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Abstract
This paper presents a projection regression model (PRM) to assess the relationship between a
multivariate phenotype and a set of covariates, such as a genetic marker, age and gender. In the
existing literature, a standard statistical approach to this problem is to fit a multivariate linear
model to the multivariate phenotype and then use Hotelling’s T2 to test hypotheses of interest. An
alternative approach is to fit a simple linear model and test hypotheses for each individual
phenotype and then correct for multiplicity. However, even when the dimension of the
multivariate phenotype is relatively small, say 5, such standard approaches can suffer from the
issue of low statistical power in detecting the association between the multivariate phenotype and
the covariates. The PRM generalizes a statistical method based on the principal component of
heritability for association analysis in genetic studies of complex multivariate phenotypes. The key
components of the PRM include an estimation procedure for extracting several principal directions
of multivariate phenotypes relating to covariates and a test procedure based on wild-bootstrap
method for testing for the association between the weighted multivariate phenotype and
explanatory variables. Simulation studies and an imaging genetic dataset are used to examine the
finite sample performance of the PRM.

Keywords
imaging genetics; multivariate phenotype; projection regression model; single nucleotide
polymorphism; wild bootstrap

1 Introduction
Many studies have been collecting/collected multivariate phenotypes in order to investigate
their relationship with some explanatory variables of interest. For example, multivariate
imaging phenotypes have been widely collected to characterize brain structures and their
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functions [Knickmeyer et al., 2008, Lenroot]. Such multivariate imaging phenotypes include
diffusion tensor, deformation tensors of deformation field, the hemodynamic response
function of functional magnetic resonance images, and the spherical harmonic boundary
description of subcortical structures, among many others [Basser et al., 1994, Zhu et al.,
2007, Styner et al., 2004, Friston, 2007, Huettel et al., 2004, Taylor and Worsley, 2008,
Worsley et al., 2004]. Statistical analysis of these multivariate imaging phenotypes with
explanatory variables eventually leads to a better understanding of the progression of
neuropsychiatric and neurodegenerative diseases or the normal brain development/aging
[Chung et al., 2010, Styner et al., 2003, 2004, Friston, 2007, Huettel et al., 2004, Taylor and
Worsley, 2008, Worsley et al., 2004].

There are four commonly used methods to delineate the association between multivariate
phenotypes and covariates. A standard statistical approach to this problem is to fit a
multivariate linear model (MLM) to the multivariate phenotype and then use Hotelling’s T2

to test hypotheses of interest [Chung et al., 2010, Taylor and Worsley, 2008, Worsley et al.,
2004]. Since MLM involves estimating the covariance matrix of all individual phenotypes, it
is limited to the case that the dimension of the multivariate phenotype is relatively smaller
than the sample size. An alternative approach is to fit a marginal linear model and calculate
a test statistic for each component of the multivariate phenotype. Then it combines all tests
with their associated p–values to test an overall hypothesis across all individual phenotypes
[Heller et al.,2007, Lazar et al., 2002]. However, this method ignores the potential
correlation among all individual phenotypes. Another approach is to directly reduce the
dimension of the multivariate phenotype by using dimension reduction techniques, such as
principal component analysis (PCA). Then it fits a MLM to the reduced multivariate
phenotype and covariates [Formisano et al., 2008, Teipel et al., 2007, Rowe and Ho mann,
2006, Kherif et al., 2002]. This method does not properly account for the variation of
covariates and their association with the individual phenotypes. Partial least squares
regression (PLSR) is another statistical method that finds a linear regression model by
projecting the multivariate phenotype and the explanatory variables to a new and smaller
space [Chun and Keles, 2010, Krishnan et al., 2011]. This method focuses on prediction and
classification, instead of investigating the association between the multivariate phenotype
and the covariates of interest.

There is a large body of research on establishing the association between multivariate
phenotype and genotypes (e.g., single nucleotide polymorphism (SNP)) in genome-wide
association studies [Chun and Keles, 2010, Klei et al., 2008, Mukhopadhyay et al., 2010,
Yang et al., 2010, Roeder et al., 2005, Yu et al., 2010, Xu et al., 2003, Ding et al., 2009, Zhu
and Zhang, 2009]. Similar statistical methods for multivariate phenotype have been
extensively developed and examined for the association between multivariate phenotype and
SNPs. For instance, in simulation studies, Zhu and Zhang [2009] demonstrated that the
performance of simultaneously testing all components of the multiple phenotype
simultaneously is better than that of testing each phenotype individually in various models
for family-based association studies. As pointed by Klei et al. [2008] and many others,
testing each phenotype individually requires a substantial penalty for controlling
multiplicity. An alternative approach is to create a single ‘pseudo’ phenotype, which is a
weighted sum of all individual phenotypes from the same subject, and then carry out a
univariate analysis [Amos et al., 1990, Amos and Laing, 1993, Ott and Rabinowitz, 1999,
Lange et al., 2004, Klei et al., 2008]. The optimal weighted sum of individual phenotypes is
based on the principal component of heritability (PCH) [Ott and Rabinowitz, 1999, Lange et
al., 2004, Klei et al., 2008]. The idea of the PCH is to project the multivariate phenotype
from a high dimensional space to a low dimensional space, while accounting for the
association between the multivariate phenotype and genotype [Klei et al., 2008]. It has been
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shown that the PCH has relatively higher power, but it may require additional computational
time to estimate the appropriate weights [Klei et al., 2008].

The aim of this paper is to develop a new statistical framework, called the projection
regression model (PRM), which overcomes the limitations mentioned above. The PRM
includes simultaneous selection, estimation, and testing in a general regression setting. We
develop an estimation procedure for estimating the optimal weights of the multivariate
response in the PRM, while properly accounting for the space of explanatory variables.
Particularly, the PRM can accommodate the case that the sample size is relatively smaller
than the dimension of the multivariate phenotype. We also propose a test procedure based on
a wild-bootstrap method, which leads to a single p–value to test for the association between
the projected weighted multivariate phenotype and the covariates of interest, such as genetic
markers. This test procedure controls the overall type I error, while avoiding the use of an
inefficient sample splitting method [Mukhopadhyay et al., 2010, Yang et al., 2010].
Simulation studies are carried out to compare the PRM with several commonly used
methods for the multivariate phenotype in terms of both the type I and II error rates.

Section 2 of this paper introduces the PRM and its associated estimation and testing
procedure. In Section 3, we conduct simulation studies with a known ground truth to
examine the finite sample performance of the PRM and several other statistical methods.
Section 4 illustrates an application of PRM in an imaging genetic data set. We present
concluding remarks in Section 5.

2 Methods
2.1 Projection Regression Model

Suppose that we observe a q × 1 multivariate phenotype yi = (yi1, …, yiq)T and a p × 1
vector of covariates of interest xi = (xi1, …, xip)T for i = 1, …, N. We consider a commonly
used MLM as follows:

(1)

where Y is an N × q matrix formed by the q × 1 multivariate phenotype of each subject in
each row, X is an N × p matrix consisting of the p × 1 vector of covariates of each subject in
each row, and B = (βjl) is a p × q matrix, in which βjl represents the effect of the j–th
covariate on the l–th response. Moreover, E is an N × q matrix representing the random

errors and  is the i–th row of E with zero mean and covariance matrix VR. Assuming that
xi and ei are independent, the covariance of yi is given by

(2)

where VQ represents the variation coming from the covariates of interest.

Most scientific questions require the comparison across two (or more) diagnostic groups and
the association of the genetic marker for each component of yi. Such questions can often be
formulated as linear hypotheses of B as follows:

(3)

where C is a r × p matrix of full row rank and B0 is a p × q vector of constants.
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We consider a projection of yi via a q × k weight matrix W and create a k × 1 projection
vector WTyi such that k << q. Then, we propose a projection regression model (PRM) given
by

(4)

where βw is a p × k regression coefficient matrix and εi is the random vector with Cov(εi) =
Σi. The PRM (4) is a heteroscedastic multivariate linear model. When k = 1 and Σi = Σ for
all i, PRM reduces to the pseudo-phenotype model considered in [Amos et al., 1990, Amos
and Laing, 1993, Ott and Rabinowitz, 1999, Lange et al., 2004, Klei et al., 2008]. A direct
connection between models (1) and (4) is that model (1) can be rewritten as

(5)

Therefore, if W in (4) were known, then one would directly perform an appropriate
hypothesis test to address specific research hypotheses as follows:

(6)

where b0 is an r × k vector of constants. Based on model (5), the null hypothesis of (6) can
be written as Cβw = CBW = B0W = b0.

Let C1 be a (p − r) × p amatrix such that

(7)

Let  be a p × p matrix and  be a p × 1 vector, where  and

 are, respectively, the r × 1 and (p − r) × 1 subvectors of . We define  to be

 or . We consider , where  and  are, respectively, the first r
rows and the last p − r rows of B. Therefore, model (5) can be rewritten as

(8)

The next issue is to determine an optimal q × k matrix W under some certain criteria. In
PCH [Ott, 1999, Lange et al., 2004, Klei et al., 2008], the heritability ratio is defined by

(9)

The heritability ratio characterizes the ratio of the variation from the genetic biomarkers xi
to the total variation of responses yi. Maximizing h(w) leads to the optimal W.

Instead of directly using the heritability ratio h(w), we consider a generalized ‘heritability’
ratio H(w) for a given q × 1 vector w as follows:

(10)
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The H(w) can be interpreted as the ratio of the variance of  relative to that of wTei
under the null hypothesis. We require that the optimal W enhances the power of detecting
the association between WTyi and xi for the null hypothesis (6). Thus, we need to find a W
to project the data into a space containing the most information on the null hypothesis of (3).
Let ΣX = Cov(x). It can be shown that  reduces to

(11)

where (D−TΣXD−1)(1,1) is the upper r × r submatrix of D−TΣXD−1. When C = [Ir 0], 

reduces to the ratio of  to wTVRw, in which (ΣX)(1,1) is the upper r × r
submatrix of ΣX.

When VR is positive definite, maximizing (11) is equivalent to maximizing

(12)

where L is the lower triangular matrix obtained from the Cholesky decomposition of VR =

LLT. Letting . Let v be the eigenvector
corresponding to the largest eigenvalue of the matrix VC,X, then (11) is maximized when

 equals v. Hence, (12) is maximized when  equals L−Tv. If q is relatively small
compared to N, based on (11), we take the q × k matrix W in (4) by choosing the largest k
sparse eigenvectors of VC,X using PCA. However, when q is relatively large compared to N,
calculating L−T and the eigenvectors of VC,X can be challenging, which makes the optimal
weight matrix W very unstable.

2.2 Estimation procedure for optimal weights
We develop an estimation procedure for estimating the optimal weights. This procedure
consists of three major steps: (i) a pre-screening process for eliminating ‘unrelated’
measures; (ii) a shrinkage procedure for approximating VC,X and VR; and (iii) a sparse
principal component analysis (SPCA) procedure for calculating the eigenvalue-eigenvector
pairs of VC,X. Each step is implemented as follows.

The pre-screening procedure is to rank individual phenotypes according to marginal utility
and eliminate ‘unrelated’ phenotypes when q is relatively large relative to N, say q ≥ N/3.
This procedure is to mimic various screening methods, such as sure independence screening
(SIS), for discarding covariates in high-dimensional linear models [Fan and Lv, 2010]. In
Step 1, we fit q marginal linear regression models to individual phenotypes and the
covariates of interest. In Step 2, we calculate the corresponding Wald-type test statistics
under the same null hypothesis (6), and the respective p-values from a chi-square
distribution with degrees of freedom r for each individual phenotype. In Step 3, after
ordering the q p-values from the smallest to the largest, we only select the phenotypes with
the first q* = [q/log(q)] + 1 if q ≤ N, or the first q* = [N/log(N)] + 1 if q > N, where [x]
represents the largest integer smaller than x. Thus, we set the weights for those unselected
individual phenotypes to be zero, or equivalently, we consider a reduced response vector,

denoted as .
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The shrinkage procedure is to approximate VC,X and VR as follows. In Step 1, we refit the
multivariate linear regression in (1) with the selected individual phenotypes in  as
responses conditional on X. Let B* be the regression parameter matrix for the selected
individual phenotypes. We estimate B* by its least square estimator, denoted by , which

equals . In Step 2, we estimate Cov(X) by using its empirical estimator,

denoted by , and then approximate  by

. In Step 3, we calculate a shrinkage estimate of VR by
following [Ledoit and Wolf, 2004]. Let CE be the sample covariance matrix of

, μE = q−1tr(CE) and

, in which . Finally, we

approximate VR and VC,X by using  and , respectively.

We use  mainly due to its computational e ciency and relatively nice properties [Ledoit
and Wolf, 2004].

The SPCA procedure is to estimate the sparse eigenvectors and eigenvalues of V̂R,S, by
following Zou et al. [2006] as follows. The key idea of this SPCA process is to transform the
eigenvalue-eigenvector problem into an elastic net problem [Zou et al., 2006], which can be
solved neatly. We include the key steps here for completion. In Step 1, we choose a value of
k so that the proportion of variance explained is greater than a certain threshold, such as
80% percent to truncate the eigenvalues. Then, we calculate the loadings of the first k
ordinary principal components of V̂R,S, denoted as α. In Step 2, given a fixed α, we solve
the following naive elastic net problem: for j = 1, …, k,

(13)

where |·|1 denotes the L1 norm. Moreover, λ1,j and λ2,j are tuning parameters and selected
simultaneously by using a BIC-type selection criterion [Leng and Wang, 2009]. We
calculate the BIC-type criterion given by

(14)

where df(λ1,j, λ2,j) is the number of nonzero coefficients in . In Step 3, for each fixed ,

we calculate the singular value decomposition of , and then we update αj =
UVT for j = 1, …, k. In Step 4, we repeat steps 2-3, until γ converges. In Step 5, we

normalize γ, and then set  for j = 1, …, k. The optimal weight wj is estimated by

using  for j = 1, …, k and W = [w1, …, wk].

Finally, to further reduce the dimension of the pre-screened Y*, we apply the SPCA
procedure repeatedly to estimate W by selecting ‘related’ individual phenotypes suggested
from the estimated weight matrix W obtained from the previous iteration. Specifically, we
eliminate the responses corresponding to the zero rows in the sparse weight matrix W
obtained from the SPCA procedure in order to reduce the screened response vector Y* to an
even smaller dimension. Subsequently, we rerun the shrinkage and SPCA procedures on the
new Y* to calculate the new weight matrix W. This iteration process of weight estimation
can be processed iteratively until W converges. Our simulation studies show that in most
cases, the process converges in only two iterations.
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2.3 Test Procedure for Testing Hypotheses
We develop several statistics of testing H0W against H1W for the PRM (4) as follows. Given
the estimated weight matrix W, we can calculate the ordinary least squares estimate of βw,

given by . Subsequently, to calculate a statistic for testing
H0W against H1W, we calculate a k × k matrix, denoted by TN, as follows:

(15)

where  is a consistent estimate of the covariance matrix of  given by

(16)

Moreover,  and  where  is the restricted least
squares (RLS) estimate of β under H0, and is given by

(17)

When k = 1, TN is a Wald-type (or Hotelling’s T2) test statistic. When k > 1, we define three
test statistics based on the functionals of TN as follows:

(18)

where det, trace, and eig denote the determinant, trace and eigenvalues of a symmetric
matrix, respectively. When k = 1, all these statistics reduce to TN. For simplicity, we focus
on TrN throughout the paper.

We present a wild bootstrap method to improve the finite sample performance of the test
statistic TrN in (18) in testing the null hypothesis H0. First, we fit model (1) under the null
hypothesis (3) and calculate the estimated multivariate regression coefficients under (3),

denoted by , with corresponding residuals  for i = 1, …, N. Then, we generate

G bootstrap samples  as follows:

(19)

where  are independently and identically distributed as a distribution d, in which d is
chosen as

(20)

For each generated wild-bootstrap sample, we repeat the estimation procedure for estimating

the optimal weights and the calculation of the test statistic . Subsequently, the p-value of

TrN is computed as , where 1(·) is an indicator function.
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2.4 Summary
We summarize the key steps of the PRM as follows:

Step (i). Fit q marginal linear regression models with the univariate dependent variable
as each single phenotype and the independent variables as the covariates of interest.

Step (ii). Calculate q Wald-type test statistics under the same null hypothesis (6) and
their corresponding p-values.

Step (iii). Select the responses with the smallest

 p-values and establish the shrunken
response space Y*;

Step (iv). Apply SPCA to estimate the weight W based on Y*;

Step (v). Project Y to WTY and regress WTY by X;

Step (vi). Calculate the Wald-type test statistic TrN;

Step (vii). Generate G bootstrap samples and repeat Steps (i) to (vi) for each bootstrap
sample;

Step (viii). Approximate the p-value of TrN.

3 Results
3.1 Simulation Studies

We carried out two scenarios of simulation studies to examine the finite-sample
performance of the PRM. The simulation studies were designed to establish the association
between a relatively high-dimensional phenotype with a commonly used genetic marker
(e.g., SNP), while adjusting for age and other environmental factors. The first scenario
focuses on that q is relatively smaller than the sample size N. The second scenario focuses
on that q is comparable to the sample size N.

We set q and then simulated the multivariate phenotype according to model (1). The random
errors were simulated from a multivariate normal distribution with mean 0 and covariance
matrix with diagonal elements equal to 1. For the off-diagonal elements in the covariance
matrix, we categorized each component of the multivariate phenotype into three categories:
high correlation (0.6), medium correlation (0.3), and very low correlation (0.1) with the
corresponding number of components (1, 1, q – 2) in each category. Specifically, we set the
correlation between the first and second random errors as 0.6, those between the first
random error and all others to be 0.3, and others to be 0.1. In the covariate matrix, we
included a SNP, a diagnostic status as a binary variable with probability 0.5, and 3
additional continuous covariates. We simulated the additive SNP effect under different
minor allele frequencies (MAFs). We simulated the three additional continuous covariates
from a multivariate normal distribution with mean 0, standard deviation 1, and equal
correlation 0.3. Our hypothesis of interest is to test the SNP effect on the multivariate
phenotype. We set the number of the repetitions to be 150 and the number of wild bootstrap
samples to be 250.

3.1.1 Scenario I—In the first scenario, we set the sample size N to be 150 and the MAF to
be 0.5. The q were chosen to be 5, 10, 20, 30, 80 and 100, respectively. The first five
individual phenotypes were associated with the SNP, whose coefficients were independently
generated from a normal distribution with mean 0.15 and variance 0.05, and the 5th
phenotype was also associated with disease status with regression coefficient being 0.5. We
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applied both the PRM and Hotelling’s T2 test to each simulated dataset in order to examine
the type I and II error rates under the 5% significance level. Inspecting Figure 1 reveals that
the type I errors are well controlled for both methods. Moreover, as q increases, the power in
detecting the SNP effect decreases faster for Hotelling’s T2 test compared with the PRM.

3.1.2 Scenario II—In the second scenario, we set q to be 50, 100, 150 and 200,
respectively, and the sample size N to be 150, 200, 250 and 300, respectively. We generated
the additive SNP effect under 6 different MAFs, which are 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5,
respectively. We considered two scenarios of the SNP effect. In the first scenario, only the
first individual phenotype is associated with the SNP effect with regression coefficient being
0.5 and the second individual phenotype is associated with the disease status effect with
regression coefficient being 0.5. Other individual phenotypes are not associated with any
covariate. The second scenario is that the first 10 individual phenotypes are associated with
the SNP. We generated the corresponding regression coefficients independently from a
normal distribution with mean 0.5 and standard deviation 0.15. Moreover, we set the
regression coefficient for the diagnosis status to be 0.5 for the 10th individual phenotype and
all other regression coefficients to be zero.

We applied the PRM to the simulated data sets and compared it with two other methods
including a component wise method (CWM) and a principal components regression (PCR)
using a 5% significance level. The CWM method fits a single linear regression to each
individual phenotype with the same set of covariates and uses the false discovery rate (FDR)
to test the additive SNP effect. The PCR method extracts the first three principal
components of the multivariate phenotype by using the PCA and then fits a multivariate
linear model to the extracted principal components with the same set of covariates. The
Hotelling’s T2 test is not considered here since it is invalid for q > N.

We observe that the type I error rates are well controlled and more stable in the PRM,
compared to the CWM and PCR methods (Figures 2 and 3). When the SNP effect is sparse,
the powers of the PRM are generally higher than the CWM method, particularly for SNPs
with small MAF and it is uniformly better than the PCR method (Figures 4 and 5). As
expected, increasing either the sample size N or the MAF enhances the statistical power in
detecting the SNP effect, whereas increasing the number of responses q areduces the power
in detecting the SNP effect. When more SNPs show impact on the phenotypes, PRM is still
comparable to CWM and better then PCR when the MAF is small (Figures 6 and 7). With
increasing MAF, all three methods perform equally well.

3.2 A neonatal study
The data set is from a neonatal study to assess the impact of common SNPs in putative
psychiatric genes on early age brain development. The study recruited 237 pregnant women
in their second trimester, who were free from abnormalities on fetal ultrasounds and major
medical illness. Each subject had one time visit with a T1-weighted medical resonance
image (MRI), demographic and genetic information assessment. The MRI images were
collected with a Siemens head-only 3T scanner using a 3D spoiled gradient (FLASH TR/TE/
Flip Angle 15/7msec/25) with spatial resolution 1 × 1 × 1 mm3 voxel size. There are 47
regions of interest defined from the T1-weighted images by non-linear warping of a
parcellation atlas template [Gilmore et al., 2007, Knickmeyer et al., 2008]. The demographic
information includes gender, gestational age at birth in days, age after birth in days and
intracranial volume (ICV) of the infants. There are 128 male and 109 female infants with
average gestational age 264.0 (SD ±18.91), age after birth in days of 30.2 (SD ±17.80) and
ICV 481799.9 (SD ±61528.96). Moreover, 9 genetic variants expressed in SNPs from 6
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genes were collected and genotyped by Genome Quebec using Sequenom iPLEX Gold
Genotyping Technology.

We applied our PRM method to multivariate phenotype including the volumes of 47 regions
of interest (ROIs) with covariates of interest including gender, gestational age, age after
birth, ICV and the 9 SNPs with an additive effect. Each hypothesis tests a single SNP effect,
while adjusting for other covariates including demographic information and other SNPs. We
list the 9 SNPs with their corresponding genes and respective p-values in Table 1.

The results show that the SNPs rs6675281 and rs35753505 have a significant impact on
early age brain development with p-values of 0.016 and 0.0136, respectively. This agrees
with the existing literature. Specifically, DISC1 was known to be associated with mental
illness, such as schizoprenia and bipolar disorder, and NRG1 was known to relate to brain
tissue volume [Mata et al., 2009].

We also applied the PCR and CWM methods to the same data set with the same set of
covariates for comparison. In the PCR application, the first three principal components of
the 47 ROIs, which explain 74.4% of the variation, are regressed on the same group of
covariates of interest and the same null hypotheses were tested for each SNP by Hotelling’s
T2 test at the 0.05 significance level. None of the 9 SNPs were found to be significant for
brain volume development. The details of the test results are given in the supplementary
document. When analyzing the same data set by CWM with multiple comparisons adjusted
by FDR, none of the 9 SNPs are detected to be significant for the 47 ROIs at the same
testing level.

4 Discussion
We have developed the PRM which provides a more effective analysis for the association
delineation between multivariate phenotypes and covariates of interest. The proposed
methodology is demonstrated in a study investigating the impact of candidate SNPs on early
age brain development. Analysis results obtained from the PRM successfully identified two
previously reported SNPs while none of them were detected by either CWM or PCR. This
phenomenon is consistent with the results in the simulation studies showing that compared
to the two other methods, the PRM tends to have higher power for detecting the association
between high dimensional phonetypes and the covariates of interest with better type I error
control. Hence we expect that this novel statistical tool will assist scientists in exploring new
findings with more effective and reliable statistical results in the high dimensional data
settings. Future work includes establishing the asymptotic properties of the PRM under mild
conditions, considering ultra-high dimensional phenotypes and genomic data, as well as
extending the PRM to longitudinal and familial studies. User-friendly software to implement
the PRM will be available to public for non-profit purposes on our group website: http://
www.bios.unc.edu/research/bias/software.html.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
We thank the Editor and two referees for valuable suggestions, which helped to improve our presentation greatly.
All authors have no conflict of interest to declare.

Lin et al. Page 10

Genet Epidemiol. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.bios.unc.edu/research/bias/software.html
http://www.bios.unc.edu/research/bias/software.html


Reference
Amos CI, Elston RC, Bonney GE, Keats BJB, Berenson GS. A multivariate method for detecting

genetic linkage, with application to a pedigree with an adverse lipoprotein phenotype. Am. J. Hum.
Genet. 1990; 47:247–254. [PubMed: 2378349]

Amos CI, Laing AE. A comparison of univariate and multivariate tests for genetic linkage. Genetic
Epidemiology. 1993; 84:303–310.

Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophysical
Journal. 1994; 66:259–267. [PubMed: 8130344]

Chun H, Keles S. Sparse partial least squares regression for simultaneous dimension reduction and
variable selection. J. Roy. Statist. Soc. Ser. B. 2010; 72:3–25.

Chung MK, Worsley KJ, Nacewicz BM, Dalton KM, Davidson RJ. General multivariate linear
modeling of surface shapes using surfstat. NeuroImage. 2010; 53:491–505. [PubMed: 20620211]

Ding X, Lange C, Xu X, Laird N. New powerful approaches for family-based association tests with
longitudinal measurements. Annals of Human Genetics. 2009; 73:74–83. [PubMed: 18798838]

Fan J, Lv J. A selective overview of variable selection in high dimensional feature space (invited
review article). Statistica Sinica. 2010; 20:101–148. [PubMed: 21572976]

Formisano E, Martino FD, Valente G. Multivariate analysis of fmri time series: classification and
regression of brain responses using machine learning. Magnetic Resonance Imaging. 2008; 26:921–
934. [PubMed: 18508219]

Friston, KJ. Statistical Parametric Mapping: the Analysis of Functional Brain Images. Academic Press;
London: 2007.

Gilmore JH, Lin W, Prastawa M, Looney CB, Vetsa YSK, Knickmeyer RC, Evans DD, Smith JK,
Hamer RM, Lieberman J, Gerig G. Regional gray matter growth, sexual dimorphism, and cerebral
asymmetry in the neonatal brain. Journal of Neuroscience. 2007; 27:1255–1260. [PubMed:
17287499]

Heller R, Golland Y, Malach R, Benjaminia Y. Conjunction group analysis: an alternative to mixed/
random effect analysis. Neuroimage. 2007; 37:1178–1185. [PubMed: 17689266]

Huettel, SA.; Song, AW.; McCarthy, G. Functional Magnetic Resonance Imaging. Sinauer Associates,
Inc; London: 2004.

Kherif F, Poline JB, Flandin G, Benali H, Simon O, Dehaene S, Worsley K. Multivariate model
specification for fmri data. Neuroimage. 2002; 16:1068–1083. [PubMed: 12202094]

Klei L, Luca D, Devlin B, Roeder K. Pleiotropy and principle components of heritability combine to
increase power for association. Genetic Epidemiology. 2008; 32:9–19. [PubMed: 17922480]

Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith J, Hamer R, Lin W, Gerig G,
Gilmore J. A structural mri study of human brain development from birth to 2 years. J Neurosci.
2008; 28:12176–12182. [PubMed: 19020011]

Krishnan A, Williams LJ, McIntosh AR, Abdi H. Partial least squares (pls) methods for neuroimaging:
a tutorial and review. NeuroImage. 2011; 56:455–475. [PubMed: 20656037]

Lange C, van Steen K, Andrew T, Lyon H, DeMeo DL, Raby B, Murphy A, Silverman EK,
MacGregor A, Weiss ST, Laird NM. A family-based association test for repeatedly measured
quantitative traits adjusting for unknown environmental and/or polygenic effects. Stat Appl Genet
Mol Biol. 2004; 3:1–17.

Lazar N, Luna B, Sweeney J, Eddy W. Combiningbrains: a survey of methods for statistical pooling of
information. NeuroImage. 2002; 16:538–550. [PubMed: 12030836]

Ledoit O, Wolf M. A well-conditioned estimator for large-dimensional covariance matrices. Journal of
Multivariate Analysis. 2004; 88:365–411.

Leng C, Wang H. On general adaptive sparse principal component analysis. Journal of Computational
and Graphical Statistics. 2009; 18:201–215.

Lenroot R, Giedd J. Brain development in children and adolescents: insights from anatomical magnetic
resonance imaging. Neurosci Biobehav Rev. 2006; 30:718–729. [PubMed: 16887188]

Mata I, Perez-Iglesias R, Roiz-Santianez R, Tordesillas-Gutierrez D, Gonzalez-Mandly A, Vazquez-
Barquero JL, Crespo-Facorro BA. Neuregulin 1 variant is associated with increased lateral

Lin et al. Page 11

Genet Epidemiol. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



ventricle volume in patients with first-episode schizophrenia. Biological Psychiatry. 2009; 65:535–
540. [PubMed: 19058791]

Mukhopadhyay I, Feingold E, Weeks DE, Thalamuthu A. Association tests using kernelbased
measures of multi-locus genotype similarity between individuals. Genetic Epidemiology. 2010;
34:213–221. [PubMed: 19697357]

Ott J, Rabinowitz D. A principle-components approach based on heritability for combining phenotype
information. Hum Heredity. 1999; 49:106–111. [PubMed: 10077732]

Roeder K, Bacanu SA, Sonpar V, Zhang X, Devlin B. Analysis of single-locus tests to detect gene/
disease associations. Genetic Epidemiology. 2005; 28:207–219. [PubMed: 15637715]

Rowe D, Ho mann R. Multivariate statistical analysis in fmri. IEEE Eng Med Biol Med. 2006; 25:60–
64.

Styner M, Gerig G, Lieberman J, Jones D, Weinberger D. Statistical shape analysis of neuroanatomical
structures based on medial models. Medical Image Analysis. 2003; 3:207–220. [PubMed:
12946464]

Styner M, Lieberman J, Pantazis D, Gerig G. Boundary and medial shape analysis of the hippocampus
in schizophrenia. Medical Image Analysis. 2004; 4:197–203. [PubMed: 15450215]

Taylor J, Worsley K. Random fields of multivariate test statistics, with applications to shape analysis.
Annals of Statistics. 2008; 36:1–27.

Teipel SJ, Born C, Ewers M, Bokde ALW, Reiser MF, Möller HJ, Hampel H. Multivariate
deformation-based analysis of brain atrophy to predict alzheimers disease in mild cognitive
impairment. NeuroImage. 2007; 38:13–24. [PubMed: 17827035]

Worsley KJ, Taylor JE, Tomaiuolo F, Lerch J. Unified univariate and multivariate random field
theory. NeuroImage. 2004; 23:189–195.

Xu D, Mori S, Shen D, van Zijl P, Davatzikos C. Spatial normalization of diffusion tensor fields.
Magnetic Resonance in Medicine. 2003; 50:175–182. [PubMed: 12815692]

Yang Q, Wu H, Guo C, Fox CS. Analyze multivariate phenotypes in genetic association studies by
combining univariate association tests. Genetic Epidemiology. 2010; 34:444–454. [PubMed:
20583287]

Yu K, Wheeler W, Li Q, Bergen AW, Caporaso N, Chatterjee N, Chen J. A partially linear tree-based
regression model for multivariate outcomes. Biometrics. 2010; 66:89–96. [PubMed: 19432770]

Zhu HT, Zhang HP, Ibrahim JG, Peterson BG. Statistical analysis of diffusion tensors in diffusion-
weighted magnetic resonance image data (with discussion). Journal of the American Statistical
Association. 2007; 102:1085–1102.

Zhu W, Zhang HP. Why do we test multiple traits in genetic association studies? Journal of the Korean
Statistical Society. 2009; 38:1–10. [PubMed: 19655045]

Zou H, Hastie T, Tibshirani R. Sparse principal component analysis. Journal of Computational and
Graphical Statistics. 2006; 15:262–286.

Lin et al. Page 12

Genet Epidemiol. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
The comparison results of the PRM and Hotelling’s T2 test based on N = 150 and MAF=0.5:
the type I error (the left panel) and power (the right panel). The upper and middle dashed
lines in the left panel correspond to 0.05 and 0.025, respectively; and the upper and middle
dashed lines in the right panel represent 0.5 and 0.25, respectively.
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Fig. 2.
The type I error comparison results of the PRM, CWM, and PCR methods based on different
sample sizes (150, 200, 250 and 300) and different minor allele frequencies (0.05, 0.1 and
0.2). The horizontal axis of each plot is the number of phenotypes q and the vertical axis is
the type I error rate. The upper and middle dashed lines are 0.1 and 0.05, respectively.
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Fig. 3.
The type I error comparison results of the PRM, CWM, and PCR methods based on different
sample sizes (150, 200, 250 and 300) and different minor allele frequencies (0.3, 0.4 and
0.5). The horizontal axis of each plot is the number of phenotypes q and the vertical axis is
the type I error rate. The upper and middle dashed lines are 0.1 and 0.05, respectively.

Lin et al. Page 15

Genet Epidemiol. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
The power comparison results of the PRM, CWM, and PCR methods for the first scenario of
sparse SNP effect based on different sample sizes (150, 200, 250 and 300) and different
minor allele frequencies (0.05, 0.1 and 0.2). The horizontal axis of each plot is the number
of phenotypes q and the vertical axis is the power. The dashed line represents a power of
50%.

Lin et al. Page 16

Genet Epidemiol. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
The power comparison results of the PRM, CWM, and PCR methods for the first scenario of
sparse SNP effect based on different sample sizes (150, 200, 250 and 300) and different
minor allele frequencies (0.3, 0.4 and 0.5). The horizontal axis of each plot is the number of
phenotypes q and the vertical axis is the power. The dashed line represents a power of 50%.
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Fig. 6.
The power comparison results of the PRM, CWM, and PCR methods for multiple SNP
effects based on different sample sizes (150, 200, 250 and 300) and different minor allele
frequencies (0.05, 0.1 and 0.2). The horizontal axis of each plot is the number of phenotypes
q and the vertical axis is the power. The upper and lower dashed lines represent the powers
of 75% and 50%, respectively.
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Fig. 7.
The power comparison results of the PRM, CWM, and PCR methods for the second
scenario of multiple SNP effects based on different sample sizes (150, 200, 250 and 300)
and different minor allele frequencies (0.3, 0.4 and 0.5). The horizontal axis of each plot is
the number of phenotypes q and the vertical axis is the power. The upper and lower dashed
lines represent the powers of 75% and 50%, respectively.
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Table. 1

Selected SNPs with the corresponding genes and result for testing a single SNP effect while adjusting for
demographic information and other SNPs

Gene Abbreviation SNP P-value

Catechol-O-methyltransferase COMT rs4680 0.88

Disrupted-in-schizophrenia-1 DISC1 rs821616
rs6675281

0.75
0.016

Neuregulin 1 NRG1 rs35753505
rs6994992

0.0136
0.51

Estrogen Receptor Alpha ESR1 rs9340799
rs2234693

0.44
0.57

Brain-derived Neurotrophic Factor
Glutamate Decarboxylase 1

BDNF
GAD1 (GAD67)

rs6265
rs2270335

0.60
0.39
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