1

List of all parameters of the detailed model sorted according to increasing range (MAX/MIN)

Sr. No. in sorted list Parameter name

1–5 D − 3, P − 2, P − 1, P − 3, P − 4

6–10 D − 1, D − 2, R + 3, T + 3, A + 2

11–15 D − 4, A − 5, A + 5, A − 2, T − 2

16–20 T + 1, R + 5, T + 4, A − 3, T − 4

21–25 R − 5, R + 4, R + 6, A + 3, D + 3

26–30 R − 2, A + 6, A + 4, R − 6, A + 1

31–35 R + 2, A − 6, P + 3, T − 3, T + 2

36–40 T − 1, D + 2, D + 4, R + 1, R − 3

41–45 P + 4, P + 1, P + 2, R − 4, A − 4

46–48 A − 1, R − 1, D + 1

MAX and MIN are calculated over the MPVA pool (Table 4 in Supplementary Material). The parameters with little or no variation (small MAX/
MIN), such as D − 3, R + 3 and so on are in the top rows. The parameters with large variations (large MAX/MIN), such as D + 1, P + 4 and so on
are in the bottom rows.
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