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Abstract
Motifs are over-represented sequence or spatial patterns appearing in proteins. They often play
important roles in maintaining protein stability and in facilitating protein function. When motifs
are located in short sequence fragments, as in transmembrane domains that are only 6–20 residues
in length, and when there is only very limited data, it is difficult to identify motifs. In this study,
we introduce combinatorial models based on permutation for assessing statistically significant
sequence and spatial patterns in short sequences. We show that our method can uncover
previously unknown sequence and spatial motifs in β-barrel membrane proteins, and that our
method outperforms existing methods in detecting statistically significant motifs in this dataset.
Lastly, we discuss implications of motif analysis for problems involving short sequences in other
families of proteins.
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I. Introduction
The identification of spatial and sequence motifs plays an important role in understanding
protein stability and function. Often these motifs are embedded in short sequence fragments,
as in the transmembrane domains of membrane proteins, which are usually only 6–20
residues in length. In studies of α-helical membrane proteins, Senes et al. discovered a large
number of sequence motifs in transmembrane helices based on exhaustive permutation [1].
These sequence motifs were found to play important roles in the folding and assembly of
TM helices. Examples include the well-known GxxxG motifs that promote the dimerization
of Glycophorin A [1] and other Small-xxx-Small motifs [2].

Motifs are spatial or sequence patterns that are observed with much higher frequency than
would be expected by chance, while antimotifs are patterns observed with much lower
frequency. Here, spatial pattern refers to two interacting residues from short sequence
fragments that are spatially adjacent. Examples of such sequence pairs are adjacent strands
in a β-sheet, arranged parallel or antiparallel, or interacting α-helices in transmembrane
proteins. Sequence pattern refers to two ordered residues along the N-to-C direction of a
short sequence fragment, following the convention of Senes et al. [1]. These patterns can be
expanded to involve an arbitrary number of residues.
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Identifying motifs from sequence information is an important task, and there is a large body
of literature on motif discovery (see the book by Robin et al. [3] and references within). For
short sequence fragments, discovery of motifs is a challenging task, especially when the
amount of available data is limited. The statistics of spatial motifs from short fragments
cannot be approximated by a χ2 distribution, as was used by Wouters and Curmi [4]. The χ2

distribution requires assumptions of normality that are not generally true in short sequences
when data is scarce. For sequence motifs, methods based on the binomial distribution, as
was used by Hart et al. [5] and by Robin et al. [3], are also inappropriate. The binomial
distribution requires unrealistic assumptions that become more apparent in short sequences,
such as drawing from a universal residue population with replacement.

In this study, we present formulae for discovery of spatial motifs of interacting residue pairs
and sequence motifs consisting of residues embedded in short-sequence fragments based on
a combinatorial model called the permutation model [3]. This model relies on drawing from
a population of residues without replacement, and was used by Senes et al. to study
membrane proteins [1]. We are concerned with not only finding motifs in short sequences,
but also calculating accurate p-values that determine the statistical significance of the
identified motifs. We introduce modifiable combinatorial models for several different types
of analyses. Specifically, we have derived analytical forms to describe all possible two-
residue spatial motifs as well as for two-residue and multi-residue sequence motifs under a
variety of conditions.

Our models use as input a dataset of short sequence fragments, and are designed to obtain
optimal statistical power from small datasets. We believe that our methods represent a more
robust alternative to earlier methods, a necessity when dealing with the smaller amount of
information provided by short sequences. Our models can be applied generally to any set of
interacting short sequence pairs for spatial motif discovery, and to any set of short sequences
for sequence motif discovery. We illustrate the effectiveness of our models for motif
discovery in β-barrel membrane proteins, of which only a small structural dataset exists [6].
We also compare these results to other existing models, in order to show that our models are
more appropriate for datasets of short sequences.

II. Model and Methods
A. General model

We introduce the definition of residue pair XY as some meaningful combination of two
residues of amino acid types X and Y. We will focus on two major classes of pairs (Figure
1). We define a spatial interaction pair X-Y as a pattern in which a residue of type X is
found interacting with a residue of type Y on two interacting sequences (Figure 1a). In this
case, interacting sequences are assumed to be the same length, and each residue on one
sequence interacts with exactly one residue on the other sequence, though different pairs of
interacting sequences in a dataset may be of different lengths. We will introduce a method to
relax the matching length requirement later. We define a sequence pair XYk as a pattern in
which a residue of type Y is found at the k-th position from a residue of type X along a
single sequence (Figure 1b).

We define the propensity P(X, Y) of residue pair XY as:
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where fobs(X, Y) is the observed count of XY patterns, and f(X, Y)] is the expected count
of XY patterns. We define a motif as a residue pair with propensity > 1.0 (or greater than
some other predefined limit) and statistically significant, based on p-value. Similarly, an
antimotif is a residue pair with propensity < 1.0 (or some other predefined limit) and
statistically significant. The null model used to calculate f(X, Y)] is similar for both pair
types: the residues within each sequence are exhaustively and independently permuted
without replacement, and each permutation occurs with equal probability. We call this
internally random. It is the same model used by Senes et al. [1], and is also called the
permutation model in literature [3]. We will also introduce an alternative permutation model
that is position-dependent, and examine an existing model based on permutation with
replacement, called the Bernoulli model [3].

The focus of this paper is to determine explicit formulae to calculate f(X, Y)] for each pair
type under different conditions. Where possible, we will also determine explicit probability
distributions for f(X, Y), which will allow for the calculation of variance and p-values.
Although these formulae are designed for single sequences, we will also describe how these
models can be expanded to study whole datasets of short sequences.

All formulae presented have been verified through comparison to results obtained through
full enumeration of permutations in order to ensure correctness.

B. Propensity of spatial interactions
To identify spatial motifs, we calculate the intersequence spatial propensity P(X, Y) for
interacting pairs of residue types X and Y (Figure 1a):

where fobs(X, Y) is the observed count of X-Y contacts in the sequence pair, and f(X, Y)]
is the expected count of X-Y contacts in a null model.

In order to calculate f(X, Y)], we use an internally random null model in which residues
within each of the two sequences in a sequence pair are permuted exhaustively and
independently, and each permutation occurs with equal probability. An X-Y contact forms if
in a permuted sequence pair two interacting residues happen to be type X and type Y. f(X,
Y)] is then the expected number of X-Y contacts in the sequence pair.

Null model for residues of the same type.

For cases in which X is the same as Y (i.e. X-X pairs), let x1 be the number of residues of
type X in the first sequence, x2 the number of residues of type X in the second sequence, and
l the length of the sequence pair (i.e. the length of either sequence). In the internally random
null model, we randomly select residues from one sequence to pair up with residues from
the other sequence. We wish to know ℙXX(i), the probability of exactly i = f(X, X) number

of X-X contacts in this model. There are  ways to place the x2 residues of type X in
the second sequence. Of these, i will each be paired with one of the x1 residues of type X on
the first sequence, and x2 − i will each be paired with one of the l − x1 non-X residues. There

are  ways to do this, respectively. When multiplied together, we have
that ℙXX(i) follows a hypergeometric distribution:
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(1)

f(X, X)] is then the expectation of the hypergeometric distribution:

For statistical significance, two-tailed p-values can be calculated using the hypergeometric
distribution for a dataset of sequence pairs (Section II-D).

Null model for residues of different types.

If the two contacting residues are not of the same type, i.e. X ≠ Y, the number of X-Y
contacts in the internally random model for one sequence pair is the sum of two dependent
hypergeometric variables, one variable for type X residues in the first sequence s1 and type
Y in the second sequence s2, and another variable for type Y residues in s1 and type X in s2.
The expected number of X-Y contacts f(X, Y)] is the sum of the two expected values:

where x1 and x2 are the numbers of residues of type X in the first and second sequence,
respectively, y1 and y2 are the numbers of residues of type Y in the first and second
sequence, and l is the length of the sequence pair. Despite the fact that the variables f(X, Y|X
∈ s1, Y ∈ s2) and f(X, Y|X ∈ s2, Y ∈ s1) are dependent (i.e. the placement of an X-Y pair
may affect the probability of a Y-X pair in the same sequence pair), their expectations may
be summed directly, because expectation is a linear operator.

However, because f(X, Y|X ∈ s1, Y ∈ s2) and f(X, Y|X ∈ s2, Y ∈ s1) are dependent, to
determine the p-value for a specific observed number of X-Y contacts, a more detailed
formula for the null model must be established. The probability of a specific number of X-Y
contacts occurring in one sequence pair does not follow a simple hypergeometric
distribution. Here we develop a general hypergeometric model based on the multinomial
with three parameters to characterize such a probability. First, we define a 3-element
multinomial function M(a, b, c) as:

(2)

where M(a, b, c) = 0 if a − b − c < 0. This represents the number of distinct permutations,
without replacement, in a multiset of size a containing three different types of elements, with
number count b, c, and a − b − c of each of the three element types.

Consider residues in the first sequence of length l of a sequence pair. These l residues are of
three types: x1 count of type X residues, y1 of type Y residues, and n1 = l − x1 − y1 count of
type “neither.” We now first fix the positions of residues on sequence 1, and permute
exhaustively the l residues on sequence 2. We can fix one sequence in this way without loss

Jackups and Liang Page 4

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2012 August 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of generality, because only the number, not the order, of residues pairs within a sequence
pair is relevant for calculating ℙXY(i). Let x2, y2, and n2 be the numbers of residues of type
X, Y, and “neither” on sequence 2, respectively. There are M(l, x2, y2) ways to permute
these residues.

Consider the residues on sequence 2 that match to the x1 number of residues of type X on
sequence 1 (Figure 2). These x1 residues on sequence 2 consist of h number of type X
residues, i number of type Y residues, and x1 − h − i number of type “neither” residues.
They can be permuted in M(x1, h, i) different ways. Similarly, the y1 residues on sequence 2
that match type Y residues in sequence 1 consist of j number of type X residues, k number
of type Y residues, and y1 − j − k of type “neither” residues, and thus the total number of
permutations for these y1 residues is M(y1, j, k). Similarly, there are M(n1, x2 − h − j, y2 − i
− k) number of permutations to match the remaining n1 = l − x1 − y1 of type “neither”
residues on sequence 1.

We characterize the probability ℙ(h, i, j, k) of intersequence matches: a) the x1 type X
residues on sequence 1 with h type X residues, i type Y residues, and x1 − h − i type
“neither” residues on sequence 2; b) the y1 type Y residues on sequence 1 with j type X
residues, k type Y residues, and y1 − j − k type “neither” residues on sequence 2; and c) the
remaining n1 type “neither” residues on sequence 1 with x2 − h − j type X residues, y2 − i −
k type Y residues, and the remaining type “neither” residues from sequence 2. Equivalently,
ℙ(h, i, j, k) is the probability of h X-X contacts, i X-Y contacts, j Y-X contacts, and k Y-Y
contacts occurring in a random permutation.

We introduce a higher order hypergeometric distribution for ℙ(h, i, j, k) as follows:

The marginal probability ℙXY (m) that there are a total of i + j = m X-Y contacts in the
internally random model, namely, the pairings in which a residue of type X in the first
sequence is paired with a residue of type Y in the second sequence, summed with the
pairings in which a residue of type Y in the first sequence is paired with a residue of type X
in the second sequence, is:

where again h is the number of matched X-X contacts, i the number of matched X-Y
contacts, j = m − i the number of matched Y-X contacts, and k the number of matched Y-Y
contacts. The remaining contacts involving residues of type “neither” will then
automatically be assigned, since all matches involving X and Y have been accounted for.
There are x1 possible values for h, one for each residue of type X on sequence 1; x1 − h
possible values for i, once h has been determined; and y1 − j = y1 − (m − i) possible values
for k, once i has been determined. The i number of X-Y contacts plus the m − i number of
Y-X contacts will sum to the m number of contacts desired.

This closed-form formula is important, because it allows us to calculate p-values analytically
for this null model. The run time is O(l4), due to the presence of 3 summations and l! in the
summand. However, because this formula is intended for use with short sequences, this run
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time is not prohibitive. For much longer sequences, a null model based on the Bernoulli
model is an appropriate substitute (Section II-F.1).

Adjustment for sequences of different length within a sequence pair.

The requirement for interacting sequences to be of the same length may be relaxed by
introducing a 21st “dummy” amino acid type. All unpaired residues in the longer member of
a sequence pair will be paired to this extra amino acid type, and our standard method can be
applied to determine the propensity of unpaired amino acids (i.e. residues paired with the
“dummy” amino acid type).

C. Propensity of sequence patterns
1) Propensity of two-residue sequence patterns—We introduce the propensity P(X,
Y|k) for two ordered intrasequence residues of type X and type Y that are k positions away
on the same sequence (Figure 1b). We call this pattern XYk following the convention
established by Senes et al. [1]. For instance, AL3 represents AxxL, where “x” is any residue
type. We define the propensity as:

where fobs(X, Y|k) is the observed count of XYk patterns, and f(X, Y|k)] is the expected
count of XYk patterns.

In our null model, the sequences are internally random, i.e. the residues within each
sequence are permuted exhaustively and independently, and each permutation occurs with
equal probability. An XYk pattern forms if in a permuted sequence an X residue happens to
be followed by a Y residue at the k-th position along the sequence in the N-terminal to C-
terminal direction of the peptide.

To determine f(X, Y|k)], we can represent f(X, Y|k) as the sum of identical Bernoulli
variables ft(X, Y|k), each of which equals 1 if one of the x number of residues of type X
occurs at position t in the sequence and one of the y number of residues of type Y occurs at
position t + k, or equals 0 otherwise. Since an XYk pattern cannot occur if t > l − k, we
concern ourselves only with the first l − k positions. As long as t ≤ l − k, the probability of

an XYk pattern occurring at position t does not depend on t: there is a  chance of an X

residue occurring at position t and a  chance of a Y residue occurring at position t + k,
once the residue at position t is drawn. Thus,

There are l − k such identical variables, and their expectations may be summed:

(3)

where l is the length of the sequence, x is the number of residues of type X, and y is the
number of residues of type Y. For XXk patterns, i.e. two residues of the same type displaced
by k residues, the expectation is calculated as
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(4)

as there will be x − 1 residues available to place the second X residue at position t + k after
the first X residue is placed at t. Although these Bernoulli random variables are dependent
(i.e. the placement of one XYk pattern will affect the probability of another XYk pattern),
their expectations may be summed, because expectation is a linear operator. However, in
order to calculate statistical significance in terms of p-values, special formulae must be
derived to determine ℙXYk(i), the probability of the occurrence of i = f(X, Y|k) XYk
patterns.

Null model for residues of different types if k = 1.

We first consider the case where X ≠ Y and k = 1 (i.e. pairs of different adjacent residues
along a sequence). The number of ways to permute x number of X residues, y number of Y

residues, and l − x − y number of type “neither” residues is . We wish to
enumerate how many of these permutations contain exactly i XY1 patterns.

First, we place the x residues of type X and l − x − y residues of type “neither” in a

subsequence of l − y residues. There are  ways to arrange the X residues in this
subsequence. Second, we select i of these X residues to participate in XY1 patterns. There

are  ways to do this. Next, we add a Y residue after each of these i X residues to
complete the XY1 patterns (Figure 3a). We now have a subsequence of length l − y + i
residues, and we have y − i residues of type Y left to complete the full sequence.

We view this subsequence as having a “slot” at the beginning position and after each
residue, and add these y − i Y residues to the slots until the full sequence is obtained. We
choose which slot in which to place each Y residue with replacement, so that some slots may
contain more than one Y residue, and some may contain none. We may not, however,
choose a slot just after an X residue without forming a new XY1 pattern or disrupting an
already existing one (Figure 3a). There are thus l − x − y + i + 1 slots available: one after
each reside of type “neither” (l − x − y), one after each Y in an XY1 pattern (+i), and one at
the beginning of the subsequence (+1). Using the standard formula for choosing objects with
replacement but without regard to order, the number of ways to place the remaining y − i
residues of type Y in the l − x − y + i + 1 available slots is:

Combining these terms and simplifying, the probability of i XY1 patterns in one sequence
follows a hypergeometric distribution:
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Null model for residues of the same type if k = 1.

When X = Y and k = 1, the probability of i XX1 patterns in one sequence follows a different

distribution, and the proof is slightly different from the above case. There are  ways to
permute the x number of X residues in a sequence of length l, and we wish to enumerate
how many permutations contain exactly i XX1 patterns.

First, place all residues that are not of type X in a subsequence of length l − x. There are
now a total of l − x + 1 “slots” in which to place the x number of residues of type X: one
after each residue, and one at the beginning of the subsequence. We choose x − i of these

slots without replacement to be filled with exactly one residue of type X, in 
number of ways. This is to ensure that no XX1 pattern is formed in this step. In the next
step, we can ensure that there are i XX1 patterns by placing the remaining i residues of type
X only in slots following one of these already placed X residues (Figure 3b). There are thus
x − i available slots, but we may choose them with replacement. There are

 ways to do this. Combining these terms, we have another
hypergeometric distribution:

(5)

with the convention that  if n < r.

Null model for residues of different types if x ≤ 2 or y ≤ 2.

If either x = 1 or y = 1, then

since the maximum possible number i of XYk patterns is 1, and

This is the same as Equation (3). As a result, it is possible to determine ℙXYk(1) for all
values of k if the number count of either one of the residue types is 1. For i = 0, we have
simply:

If x = 2 or y = 2, the probability of two XYk patterns is:
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(6)

There are  positions in which to place two XYk patterns. However, the terminal
residue of type Y in the first pattern overlaps with and forbids the placement of the initial
residue of type X in the second pattern in l − 2k cases, in which the initial residue of type X
in the first pattern is placed in one of the first l − 2k positions of the sequence (Figure 4a).

Thus, there are  possible ways to place two XYk patterns. Since there are

 possible ways to place two residues of type X and two resides of type Y,
the probability of exactly two XYk residues is as shown in Equation (6).

Since there can only be a maximum of two XYk patterns when x = 2 or y = 2, it is possible
to determine the probability of exactly one XYk pattern or zero patterns using the definition

of expectation. Because  and
ℙXYk(0) + ℙXYk(1) + ℙXYk(2) = 1, we have:

(7)

(8)

Null model for residues of the same type if x ≤ 3.

If x = 2, then the probability of one XXk pattern is:

since it is only possible to have one XXk pattern. Then:

If x = 3, then the probability of exactly two XXk patterns is:

since there are only l − 2k positions in which to place an X ⋯ X ⋯ X pattern (i.e. the only

way to obtain two XXk patterns if x = 3), and  ways to place x residues of type X in a
sequence of length l (Figure 4b). It is then possible to determine the remaining probabilities
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using expectation, as was done in Equations (7) and (8), since at most only two XXk
patterns are possible when x = 3 (i.e. an X ⋯ X ⋯ X pattern, where “ ⋯” corresponds to k −
1 residues).

Null model for residues if k > 1, x > 2, and y > 2.

When k > 1, x > 2, and y > 2, the analytical formulae for ℙXYk(i) become very complicated.
However, when the sequences in the dataset used are short, it is possible to fully enumerate
all permutations of a sequence and calculate ℙXYk(i) and p-values exactly, as shown by
Senes et al. [1]. Because x and y are usually small in short sequences, this situation should
not occur frequently enough to adversely affect the computation time needed for motif
analysis of short sequences.

2) Propensity of multi-residue sequence patterns—The model presented for two-
residue sequence patterns may be expanded easily to determine f(X0, X1, X2, …, Xn|k1, k2,
…, kn)], the expected number of a specific pattern containing n + 1 residues placed in a
contiguous subsequence of kn + 1 residues (kn ≥ n). Here, Xi is the residue type of the i-th
fixed residue in the pattern and ki is the position of this residue from the 0-th residue (k0 =
0). Any other position not specified by ki can be any residue type. For example, the pattern
(A, L, Y|2, 4) is written as AL2Y4 and represents AxLxY. A graphic example is shown in
Figure 5. There are many examples of these multi-residue sequence motifs in proteins,
including the GxGxxG NADH binding motif [7] and the RSxSxP 14-3-3 binding motif [8].

The expected value can be calculated as:

(9)

where xi is the number of residues of type Xi, l is the length of the sequence, and #( Xi)) is
the number of times residue type Xi appears in the “subpattern” {X0, X1, X2, …, Xi−1}.

Equation (9) is an extension of Equations (3) and (4).We can represent f(X0, X1, X2, …, Xn|
k1, k2, …, kn) as the sum of identical Bernoulli variables ft(X0, X1, X2, …, Xn|k1, k2, …,
kn), each of which equals 1 if the appropriate pattern occurs at position t and 0 otherwise.
For t > l − kn, this value is always 0. For t ≤ l − kn, the probability of the pattern does not

depend on t. The probability that the i-th residue in the pattern is of type Xi is ,
as there will be l − i residues to choose from and xi − #( Xi)) residues of type Xi available
after the first i residues have been placed. The function #( Xi)) is necessary in case there are
identical residue types in {X0, X1, ⋯, Xn}. Multiplying these probabilities, and then
multiplying by l − kn for the number of Bernoulli variables, results in the expected value in
Equation (9).

D. Motif analysis on datasets of short sequences
The previous motif analyses are useful for determining propensities in a single short
sequence or sequence pair. However, under most cases, sequence analysis must be
performed on a dataset of multiple short sequences in order to attain sufficient statistical
significance. This has the advantage of capturing within-sequence relationships on a scale
large enough to obtain reliable p-values.

Because expectation is a linear operator, it is a simple matter to sum the expected values of
each sequence to determine the expected value of the entire dataset:
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where f(X, Y)n] is the expected value of the n-th sequence in a dataset of m sequences. If
each distribution f(X, Y)n is independent among all sequences, the variance of the dataset
may also be determined by summing the variances of each sequence.

To determine the probability distribution function for the dataset as a whole, ℙ[f(X,
Y)dataset], we follow the approach of Senes et al. [1]. First, the probability distributions of
the first two sequences, ℙ1 and ℙ2, are combined into a single “database” distribution ℙdb(2)
as follows:

that is, the probability ℙdb(2)(i) of i total patterns in the two sequences is the sum of the
probabilities of all possible combinations of j patterns occurring in the first sequence and i −
j patterns occurring in the second sequence. This new probability, ℙdb(2)(i), can now be
thought of as a single sequence distribution, and so the probability distribution for the entire
dataset can be compiled using a recursive formula:

where ℙn is the probability distribution for the n-th sequence, and ℙdb(n) is the probability
distribution for the first n sequences combined. When the recursion terminates at the last (m-
th) sequence, ℙdb(m)(i) = ℙ[f(X, Y)dataset]. This function can be used to determine p-values
for the entire dataset. It is recommended that two-tailed p-values are used, regarding the
following hypothesis test:

To calculate p-values, we use:

when fobs(X, Y) < f(X, Y)], and
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when fobs(X, Y) > f(X, Y)], where UB is an upper bound for all possible X-Y patterns in
the dataset. Because i ≤ x and i ≤ y in each sequence under a permutation model, the sum of
min(x, y) for each sequence is always an acceptable upper bound, though lower acceptable
values may be used to reduce unnecessary computations. Because we are using two-tailed p-
values, and because the distribution of f(X, Y) is not necessarily symmetric, it is possible for
p > 1.0 if fobs(X, Y) falls between f(X, Y)] and the median of f(X, Y). In that case, p is
simply set to 1.0.

Multiple hypothesis testing for datasets of short sequences.

Using an alphabet of 20 amino acids, the spatial motif analysis requires 210 tests (for each
possible unordered pair of amino acids), and the sequence motif analysis requires 400 tests
(for each possible ordered pair of amino acids). Because of the high number of tests used, it
is possible that some tests with p-values meeting the specified cut-off (usually p < 0.05) are
only significant because multiple hypotheses are being tested, and not due to true statistical
significance. This multiple hypothesis testing problem can be corrected using the standard
Bonferroni method [9]. However, in datasets of short sequences, this method may be too
conservative and overstate the effect of multiple hypothesis testing.

We have applied a more appropriate method of multiple hypothesis correction based on the
Significance Analysis of Microarrays (SAM) method developed by Tusher et al. [10]. This
method calculates the false discovery rate (FDR), which measures the proportion of
significant test results that are due to random sampling [11].

The method is the same for spatial and sequence motif analysis. We randomly permute the
residues of all sequences in a dataset, and calculate p-values from this dataset using the same
model as was used on the true dataset. We do this 1,000 times and average the number of
significant results from each permuted dataset. This method ensures that each dataset has
exactly the same sequence lengths and amino acid distribution as the true dataset, but that all
significant results are due only to random sampling. The ratio of this average to the number
of significant results from the true dataset is the FDR. Their difference is the presumed
number of truly statistically significant results in the dataset.

E. Positional null model
The previous motif analyses are based on an internally random null model in which the
residues within each sequence are permuted, and each permutation is equally likely. This
assumption can be problematic in certain cases where there are biases of residue types for
certain positions in a sequence known a priori. For instance, aromatic residues tend to be
favored at either end of a transmembrane α-helix or β-strand [12–14]. These single-residue
biases may confound two-residue propensities without providing additional information into
the preferences of these patterns. When such biases are known, it may be helpful instead to
consider a null model that accounts for them.

We therefore introduce a positional null model. Instead of permuting residues across all
positions within individual sequences, we permute residues across all sequences in a dataset
within specific positions (Figure 6).We have adapted this null model for both spatial and
sequence motifs. We describe our work in full in the Appendix.
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F. Binomial null model
The methods we have developed in Sections II-B and II-C.1 are based on the permutation
model, which relies on permuting sequences without replacement. Methods based on the
Bernoulli model, which relies on permuting sequences with replacement, have been well-
developed and applied to important problems of motif analysis in long sequences [3]. Here,
we examine whether the permutation model is more powerful than the Bernoulli model for
short sequences, where coupling effects are great. We introduce a binomial null model,
which relies on permutation with replacement, for both spatial and sequence motif analysis,
for the purpose of comparing its performance to our methods.

1) Binomial null model for spatial interaction pairs—To calculate propensities for
spatial interaction pairs under a binomial null model, we permute each sequence in a
sequence pair of length l with replacement. We wish to find the probability of exactly i X-Y
pairs occurring in the permuted sequence pair, and the expectation f(X, Y)] of this
probability distribution.

We first examine the case where X = Y. We can represent f(X, X) as the sum of l identical
and independent Bernoulli variables ft(X, X), each of which equals 1 if an X-X pair occurs
at position t on the sequence pair, and 0 otherwise. The probability of a pair does not depend
on t: the probability that a residue of type X will occur at position t on the first sequence is

, where x1 is the number of residues of type X in the first sequence, and the probability

that an X residue will occupy position t on the second sequence is similarly , where x2 is
the number of X residues in the second sequence. Combining these terms:

for all positions t. Because these residues are drawn with replacement, these Bernoulli
variables are independent, and therefore their sum, f(X, X), is a binomial distribution, and
the probability of exactly i X-X pairs can be calculated as:

The expected count of X-X pairs can be calculated using the standard expectation of the
binomial distribution:

For the case where X ≠ Y, we similarly represent f(X, Y) as the sum of l Bernoulli variables
ft(X, Y) with the same characteristics. In this case, the probability that an X-Y occurs at
position t is the sum of the probability that an X residue occurs at position t on the first
sequence and a Y residue occurs at position t on the second sequence, with the probability
conversely that a Y residue occurs at position t on the first sequence and an X residue occurs
at position t on the second sequence:
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where x1 and y1 are the number of residues of type X and Y, respectively, on the first
sequence, and x2 and y2 are the number of residues of type X and Y on the second sequence.
Again, these independent Bernoulli variables may be summed to a binomial distribution:

with expectation

Note that the expected values for both cases are identical to the expected values obtained by
our internally random model (Section II-B). This ensures that the p-values obtained by the
two models can be compared directly to evaluate statistical power.

For datasets of multiple sequences, we combine the distributions for each single sequence
into one database distribution from which to derive p-values, as described in Section II-D.

2) Binomial null model for sequence pairs—The binomial null model for sequence
pairs is more complicated than that for spatial pairs, as the Bernoulli variables are no longer
independent. This model has already been discussed in detail by Robin et al. [3]. For our
purposes, we have chosen to use full enumeration in this study, by calculating the
probability of each possible permutation of amino acids with replacement and summing
those containing the specified number of XYk patterns. As with the spatial motif analysis,
for datasets of multiple sequences, we combine the distributions for each single sequence
into one database distribution from which to derive p-values, as described in Section II-D.

It is important to note, however, that the expected count of sequence patterns under a
binomial null model differs from that under our internally random model. For the case where
X = Y, we represent f(X, X|k) as the sum of Bernoulli variables ft(X, X|k), as we did for our
internally random model (Section II-C.1), each of which equals 1 if an XXk pattern occurs
at position t, and 0 otherwise. Similarly, this variable equals 0 if t > l − k, and does not
depend on t otherwise:

where x is the number of residues of type X in a sequence of length l. Since we draw with

replacement, the probability that an X residue occurs at any position is simply . As there
are l − k identical Bernoulli variables, their expectations may be summed:

We note that, since l ≥ x, this expectation is higher than the expectation under our internally
random model (Equation 4):
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(10)

with equality only in the trivial cases where x = l or x = 0. This reveals a particularly
problematic aspect of the binomial null model. When x = 1, the expectation will be nonzero,
even though it is impossible for a sequence with x = 1 to contain an XXk pattern. Under our
internally random model, this expectation is appropriately zero.

For the case where X ≠ Y, we again represent f(X, Y|k) as the sum of Bernoulli variables
ft(X, Y|k), each of which equals 1 if an XYk pattern occurs at position t, and 0 otherwise.
Again, this variable equals 0 if t > l − k, and does not depend on t otherwise:

where y is the number of residues of type Y in the sequence. The expectation is then:

This expectation is lower than the expectation under our internally random model (Equation
3):

with equality only in the trivial cases where x = 0 or y = 0.

III. Results
Most of the combinatorial null models discussed above have been applied to a real set of
proteins, β-barrel membrane proteins, with considerable success [6, 14]. This set is an
excellent example of a small dataset of short sequences that requires robust combinatorial
models in order to discover significant motifs. Less than 30 non-homologous members of
this family of proteins are represented in crystal structures, and transmembrane β-strands are
on average 9–10 residues in length. We describe and discuss these results below. The most
important feature of these models, their robustness, can be noted in the number of significant
p-values.

We use the structures of 23 β-barrel membrane proteins with resolution of 3.0 Å or better as
our dataset, comprising a total of 314 β-strands (Table I). All proteins share no more than
26% pairwise sequence identity. The average length of a sequence in this set is 9.8 residues.
The run time of each program on the entire dataset was less than a minute on an Intel Core
Duo E4400 processor at 2.0 GHz.

A. Analysis of spatial motifs in β-barrel membrane proteins
Table II lists pairwise interstrand spatial motifs we discovered using the models described in
Section II-B. These are divided into H-bonded and non-H-bonded pairs (see reference for
definitions [14]). Only motifs significant at the threshold p-value of 0.05 are listed. Detailed
biological implications of these motifs are described in the reference [14]. Current analysis
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has led to the discovery of exciting new roles for the motifs topping each list, G-Y in H-
bonded pairs and W-Y in non-H-bonded pairs. The former is a result of “aromatic rescue”
[38], the protection of the backbone atoms of glycine from solvent by tyrosine’s large side-
chain. The latter motif, W-Y, appears frequently in the “aromatic belt” of β-barrel
membrane proteins, and allows considerable van der Waals contacts between the two large
side-chains.

Because there are 210 possible amino acid pairs in this analysis, we calculate the false
discovery rate (FDR), as described in Section II-D, in order to estimate the number of
significant results that are likely to be due to random sampling rather than true statistical
significance. For the H-bonded motif analysis, random sampling produces an average of
4.16 significant results (motifs and antimotifs combined), compared with 9 significant
results found in the true dataset (including antimotifs, not shown in Table II), which
represents an FDR of 46%. For the non-H-bonded motif analysis, random sampling
produces an average of 4.40 significant results, compared with 14 in the true dataset, which
represents an FDR of 31%. These results imply that 4–5 results from the H-bonded analysis
and 9–10 results from the non-H-bonded analysis are truly statistically significant, and, by
extension, potentially biologically significant.

We compare the results from our motif analysis, based on the permutation model, to a
binomial model, as described in Section II-F.1. For the H-bonded motif analysis, the
binomial model produces 5 significant results (motifs and antimotifs combined), compared
with 9 significant results found using our model. For the non-H-bonded motif analysis, the
binomial model produces 9 significant results, compared with 14 found using our model. In
Table II, we compare p-values from our model and from the binomial model. In every case,
the p-value from our model is more significant than the p-value from the binomial model. It
is clear from this comparison that our methods, based on the permutation model, outperform
the binomial model on datasets of short sequences.

B. Analysis of sequence motifs in β-barrel membrane proteins
In Table III, we report the pairwise intrastrand sequence motifs we discovered with
calculated propensities and p-values, as described in Section II-C.1 [6]. Our method allows
us to calculate exact probability distributions using the formulae provided for 306 of the 314
sequences. Only 8 of the sequences required full enumeration to obtain exact distributions,
either because x > 3 for an XXk pattern or x > 2 and y > 2 for an XYk pattern.

Although we inspected multiple k values, the most informative motifs occur when k = 2,
because in this situation residues on β-strands are closest to each other. Significant (p <
0.05) motifs (propensity > 1.0) and antimotifs (propensity < 1.0) when k = 2 are displayed in
Table III. Detailed biological implications of these motifs are published elsewhere [6], but
we discovered a clear pattern of the amino acid tyrosine appearing in the second (C-
terminal) position of motifs and in the first (N-terminal) position of antimotifs. We have
called this phenomenon the aliphatic-Tyr dichotomy, because it occurs most often with
aliphatic residues, and it may be involved in protein-lipid interactions.

Because there are 400 possible ordered amino acid pairs for each value of k in this analysis,
we correct for multiple hypothesis testing by calculating the false discovery rate (FDR) as
described in Section II-D, in order to estimate the number of significant results that are
likely to be due to random sampling rather than true statistical significance. For the case
when k = 2, random sampling produces an average of 8.68 significant results (motifs and
antimotifs combined), compared with 30 significant results found in the true dataset (Table
III), which represents an FDR of 29%. This result implies that 21–22 results from our
analysis are truly statistically significant.
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In addition to the standard null model, whose results are listed in Table III, we also utilized
two other sequence motif null models in our study, specifically, the positional null model for
sequence motifs (see Appendix), and the binomial model (Section II-F.2).

The analysis of position-dependent motifs was performed primarily to determine if single-
residue position preference confounds the results listed in Table III. Motifs were found to be
similar between the two null models, suggesting that there is little confounding effect.
However, some antimotifs showed divergence, and therefore single-residue preference must
be taken into account when discussing such antimotifs [6].

An analysis using the binomial model, as described in Section II-F.2, was performed to
determine whether our methods, based on the permutation model, are more powerful than
existing methods based on the Bernoulli (i.e. binomial) model for datasets of short
sequences. Although the binomial method produces more statistically significant results than
our method for this dataset (45 vs. 30), these results are misleading, as 19 of the 22
antimotifs discovered by the binomial method are of the form XX2 (i.e. X = Y). The only
XX2 pattern not determined to be an antimotif, CC2, does not appear in the dataset, because
cysteine is not found in transmembrane β-strands. By comparison, the antimotifs from our
permutation method do not include any XX2 pairs, while 4 of the 21 over-represented motifs
are of the form XX2 (Table III).

We investigate this discrepancy to determine which model is more effective. It is possible
that, even though there were more significant results using the binomial method, these
results may be due to random sampling. We calculate the false discovery rate (FDR) for the
binomial method using the same sampling technique described in Section II-D. Using the
same dataset, random sampling produces an average of 38.68 significant results, compared
with 45 found in the true dataset, which represents an FDR of 86%. This is considerably
worse than the FDR of 29% found for our internally random model, and suggests that only
6–7 of the results from the binomial method are truly significant. This compares unfavorably
with the 21–22 significant results from our method (Table IV).

The reason for this discrepancy becomes apparent when the formulae for expectation
between the two methods are compared (Inequality 10). Under a binomial model, a sequence
with x = 1 will have a non-zero expected count of XXk patterns, even though it is
impossible for an XXk pattern to form in the true sequence. By comparison, under our
internally random model, the expected count of XXk patterns is zero if x = 1. In long
sequences, such as whole genes or genomes, it is rare for x = 1, and therefore the binomial
model is useful for its relative ease of calculation. In short sequences, however, x = 1 for
most amino acids X very commonly. For example, in our dataset of 314 sequences, 142
sequences contain exactly one alanine residue, while only 60 contain more than one. It is
clear that coupling effects from sampling with replacement introduce great unwanted bias in
the results of the binomial method, as shown by its high FDR compared with our internally
random model.

IV. Discussion
There are two well-known models for studying sequence motifs: the permutation model and
the Bernoulli model [3]. A third model, the Markovian model, is a form of the Bernoulli
model generalized to allow for dependence between nearby residues in a sequence. The
internally random model proposed by Senes et al. in the context of studying transmembrane
helices is based on the permutation model, with a sequence pattern containing two specified
residues and a specified number of wildcard residues between them [1]. This model provides
one of the most natural ways of building random sequences that share common
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characteristics with the observed sequence. It is well-suited for studying transmembrane
helices and strands, as they are short sequences (< 20 residues) for which coupling effects
are strong. However, this model is not normally used for long sequences, such as whole
genes or genomes, because the methods for obtaining exact distributions of null models
greatly increase in complexity for longer sequences [3]. In this situation, methods based on
the Bernoulli model, including Markovian methods, are preferred [3]. For this reason, the
permutation model is not widely used.

The difference between the permutation and Bernoulli models is determined by how
sequences are permuted to obtain null models. In the permutation model, they are permuted
without replacement, while in the Bernoulli model, they are permuted with replacement. In
long sequences, the effects of this difference are negligible, and the power of the two models
to discover motifs is similar [3]. However, in short sequences, this difference is significant,
since not replacing withdrawn residues greatly affects the sampling space. It is well-known
that, under the same conditions, the hypergeometric distribution, which relies on sampling
without replacement, and which we have used in this study to derive formulae based on the
permutation model, has a lower variance than the binomial distribution, which relies on
sampling with replacement [39]. This difference translates into higher statistical power for
hypothesis tests, and is greatest when the sample size (e.g., sequence length for biological
sequences) is small. Although tests based on the hypergeometric distribution tend to be more
computationally complex, this complexity is manageable in short sequences, and the
statistical power takes priority. For this reason, we adopt the permutation model in our study
of motifs in short sequences.

Several important results are known for the permutation model and have been applied to the
study of motifs in nucleotide sequences. The total number of possible sequences for fixed
nucleotide and dinucleotide compositions can be derived using Whittle’s formula [40], and
further generalization using an embedding technique to fixed compositions of tri- and
tetranucleotides exists [3]. In addition, the number of sequences containing a specific word
at a specific position can also be computed exactly, and hence the expected number of
occurrences of this word. However, while these fomulae are important for the study of
nucleotide sequences that are based on a genetic code of trinucleotides, in which the third
position is often degenerate, these results do not directly lead to discovery of biologically
significant sequence motifs in short protein sequences, as there is no physical reason to
adopt a null model of contiguous di- or tripeptides.

In general, the permutation model remains difficult, as it requires complex combinatorial
analysis [3]. In fact, even when simulation instead of combinatorial analysis is employed to
evaluate probabilities, it is not known how to generate permuted random sequences with
equal probability while preserving various properties (e.g., the composition of di-nucleotide
words) [3].

In this study, we have obtained useful results beyond existing literature based on the
permutation model for the discovery of sequence motifs from fragments of very short
length, as well as spatial interaction motifs when these fragments form interacting pairs. Our
results are important for discovery of biologically significant motifs when only very limited
data is available, as in β-barrel membrane proteins. Our results show that a number of
important motifs can be successfully uncovered, and the results can be used to understand
the mechanisms of membrane protein folding and to predict membrane protein structures [6,
14]. Finally, we show that our analytical methods for motif discovery outperform similar
methods based on the Bernoulli model for a dataset of short sequences, due to higher
statistical power and lower false discovery rate.
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Sequence motif analyses have already been performed for transmembrane α-helices [1] and
β-strands [6], and spatial motif analysis for transmembrane β-strands [14], with considerable
success. There are still many problems for which such analysis may generate useful insights.
Spatial motif analysis may reveal important residue interactions in α-helical membrane
proteins, where helices are often packed closely together and at nearly coincidental axes.
Both sequence and spatial analyses are appropriate for any dataset of β-strands from a
family of β-sheets. In addition to transmembrane β-barrels, motifs in soluble β-barrels have
been studied [14]. Lastly, sequence analysis may be useful for motif discovery in short
sequences drawn from a family of proteins with similar structure or function, in an effort to
determine common sites of function or locations essential to structural integrity.
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Fig. 1.
Examples of spatial and sequence patterns. a) Two X-Y spatial patterns on interacting
sequences. b) an XY3 sequence pattern.
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Fig. 2.
Division of residues in spatial motif analysis when X ≠ Y. White = X, black = Y, gray =
“neither” X or Y.
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Fig. 3.
Examples of the internally random model for sequence motifs when k = 1 a) Example when
X ≠ Y and k = 1. After placing l − y non-Y residues and i Y residues that form the desired
number i of XY1 patterns, there are l − x − y + i + 1 “slots” in which to place the remaining
Y residues so that no additional XY1 patterns are formed. b) Example when X = Y and k =
1. After placing l − x non-X residues and x − i X residues without forming an XX1 pattern,
there are x − i “slots” in which to place the remaining i X residues so that each one forms a
new XX1 pattern.
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Fig. 4.
a) Visual explanation of why there are l − 2k forbidden placements of 2 XYk patterns when
either x = 2 or y = 2. The terminal Y residue of the first pattern interferes with the initial X
residue of the second pattern. b) Visual explanation of why there are l − 2k possible ways to
place 2 XXk patterns when x = 3 in sequence motif analysis.
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Fig. 5.
Example of a multi-residue sequence pattern as described in the text. This pattern contains 5
specified residues in a span of 10 residues. Here, X0, X1, X2, X3, and X4 are specified amino
acid types, and the corresponding k values are counted as the distance from the first position
of the sequence (i.e. the position occupied by X0). Thus, k1 = 2, k2 = 3, k3 = 6, and k4 = 9.
All other residues (in white) are unspecified and may be any amino acid type. This pattern is
written as (X0, X1, X2, X3, X4 | 2, 3, 6, 9).
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Fig. 6.
Difference between a) an internally random null model for sequence motif analysis and b) a
position-dependent null model. In both cases, only residues of the same shade are permuted
with each other. In a), residues are permuted only within each sequence individually, while
in b), residues are permuted across sequences but only within their specified position t.
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TABLE IV

False discovery rates for sequence motif analysis under two competing models. “# Signif. Results”, number of
significant results found in original dataset. “Avg. False Discoveries”, average number of significant results
found after permuting residues in dataset 1,000 times. “FDR”, false discovery rate.

Model
# Signif.
Results

Avg. False
Discoveries FDR

Permutation 30 8.68 29%

Binomial 45 38.68 86%
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