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Abstract
Nuclear morphology and structure as visualized from histopathology microscopy images can yield
important diagnostic clues in some benign and malignant tissue lesions. Precise quantitative
information about nuclear structure and morphology, however, is currently not available for many
diagnostic challenges. This is due, in part, to the lack of methods to quantify these differences
from image data. We describe a method to characterize and contrast the distribution of nuclear
structure in different tissue classes (normal, benign, cancer, etc.). The approach is based on
quantifying chromatin morphology in different groups of cells using the optimal transportation
(Kantorovich-Wasserstein) metric in combination with the Fisher discriminant analysis and
multidimensional scaling techniques. We show that the optimal transportation metric is able to
measure relevant biological information as it enables automatic determination of the class (e.g.
normal vs. cancer) of a set of nuclei. We show that the classification accuracies obtained using this
metric are, on average, as good or better than those obtained utilizing a set of previously described
numerical features. We apply our methods to two diagnostic challenges for surgical pathology:
one in the liver and one in the thyroid. Results automatically computed using this technique show
potentially biologically relevant differences in nuclear structure in liver and thyroid cancers.
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I. Introduction
A. Motivation

Cancer is the second leading cause of death in the United States constituting 23% of all
deaths [1]. Basic research has focused on uncovering molecular signatures of tumors and
designing new therapies that target specific growth and signaling pathways [2], [3], [4].
Before therapy, however, an accurate diagnosis must be made. Despite advances in
radiological imaging, a tissue diagnosis must be obtained using increasingly minimally
invasive procedures with the surgical pathologist playing a critical role in this process.
Within small tissue samples (needle biopsies and fine needle aspirations), diagnostic
information can potentially be lost (microarchitecture, relationships to other structures) and
the pathologist then relies heavily on cellular features (cytoplasmic and nuclear) and
expensive ancillary techniques (special stains, immunohistochemistry, molecular
diagnostics) for a correct diagnosis [5][6].

Surgical pathologists use visual interpretation of nuclear structure to distinguish cancer from
normal, benign, and pre-malignant tissue [7]. Many tumors have certain characteristic
nuclear appearances or features that clearly aid in narrowing the differential diagnoses (e.g.
Langerhans cell histiocytosis, papillary carcinoma of the thyroid). Aberrations in the genetic
code and the transcription of different messenger RNAs lie at the heart of transformation
from normal to pre-malignant and malignant lesions. These changes occur in the nucleus
and are accompanied by the unfolding and repackaging of chromatin that in part or in whole
produces changes in nuclear morphology (size, shape, membrane contours, the emergence of
a nucleolus, chromatin arrangement, etc.). Figure 1C shows nuclei depicting the complex
variation in nuclear structure and chromatin distribution that can occur. Nuclei can be big,
small, round, elongated, bent, etc. Cells can have their chromatin distributed uniformly
inside the nucleus, along its borders, concentrated into small regions, anisotropically
distributed, and with any combination of the above. It has long been known that this
information defines phenotypes that are associated with important biological processes,
including cancer [8].

We propose a new approach to describe the distribution of nuclear structure in different
tissue classes. In contrast to most previous works, in which each nucleus image is reduced to
a set of numerical features[9], [10], [11], we utilize a geometric approach, which interprets
the data as distribution over carefully constructed mathematical geometries, to quantify the
similarity of groups of nuclei (see section III for more detail). Beyond simple automated
classification, our approach seeks to provide a visual representation of the nuclear
morphometry that characterizes and differentiates normal, premalignant, and cancerous
populations of cells. Moreover, instead of seeking to analyze single nuclei, our goal is to
describe a method to characterize a distribution of cells of a given tissue, since this
distribution may hold important diagnostic clues. In this work we focus on distinguishing
lesions within two tissues: one in the liver and one in the thyroid. However, we believe our
approach could be used for characterizing nuclear structure of different cancers in different
tissues.

B. Previous work on automated digital pathology
In part due to well documented limitations of the human brain and visual system [12], [13],
computational approaches have emerged as powerful tools for reproducible and automated
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cancer diagnosis based on digital histopathology images. For decades, numerous papers
have been published using computational methods to separate diagnostic entities, and some
commercial software packages have been developed to screen for cancer cells with varying
degrees of success [14]. The overwhelming majority of computational approaches follow a
standard feature-based procedure where an image can be represented by a set of numerical
features (see [9], [10], [11] for reviews). These methods can be described as a processing
pipeline consisting of: image preprocessing (normalization, segmentation), feature
extraction, and classification of the state of the tissue (e.g. normal or diseased) (see [14],
[15], [16], [17], [18] for a few examples). In addition to these works, and although not
directly related to the problem of pathology, we also mention the works of Yang et al [19]
and Mangoubi et al [20] on measuring and quantifying chromatin and other nuclear
components in time-lapse microscopy images.

These methods have been applied to the diagnosis of several types of cancers including
prostate [21], cervix [14], [22], thyroid [23], [24], [25], [26], [27], [28], [29], [30], liver [31],
[32], [33], [34], breast [35], and several others. While successful in some cases (see our
earlier work [36] where we have applied such an approach to some of the same data used in
the results shown below), feature-based methods have some important limitations. First,
although classification can be accomplished in some cases, it is at times difficult to obtain
useful and relevant biological information from such methods. This is due to the fact that
when classifiers are used in multidimensional feature spaces, they rely on combinations
(linear or nonlinear) of features each with different units, making physical interpretation
notoriously difficult. Secondly, because the operation is usually not reversible, the reduction
of each image to a set of features results in compression of information. In this context
information from the digital image that may ultimately have diagnostic or biological
significance is discarded.

In this paper we describe a geometric approach for classifying and understanding nuclear
distributions without first reducing each nucleus to a set of features. Similar techniques have
been applied to medical imaging problems at the macroscopic scale where the goal is to
build statistical models of different organs (see [37], [38], [39], [40], [41],[42] for a few
examples). The main idea in these works is to understand the anatomical variation of organs
such as the brain or heart in human populations through analysis of the deformation fields
required to warp one anatomy (as depicted in a radiology image) onto another, often with
the principal component analysis technique. We explore a similar idea, but with focus on
describing nuclear distributions of different tissue classes.

C. Overview of our contribution: a geometric framework for nuclear morphometry using
Optimal Transportation

We describe a new technique for nuclear chromatin morphometry and pathology that utilizes
the optimal transportation (OT) metric for quantifying the distribution of nuclear
morphometry of different tissue classes. Classification of sets of nuclei is achieved with a
kernel support vector machine approach, utilizing the distances given by the OT metric, in
combination with a majority voting procedure. Distributions of nuclei are characterized and
differentiated utilizing the Fisher Discriminant Analysis, in conjunction with the
Multidimensional Scaling technique applied to distances computed using OT. Results show
that the performance of a classifier using OT distances alone performs at least as well as the
same classifier utilizing distances derived from numerical features. In addition, we show that
our approach complements traditional feature-based approaches in that combining both OT
and numerical-feature derived distances can measurably increase classification accuracy.
Finally, we provide results characterizing differences and similarities between the nuclear
structure of normal cells and different cancer cells in the liver and thyroid.
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II. Data and pre-processing
A. Tissue processing and imaging

Tissue blocks were obtained from the archives of the University of Pittsburgh Medical
Center (Institutional Review Board approval #PRO09020278). Cases for analysis included
five resection specimens with the diagnosis of follicular adenoma of the thyroid (FA) and
five cases of follicular carcinoma of the thyroid (FTC). For the other diagnostic challenge,
five cases of fetal-type hepatoblastoma (FHB), a tumor of the liver in pediatric patients, and
five cases of normal liver were compared. We refer these cases as “diagnostic challenges”,
because, within these categories of lesions, the individual diagnostic entities can be difficult
to sort from one another by visual methods and usually require additional consultation and
testing to determine a diagnosis, particularly on needle biopsy or cytology specimens. The
diagnostic challenge of thyroid represents a group of lesions that currently does not use the
nuclear features to separate the two entities but rather requires extensive tissue sampling to
look for the presence or absence of certain diagnostic microarchitectural features to separate
the benign lesion (FA) from the malignant one (FTC). The diagnostic challenge of liver
manifests itself more so when a small biopsy of a liver mass is taken and the pathologist
must distinguish whether or not the lesion has been sampled (normal liver versus tumor) and
then be able to render a diagnosis of FHB. In this case, the distinction between normal liver
and FHB is the primary challenge. For each case of the thyroid and liver, nuclei from normal
appearing tissues (denoted NL) were also extracted. Tissues were procured at the time of a
surgical procedure, and then chosen for our analysis retrospectively over a several year span.
All tissues were fixed in 10% neutral buffered formalin and processed by routinely used
methods on a conventional tissue processor using a series of graded alcohols and xylenes
prior to paraffin-embedding. Tissue sections were cut at 5 micron thickness from the
paraffin-embedded block and stained using the Feulgen technique which stains DNA only.
This approach has been used in other morphometric studies to specifically isolate nuclei for
computational analyses [43], [44] and in our experience allows for more accurate
segmentation of the nucleus compared to hematoxylin and eosin, hematoxylin alone, or
periodic acid-Schiff stained sections. Counterstaining was not performed to avoid possible
interference from the cytoplasm with accurate isolation and segmentation of nuclear
membrane boundaries. Only nuclei were stained with a deep magenta hue (see Figure 1A for
a sample image).

All images used for analysis in this study were acquired using an Olympus BX51
microscope equipped with a 100X UIS2 objective (Olympus America, Inc., Central Valley,
PA) and 2 mega pixel SPOT Insight camera (Diagnostic Instruments Inc., Sterling Heights,
MI). Image specifications were 24bit RGB channels and 0.074 microns/pixel, 118 × 89
microns field of view. Slides were chosen by the pathologist (J.A.O.) that contained both
lesion (FHB, FA and FTC) and adjacent normal appearing tissue (NL). For each case,
between 10 and 20 random fields were imaged to guarantee that at least 200 nuclei were
obtained, for both lesion and normal tissue. Nuclei were chosen (using a single mouse click)
by the pathologist and engineer (W.W.) for segmentation and analysis that demonstrated a
complete and intact nuclear membrane within the focal plane.

B. Segmentation and intensity normalization
Nuclear segmentation consisted of the following three-step procedure. First, a random field
graph cut method [45] was utilized to find a near global optimal segmentation, in a
computationally efficient manner, which incorporates both region and boundary
information. Briefly, the image segmentation problem was formulated as a pixel labeling
problem, while the image data was modeled as a Markov Random Field. An energy function
can be found to judge the quality of segmentation. This function can be expressed using a
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graph structure, and the min-cut of the graph corresponds to an optimal segmentation.
Secondly, an efficient level set active contour algorithm [46] is used to refine the initial
segmentation (obtained via graph cut) towards the boundary (estimated with the finite
difference first derivative) of the nuclei, while constraining a certain smoothness of the final
result. The corresponding parameters used were set as σ = 4, ε = 3, λ = 5 and ν = 1.6. In the
end, the pathologist (J.A.O.) visually inspected all segmented nuclei for quality of
segmentation to ensure a circumferential and sharply delineated nuclear membrane. In
addition, nuclei were chosen from cells that represented the tissue of interest (tumor or
normal) excluding other cells (inflammatory cells, cells containing hemosiderin pigment that
obscured the nucleus, biliary epithelial cells (for liver cases), perifollicular cells (for thyroid
cases), etc.). In total, using the above criteria, approximately 40% of segmented nuclei were
included for analysis. A typical segmentation result is shown in Figure 1B. As our focus is
on the analysis of nuclear morphometry, we did not investigate the nuclear segmentation
problem extensively and point out that several other approaches already described in the
literature could be used [47].

Images containing individual nuclei were converted to grayscale by selecting the green
channel from the RGB images, and inverting the intensity values such that a zero (color
coded in black) corresponds to the relative minimum amount of chromatin in the nucleus.
We note that selecting magenta channel in the CMYK color space yielded very similar
results. All nuclei were normalized so that the sum of their intensity values is 1. This was
done to guarantee that nonuniformities related to staining and image acquisition, from case
to case, were not able to interfere with our method. In total, we extracted 871 normal thyroid
nuclei, 489 follicular adenoma and 703 follicular carcinoma nuclei from the thyroid data set.
In addition, 461 fetal-type hepatoblastoma and 396 normal liver nuclei from were extracted
from the liver data set. A few sample nuclei chosen for the entire data are displayed in
Figure 1C.

C. Pre-processing
Nuclei images were pre-processed as in our previous works [48], [49] to eliminate,
approximately, variations due to arbitrary rotation, translation, and coordinate inversions of
each nucleus. The procedure includes normalization by the center of mass, rotation by major
axis reorientation, and coordinate “flips” set up within a least squares minimization problem
(see [48], [49] for more details). It is important to note that the objective is to make the
distance measurements described below invariant with respect to the uninteresting variations
mentioned above. To the best of our knowledge, there is currently no efficient algorithm that
can make our metrics invariant under Euclidean transformations.

III. Methods
A. Optimal transportation for comparing nuclear chromatin

We believe the OT metric can capture some of the important information that characterizes
the differences in nuclear structure in different cells (see Figure 1C for a few examples, and
subsection I-A for their description). More precisely, we utilize the OT metric to quantify
how much chromatin, in relative terms, is distributed in which region of the nucleus. There
are two benefits of using the OT framework: 1) it provides a distance for comparing two
nuclei and 2) provides a shortest (in the OT sense) connection path (geodesic) between
them. The distances are used to quantitatively compare two nuclei (and subsequently to
classify sets of nuclei). The geodesics (interpolation between nuclei) are used to visualize
the data (exemplified in Figure 2 conceptually and in Figure 3 with an actual example). We
believe being able to visualize the data in such way (that is, counting, in relative terms, how
many nuclei appear similar to each interpolated nucleus displayed on the bottom of Figure
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3) is an important addition to the field of pathology that is currently not available through
other methods.

Here we describe the optimal transportation metric used for quantifying and classifying
nuclear structure. We first do it in a general setting, and then apply it to discrete
representations of the images considered. We note that the optimal transportation distance
metric has been used in the past for different image analysis problems [50], [51].

Let Ω represent the domain (the unit square [0, 1]2, for example) over which images are
defined. Let us consider probability measures I0 and I1 on Ω. Recall that probability
measures are nonnegative and that the measure of the whole set Ω is 1: I0(Ω) = I1(Ω). In
application to images, the measure of a set is the sum of intensities over all pixels in the set.
On the other hand, as customary when discussing optimal transport, we will often refer to
the measure of a set as its mass. Let c: Ω × Ω → [0, ∞) be the cost function. That is c(x, y)
is the “cost” of transporting unit mass located at x to the location y. The optimal
transportation distance measures the least possible total cost of transporting all of the mass
from I0 to I1. To make this precise, consider Π(I0, I1), the set of all couplings between I0 and
I1. That is consider the set of all probability measures on Ω × Ω with the first marginal I0 and
the second marginal I1. More precisely, if μ ∈ Π(I0, I1) then for any measurable set A ⊂ Ω
we have μ(A×Ω) = I0(A) and μ(Ω × A) = I1(A). Each coupling describes a transportation
plan, that is μ(A0 × A1) is telling one how much “mass” originally in the set A0 is being
transported into the set A1.

We consider optimal transportation with quadratic cost:

The optimal transportation distance, also known as the Kantorovich-Wasserstein distance, is
then defined by

(1)

It is well known that the above infimum is attained and that the distance defined is indeed a
metric (satisfying the positivity, the symmetry, and the triangle inequality requirements), see
[52]. For the quadratic cost the space of probability measures is endowed with a structure of
a Riemannian manifold [52]. This Riemannian manifold structure is needed to be able to
consider paths and in particular the shortest path (i.e. geodesics) connecting any two
probability measures, which, in our case, two images of nuclei in the space of images (e.g. in
Figures 3,4,5,6,7). Moreover, one can use the geodesic path to interpolate between images I0
and I1 in a way consistent with the metric. Namely let μ be the minimizer of (1). For α ∈ [0,
1] consider the function πα(x, y) = (1 − α)x + αy. Then the images on the geodesic are
given by Iα = πα#μ, that is Iα(A) = μ({(x, y): (1 − α)x + αy ∈ A}), with the convenient
property that the OT distance between I0 and Iα is given by αd(I0, I1).

In our application, each nuclear structure is represented in a gray level digital image (of size
192 × 192 pixels). Each image I containing one single nucleus can be represented as
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(2)

where δxi is a Dirac delta function at pixel location xi, M is the number of pixels in image I,
and vi are the pixel intensity values. To accelerate the computation, we use a point mass
approximation to model the chromatin distribution of each nucleus. In specific, we use
Lloyd’s weighted K-means algorithm [53] to adjust the position and weights of a set of N <
M particle masses to approximate the total intensity distribution of each nuclei. In all of the
computations in this paper, N ≤ 800. The number of particles N was chosen so that there is a
good balance between accuracy and speed. Ideally we would like to set these to be the
number of pixels in each nuclear image. However, a linear programming based
implementation of the distance on a 192 × 192-size image would be impractical for this
application. Therefore, the number of particles we chose was so that the average
computational time between pairs of nuclei was roughly one minute. When more
computational power is available, one could use more particles. The weighted K-means
algorithm merges points if two clusters fall within the same pixel coordinate, and this is the
reason that N is not fixed to one single number for all images. The problem has now been

reduced to finding the OT distance between  and  with Np and
Nq the number of delta-masses chosen for representing images I0 and I1. The minimization
problem in (1) then reduces to finding an Np × Nq matrix f = [fi,j] with fi,j ≥ 0 which
minimizes

subject to the constraints for all j = 1, …, Nq,  and for all i = 1, …, Np,

. We utilize Matlab’s implementation of a variation of Mehrotras dual interior
point method [51] to solve the linear program. The geodesic interpolation between I0, and I1

can be approximated by  which we denote by Iα for α ∈ [0, 1].

B. Supervised classification
1) Kernel based support vector machines—From our previous experience with
thyroid histopathology data [36], we have found that the support vector machine (SVM)
method, when combined with a simple voting strategy, performed best when compared with
other classification methods for determining the class of a given set of nuclei [36]. We
describe the SVM that utilizes numerical features first, and then show how it can be adapted
to utilize only pairwise (OT) distances only.

Given a training data set of images Ii, we can compute a set of n features (stored in vector
format Xi ∈ Rn) describing the morphological properties of the nucleus depicted in image Ii.
See [36] for a complete description of the numerical features used in this work. In a two
class problem, given the feature-label pairs (Xi, Yi), i = 1, …, N, where Yi ∈ {−1, +1}, the
support vector machine seeks to find linear hyperplanes (determined by parameters w and b)
that best separate the data set in an “enlarged” space. It can be formalized as the solution of
the following optimization problem [54]:
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(3)

Because the data set is not always linearly separable, the ξi represents the distance of each
error point i to its correct plane, and C is a penalty constant for the error term. φ is a fixed
nonlinear mapping function (known as basis function) that extends training vectors Xi into a
higher dimensional space φ(X): Rn ↦ Rm. This problem is usually solved in its dual
representation [54], where the data always occur in pairs, with the aid of the so-called kernel
function [55] K(Xi, Xj) = φ(Xi)T φ(Xj). In our work we utilize the radial basis function
(RBF) kernel K(Xi, Xj) = exp(−γ||Xi − Xj||2), γ ≥ 0 whenever numerical features are used.
In order to utilize the OT distances described above, the kernel is modified as K′(Xi, Xj) =
exp(−γ′dOT(Ii, Ij)2), γ′ ≥ 0. We note that such a technique (replacing a kernel based on
Euclidean distances for other distances) has been used previously [56], [57]. While we are
unable to show mathematically that this replacement satisfies Mercer’s condition (positive
semi-definite K′), we have studied the issue empirically and in all tests the matrix K′(Xi,
Xj) = exp(−γ′dOT(Ii, Ij)2) was a positive definite matrix, thus allowing for the replacement
in the kernel-SVM procedure. It is worth noting that even if the new kernel as modified
above does not satisfy the positive semi-definite criterion, it can still be used in the SVM
framework. In such case, however, the hyperplane found by the SVM procedure may not be
optimal [57]. Finally, for multiple classes problems, we use “one-versus-all” strategy [58] to
reduce the single multiclass problem into multiple binary problems. We then use a max-wins
voting strategy to combine these binary results for classifying the test instance.

2) Cross validation—Cross validation is performed to select the optimal (C, γ)
parameters, as well as to test the average classification accuracy of the system. We use a
“leave-one-out” strategy to separate the data into training and testing sets, where data from
one case is used for testing and the remaining cases are used for training the classifier.

In order to train a classifier, we used k-fold cross validation to further separate the training
set into two parts and searched for optimal parameters (C, γ) that had the best accuracy in
this k-fold cross validation. We set k = 10, and performed an exhaustive search for the two
parameters. After the optimal parameters are selected, we use them to build the classifiers
and evaluate their performance on the testing data.

C. Characterizing distributions of nuclei
The geodesics that connect the nuclear structures in the entire data set can be used to
characterize and contrast the differences between different tissue classes. The idea is to
interpret each nuclear structure as a point in the OT manifold and seek geodesics onto which
the projections of nuclear exemplars from different tissue classes most differ according to
some quantitative criterion (see Figure 2). The criterion we use is the one described by
Fisher [59] and used in the Fisher Linear Discriminant Analysis (LDA) method. However,
because explicit “coordinates” for each nuclear structure are not available (only pairwise
distances) an Euclidean embedding for the data must be computed before Fisher LDA can
be performed. Exemplar nuclei are chosen based on the output of this procedure and used to
compute the geodesic over which the nuclear structure of different tissue classes can be
approximated.
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1) MDS for obtaining Euclidean embedding—Given a set of such multidimensional
points (morphological exemplars), and their pairwise distances computed using the OT
framework discussed above, multidimensional scaling (MDS) can be used to find a low
dimensional “Euclidean” embedding of the data. Let Dm,n = d2(Im, In), with d(Im, In) given
by equation (1). The goal in MDS is to find a set of coordinates vk, k = 1, ···, N in an
Euclidean space that preserves the OT distances computed [60] (more precisely their inner
product). This task can be achieved by choosing L positive eigenvalues and corresponding

eigenvectors of the matrix G = −0.5(Id − uuT)D(Id − uuT), with , and Id
representing the identity matrix. Let λ1, ···, λN represent the eigenvalues of G, arranged in
decreasing order of magnitude, and with corresponding eigenvectors g1, ···, gN. The ith

component of vector vk is given by . For a given L, the pairwise distance can be
reconstructed by its Euclidean embedding D̃m,n = ||vm − vn||. As in [61] L is selected such
that the residual variance 1−R2(D̃, D) ≤ 0.1, where R(D̃, D) the correlation coefficient
between these matrices.

2) Fisher LDA for discrimination—Once each nucleus in a given data set has been
connected to an Euclidean coordinate through the MDS technique, we utilize Fisher’s Linear
Discriminant Analysis (LDA) technique [59] to compute the direction in this
multidimensional Euclidean space (here denoted h) onto which the data from two classes, if

projected, would differ most according to the metric  where SB represents the
“between classes scatter matrix”, SW represents the “within classes scatter matrix”.

3) Computing projections in OT space—After finding the discriminating direction h
by Fisher LDA, we can compute the projections of all the data on this most discriminant
direction, and select the points with smallest and largest projections. The geodesic path
linking these two extreme points (denoted here as Iα) can be computed as described in
section III-A. The projection of the nucleus Ij over geodesic, interpolated by Iα, can be

formalized as . This is computed by sampling the path at 11 points (Δα =
0.1), computing the distance of each nucleus to be projected to all points in the path, and
choosing the smallest distance.

IV. Results
Here we describe results obtained in analyzing nuclear structure in two different diagnostic
challenges, one in the liver and the other of thyroid cancers. The data set is described in
Section II. We begin by demonstrating a sample computation of geodesic path between two
sample nuclei. We then show that the distances computed using the OT framework can be
used to achieve similar accuracy to the traditional feature approach to this problem described
in detail in [36]. Finally, we demonstrate how the OT framework described above can be
useful to extract meaningful quantitative information depicting the differences (in a
distribution sense) that allow the data to be automatically classified.

A. Computation of OT distances and geodesics
An example geodesic is shown in Figure 3. The larger images I0, I1 on top of are the real
images chosen for this computation. The red dots placed on them are the final locations for
the point mass approximation. The bottom strip shows the actual geodesic. The end images
in this strip are the approximated versions of the images shown on top.
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B. Classification accuracy comparisons
As a first step, it is beneficial to understand whether the OT metric can capture the
morphological information necessary for distinguishing different classes. In a previous work
[36] we have described a system that utilizes a combination of 125 numerical features
(including shape parameters, Haralick features, and multi-resolution-type features) and an
SVM classifier together with a simple majority voting strategy to classify sets of nuclei. For
each diagnosis challenge, a classifier is trained (based on labeled data) to determine whether
a single nucleus pertains to a normal or a lesion-type class. The class of a group of nuclei of
unknown origin can be determined by classifying each individual nucleus from that group
and selecting the class to which the majority of nuclei were assigned. Our previous work
[36] shows that this system is capable of classifying some of the same data (the thyroid data)
used in this paper with 100 % accuracy.

Critical to this performance is the average classification accuracy for individual nuclei.
When using a majority voting procedure the overall accuracy for classifying a group of
nuclei will follow, approximately, a binomial/hypergeometric distribution. In a two class
problem, for example, if the average classification accuracy for each class is greater than
50%, then perfect classification accuracy on a per human case basis can be achieved by
selecting sufficiently many nuclei from that patient. Our previous work [36] contains a few
Monte-Carlo computations describing the approximate number of nuclei necessary for
perfect classification of each case. After extensive testing and fine tuning, our feature-based
classification system consisted of training an SVM classifier with all 125 features
individually normalized by their standard deviation. We tested whether feature selection
approaches could be used to improve on these classification accuracies, but the improvement
was negligible.

The results of classifying individual liver and thyroid nuclei using RBF kernel based SVM
methods for both features and OT metric are contained in Table I (liver) and Table II
(thyroid) respectively. We note that all classification accuracies reported are averaged for all
nuclei belonging to a human patient. We also note that both feature-based and OT-based
classifiers are identical in their implementation. Since we are using the kernel SVM method
described earlier, the only difference is in the actual distance (OT vs. feature-based
normalized Euclidean distances). For liver cases, we randomly selected 500 nuclei from the
entire 5 cases (evenly distributed between human cases and classes, 100 nuclei per case),
and for thyroid, we randomly selected 1050 nuclei from 10 cases (105 per case). All results
were computed using the leave one out validation strategy described early. We emphasize
again that training and testing data never overlapped, and that nuclei pertaining to each
human case were classified without using data from the same case for training.

In Table I, each row corresponds to a testing case, and the numbers correspond to the
average classification accuracy (over all nuclei for each case) for Normal liver and
Hepatoplastoma. The first column indicates the classification accuracy for feature-based
approach; the second column indicates the OT metric; and the third column indicates the
classification accuracy for combined metrics (see below). Similarly, Table II shows
classification accuracies for the 10 thyroid cases, where case 1 to case 5 consist of FA and
NL, and case 6 to 10 consist of FTC and NL. In Table II each row indicates a lesion from
one testing case, and for each lesion, we separately report the percentage of nuclei classified
as NL, FA and FTC either based on feature-based approach (shown in the first, second and
third columns) or based on OT metric approach (shown in the forth, fifth and sixth
columns). The seventh column indicates the combined accuracy (see below). The average
accuracy for feature-based approach is NL 0.8057, FA 0.6172, FTC 0.5461, and the average
accuracy for OT metric is NL 0.8057; FA 0.5935; FTC 0.64. These results show that OT-
metric based classification performs as well as feature-based classification (slightly better on

Wang et al. Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 August 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



average), and it is more robust in the sense that it has more discriminantion power in the
most difficult cases to classify (e.g. thyroid cases 9 and 10).

In addition to individual classification accuracies with features and OT, we have also tested
whether a linear combination of these two distances could improve upon the results of each
individual metric. The combined kernel was chosen to be Kc(Xi, Xj) = exp{−γ[dOT(Ii,
Ij)2+v×||Xi − Xj||2]}, γ ≥ 0. Using the same cross validation strategy introduced in Section
III-B2, we performed a two-level cross validation to select the parameters (C, γ, v)
described earlier. The classification accuracies for this combined kernel are reported in the
last columns of Table I and II. We can see that the accuracies always increase in all the
thyroid cases, as well as for most of the liver cases. Although 15 human cases is not an
extensive data set, we can conclude that the OT and feature-based metrics contain
complimentary information as far as this data set is concerned. The complimentary
information could be used in conjunction to produce a classification method that, on
average, performs better than either metric alone.

C. Characterizing distributions of nuclei
We use the automatic method described in section III-C to identify discriminant geodesic
projections for liver and thyroid cases, shown in the bottom of Figure 4 and 5 respectively.
Results suggest that, according to the available data, the most important information for
discriminating between NL and FHB is the amount, in relative terms, of chromatin
concentrated towards the border of the nucleus. The histogram shown in Figure 4 suggests
that it is uncommon for FHB nuclei to have a chromatin distribution concentrated
exclusively at the nuclear periphery. In thyroid cases, since it is a 3-class classification
problem, we use Fisher LDA to find direction that best separates normal vs neoplastic
(combining FA and FTC). We find, as shown in Figure 5, that the most discriminant
information for differentiating populations of normal and neoplastic thyroid nuclei is size.
For example, normal thyroid nuclei are relatively smaller than nuclei in the thyroid
neoplasms (FA and FTC); the size of FA nuclei are accumulated to a specific size region,
while the FTC nuclei are more evenly distributed in terms of size. We also used Fisher LDA
to find the most discriminant direction only for FA and FTC, and we find that the most
discriminant information is also size (results not shown).

Finally, the OT framework allows a user to interact manually with the data, and explore a
priori hypotheses relating to nuclear structure in different tissue classes. For example, the
geodesic shown in Figure 6 represents the difference in nuclear chromatin distribution from
nearly uniform concentration to chromatin accumulated exclusively along peripheral region
of the nucleus. From the histogram of the thyroid cases, we can observe that normal thyroid
nuclei, in relative terms, are mostly smooth, while the chromatin distributions of neoplastic
nuclei (FA and FTC) tend to distribute more evenly in these two patterns. The geodesic
shown in Figure 7 shows another chromatin distribution pattern: from smooth texture to
chromatin highly accumulated in the center of the nucleus. Its histogram suggests that the
chromatin distributions of neoplastic nuclei (FA and FTC) tend to be more centrally located.

A natural question to ask, in particular for the projections computed by selecting interesting
nuclei manually, is whether the projections contain statistically meaningful information.
This question can be answered by testing whether or not the projections themselves can be
used to classify the data. We have also tested this idea by performing a similar leave one out
cross validation strategy, where training consists of computing the histogram projection
distribution. An unlabeled case is then classified by first projecting the available data along
the same geodesic, and then finding the closest match for histograms (in the L2 sense)
obtained from the training step. For liver cases, the geodesic shown in Figure 4 can correctly
classify all the NL and FHB cases. Compared with liver cases, thyroid cases are harder to
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classify just based on individual geodesics. The geodesic shown in Figure 5 can classify all
the NL cases correctly, but misclassifies 3 cancer cases, for a total classification accuracy of
17/20 groups (including also the normal samples). The geodesic shown in Figure 6 can
classify all the NL cases correctly, but misclassify 5 cancer cases (total accuracy of 15/20,
including normal samples). The geodesic shown in Figure 7 can classify all the NL cases
correctly, but misclassify 4 cancer cases (total classification accuracy of 16/20 groups).

V. Discussion and conclusions
We described an approach for automated digital pathology based on nuclear structure that is
complementary to existing feature-based strategies, in particular when it comes to
visualizing data distributions. The approach is based on quantifying chromatin morphology
in different tissues classes (normal, cancer A, cancer B, etc.) using the optimal transportation
(Kantorovich-Wasserstein) metric between pairs of nuclei. These distances are utilized
within a supervised learning framework to build a classifier capable of determining the
tissue class to which a particular set of nuclei belongs. We compare our approach to the
standard feature-based classification approach using image data from a total of 15 human
cases. Results show that on average, the optimal transportation metric performs as well or
better than a popular feature-based implementation. In all 15 human cases the individual
nuclei classification accuracies allow 100 % classification accuracy of the data, as long as
multiple nuclei are used in a voting procedure [36].

In addition to automated classification we also describe how optimal transportation-based
geodesic paths can be used to summarize differences between the nuclear structure
(chromatin distribution) of different tissue classes. The approach involves computing the
pairwise distances between all nuclei in the data set and using the MDS technique to find an
inner product preserving Euclidean embedding for the data. Fisher LDA is then applied to
discover the modes of variation that are most responsible for distinguishing two classes of
nuclei. Once the variation, in the form of a optimal transportation geodesic, is computed, a
projection of the data can be used to visualize the main differences in chromatin
configuration in two or more tissue classes.

We demonstrated that the geometric framework proposed can be used to discover potentially
meaningful biological or diagnostic information in liver and thyroid cancers. In many
differentiated cells, heterochromatin is associated with the nuclear lamina at the nuclear
periphery [62]. However, in cancer cells, this compact peripheral staining is lost in lieu of a
more uniform or open chromatin pattern (euchromatin) indicating areas of transcriptional
activity. The data suggests that this loss of heterochromatin may be related to the cancerous
phenotype itself. Cancer progression often is associated with epigenetic changes including
loss of heterochromatin with concomitant increase in transcription of proteins involved in
numerous signaling pathways [63], [64]. Our results in Figure 4 show that it is uncommon
for FHB nuclei to have a chromatin distribution concentrated exclusively at the nuclear
periphery. The compact, dense chromatin (heterochromatin) seen in both the normal thyroid
and liver nuclei suggests greater areas of relative transcriptional inactivity than their
malignant/neoplastic counterparts. The geometric approach thus provides a new and useful
tool to enable visualization of changes in nuclear structure within a group of nuclei from
specific pathological lesions. These methods could be employed across any group of
pathological lesions providing a visual descriptor of important diagnostic nuclear features
that up to this point have not been described. In addition, the information provided by these
geometric approaches could be used as a stepping stone for further investigation into the
molecular and transcriptional control of both normal and neoplastic nuclei.
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Currently the major drawback of the approach we propose is the large computational cost.
The codes we used were implemented with Matlab 2008a on a laptop with 2.2GHz CPU and
2GB memory. It usually takes 60 seconds to compute the distance between two images
under OT metric with 800 point masses (see Section III-A). We note however, that recent
advances show promise to reduce the computational time of such metrics by an order of
magnitude [65], [66]. In addition, we note that other metrics that are less computationally
intensive (see [67] for example) could be used within the same framework (in combination
with coarsely computed OT distances, for example).

While in all cases available in this dataset both feature-based and OT metrics were able to
correctly classify each case to it’s gold standard (diagnosis) using a voting procedure, in
some cases, the feature-based metric seemed to outperform the OT metric in terms of
average nuclear classification accuracy. We analyzed the data visually and detected two
possible causes for it. Firstly, for nuclei whose chromatin content seemed fairly uniformly
spread throughout the nucleus, our particle-based approximation of that image could be
improved by increasing the number of particles. We recomputed the classification accuracy
of our liver dataset (the smaller of the datasets) utilizing OT distances computed using N =
1200 particles (as opposed to N = 800). This resulted in an increase of classification
accuracy of the OT by 2 and 3 % for cases 2 and 5 of table I, respectively, while the
accuracies for the other cases remained the same. This suggests that the overall accuracy of
the method could be improved by using more particles to approximate each nucleus. How
much so in this application, however, is uncertain. In general, most linear programming
based solutions for optimal transportation problems are of order O(N3) computations (with
N being the number of particles chosen) [68]. In our case, this means specifically that if we
increase the particle number from N = 800 to N = 1200, run times would be increase by
roughly 4 times. Upon visual inspection of the data, we have also noticed that the OT metric
seems somewhat sensitive to nuclear size variations. This is evidenced in Figure 5 where
Fisher LDA (using the OT metric) detected nuclear size variation as the most discriminating
feature in the thyroid datset. We investigated case 2 in this dataset, where the procedure
using the OT seems to have misclassified quite a few more nuclei than the feature-based
approach. For case 2 NL, for example, we have noticed that all nuclei misclassified by the
OT approach that were correctly classified with the feature metric had a nuclear area range
of [23.5, 30.1]μ2. A histogram analysis (not shown) shows that this is more consistent with
FA and FTC. For case 2 FA, similar observations can be made, where the OT metric
misclassified nuclei whose size was more consistent with the FTC class. We point out again,
however, that when all nuclei for all cases, the overall accuracy of the OT metric seems to
be as good or better than the overall accuracy obtained using the feature-based metric.

Finally, the methodology we described above is quite general in the sense that it depends
only on accurate imaging of the structures of interest. It could also be applied to similar
nuclear morphology problems in other benign, preneoplastic, and neoplastic (cancer)
lesions. Although several of the methods we described (including feature-based ones) were
able to appropriately classify the available testing data in the diagnostic challenges we
investigated, we expect this not to be the case in more complicated diagnostic challenges.
We also notice that similar work has been applied to medical imaging problems at the
macroscopic scale [42] where the goal is to analyze and classify the different structures
using other metric space (large deformation diffeomorphic metric mapping). Our future
plans including testing and validating our methods on larger data sets (more human cases),
as well as more difficult diagnostic challenges involving more types of tissues (classes).
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Fig. 1.
Feulgen stained image and segmentation results. A: raw image. B: segmented image. C:
individual segmented nuclei after preprocessing. Some sample nuclei show variations in
size, shape, membrane contours and etc. Note that each of these images has been contrast
stretched for best visualization.
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Fig. 2.
Schematic illustration of geometric approach for decoding discriminant information between
normal and cancerous nuclei. Each black dot denotes a nucleus from a cancerous tissue,
while the green (gray) dots denote the nuclei from a normal tissue. Geodesic paths between
any two nuclei can be computed using the approaches described in the text. Projections over
these can also be computed utilizing the same geometric metric being utilized.
Discriminating paths (see Figure 3 for an actual example) are those over which the
projection of the two (or more) populations differ most. In this case geodesic 1 is not as
informative as geodesic 2.
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Fig. 3.
A geodesic generated by I0, and I1. The larger images on top are the real nuclei images. All
the other images are interpolated based on I0, and I1. The red dots in I0 and I1 are locations
of particle masses used to approximate each image (see text for a complete description).
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Fig. 4.
Geodesic identified automatically by our method. In the histogram, the height of the bar
directly above each nucleus indicates the proportion of nuclei in each data class was most
similar (in the OT sense) to the nucleus directly below it. In this plot normal liver and FHB
nuclei are compared, with FHB nuclei having their chromatin more evenly spread over the
entire nucleus (see text for more details).
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Fig. 5.
Geodesic identified automatically by our method. In the histogram, the height of the bar
directly above each nucleus indicates the proportion of nuclei in each data class was most
similar (in the OT sense) to the nucleus directly below it. In this plot, normal thyroid, FA
and FTC nuclei are compared. We can observe that normal thyroid nuclei are relatively
smaller than nuclei in the thyroid neoplasms (FA and FTC); the size of FA nuclei are
accumulated to a specific size region, while the FTC nuclei are more evenly distributed in
terms of size(see text for more details).
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Fig. 6.
Geodesic selected manually to investigate an interesting projection. In the histogram, the
height of the bar directly above each nucleus indicates the proportion of nuclei in each data
class (normal vs FA vs FTC) was most similar (in the OT sense) to the nucleus directly
below it. This geodesic in the bottom mainly shows variation in nuclei texture from
chromatin smoothly distributed to chromatin accumulated exclusively along peripheral. We
can observe that normal thyroid nuclei, in relative terms, are mostly smooth, while the
chromatin distributions of neoplastic nuclei (FA and FTC) tend to distribute more evenly in
these two patterns.
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Fig. 7.
Geodesic selected manually to investigate an interesting projection. In the histogram, the
height of the bar directly above each nucleus indicates the proportion of nuclei in each data
class (normal vs FA vs FTC) was most similar (in the OT sense) to the nucleus directly
below it. This geodesic in the bottom mainly shows variation in nuclei texture from smooth
texture to chromatin highly accumulated in some locations. We can observe that the
chromatin distributions of neoplastic nuclei (FA and FTC) tend to be more centrally located.
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TABLE I

Average classification accuracy in liver data

Feature OT Combined

Case 1 89% 86% 93%

Case 2 92% 87% 91%

Case 3 94% 91% 92%

Case 4 80% 88% 89%

Case 5 71% 78% 84%

Average 85.2% 86.0% 89.8%
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