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Abstract
Chronic HIV infection, which is primarily characterized by the progressive depletion of total
CD4+ T cells, also causes persistent inflammation and immune activation. This is followed by
profound changes in cellular and tissue microenvironments that often lead to prolonged immune
dysfunction. The global nature of this immune dysfunction suggests that factors that are involved
in immune cell survival, proliferation, differentiation and maturation are all affected. Of particular
interest is the transcriptional factor Foxo3a that regulates a number of genes that are critical in the
development and the maintenance of T and B cells, dendritic cells (DCs) and macrophages.
Alterations in the microenvironment mediated by HIV infection cause significant increase in the
transcriptional activity of Foxo3a; this has major impact on T cell and B cell immunity. In fact,
recent findings from HIV infected individuals highlight three important points: 1) The alteration of
Foxo3a signaling during HIV infection deregulates innate and adaptive immune responses; 2)
Foxo3a-mediated effects are reversible and could be restored by interfering with the Foxo3a
pathway; and 3) down-regulation of Foxo3a transcriptional activity in elite controllers (ECs)
represents a molecular signature, or a correlate of immunity, associated with natural protection and
lack of disease progression. In this review, we will discuss how HIV-infection altered
microenvironments could result in impaired immune responses via the Foxo3a signaling pathway.
Defining precisely the molecular mechanisms of how persistent inflammation and immune
activation are able to influence the Foxo3a pathway could ultimately help in the development of
novel approaches to improve immune responses in HIV infected subjects.
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1. Introduction
During chronic HIV infection, lymphoid and mucosal tissues, and peripheral blood undergo
substantial anatomical and microenvironmental alterations. These changes are highlighted
by the aberrant production of cytokines, chemokines and interferons, all leading to the
establishment of polyclonal immune activation (1–4). HIV infection is also characterized by
the disruption of gut integrity and subsequent release of bacterial products within the
bloodstream and lymphoid tissues leading to immune activation (5). Notably, persistent
inflammation in infected lymph nodes (LNs) leads to the deposition of collagen (6), a
phenomenon that has been attributed in part to increased levels of TGF-β1 (7). These
changes result in profound reorganization of tissue architecture thereby leading to severe
immune dysfunction that is illustrated by the inability to generate and maintain T cell and B
cell immunity. These defects persist even in infected subjects undergoing highly active anti-
retroviral treatment (HAART) suggesting that factors besides virus replication contribute to
immune dysfunction during HIV infection (8–12). The immune defects observed in HIV
infected subjects are the result of deregulation of key signaling pathways that are involved in
normal physiological processes. In this context, CTLA-4 and PD-1, known to be implicated
in T cell tolerance (13), have been associated with exhausted HIV-specific T cell responses
in infected subjects (14–17). Furthermore, signaling through IL-7 and IL-2, two common γ-
chain receptor cytokines that are important for survival and homeostatic proliferation of
memory lymphocytes via the STAT5 pathway (18–20), is impaired in HIV infected subjects
(11, 12, 21). While all of these pathways contribute to the immune dysfunction that is
associated with HIV-1 infection, other key regulatory signaling pathways are also impacted
including the Foxo3a pathway that will be the subject of this review.

Foxo3a is a transcription factor that is constitutively expressed in hematopoietic cells.
Foxo3a induces the transcription of pro-apoptotic genes (such as Bim, Noxa, Puma, FasL
and TRAIL (22–26)), anti-proliferative genes (including p21, p27, p130, cyclin G2 and
GADD45 (26–28)), genes implicated in the reactive oxygen species (ROS) detoxification
(such as superoxide dismutase and catalase (29–31)), genes regulating glucose metabolism
(such as glucose-6-phosphatase (32, 33)), and genes involved in differentiation processes
(including Bcl-6 and BTG-1 (26, 27, 31, 34)) (Fig. 1). Foxo3a transcriptional activity is
regulated by multiple mechanisms including acetylation, ubiquitination and phosphorylation
(26). Phosphorylation of Foxo3a by several kinases including AKT, IKKα/β, ERK and
serum glucose kinase (SGK) results in its exclusion from the nucleus and inhibition of its
transcriptional activity (23, 26, 35, 36). We have previously shown that Foxo3a signaling is
critical for central memory CD4+ T cell (TCM) survival and that Foxo3a is highly
phosphorylated in this subset by AKT and IKK at multiple residues upon TCR and cytokine
receptor engagement (19).

Since CD4+ T cells constitute the primary target for HIV (37, 38), we will discuss
experimental evidence linking the deregulation of Foxo3a activity with alterations in CD4
subsets. In addition, we will detail how aberrant Foxo3a activation affects other
lymphocytes including memory B cells in HIV infected hosts.

2. Foxo3a is a critical hematopoietic modulator
Foxo3a regulates many normal physiological functions, including cell-cycle arrest (26–28),
stress resistance during oxidative damage (29–31), aging (39), apoptosis (22–26) and
glucose metabolism (32, 33). It has been shown in Foxo3a deficient mice and in vitro assays
using human lymphocytes that the maintenance of CD34+ stem cells (40–42), T cell
progenitors (43) and mature central memory CD4+ T cells (TCM) (19) are mediated by
increased AKT, ERK and IKK kinase activities, whose functions are to induce the
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phosphorylation of Foxo3a (26, 27, 35). Control of Foxo3a transcriptional activity by
phosphorylation is also required for differentiation of the erythroid lineage via expression of
BTG-1 (44–46) and of B-cell progenitors via Bcl-6 and Bim (47–49). Several studies using
Foxo3a deficient mice have revealed that Foxo3a promotes transcription of the FoxP3 gene
that is essential for optimal regulatory T cell development and function (50, 51).
Interestingly, the Foxo3a pathway has also been shown to regulate the function of dendritic
cells by inducing the production of key pro-inflammatory molecules such as IL-6 and TNF-
α (52) and to increase the survival of natural killer cells upon IL-15 stimulation (53).
Overall, these observations demonstrate the involvement of Foxo3a signaling pathway at
multiple levels of hematopoiesis.

3. Deregulation of Foxo3a is associated with disease pathogenesis
Foxo3a transcriptional activity is regulated at multiple levels and by multiple mechanisms.
This is important to avoid aberrant expression of genes that are involved in cell survival,
differentiation and maturation. In fact, deregulation of the Foxo3a pathway has been
associated with several pathologies. For example, persistent phosphorylation of Foxo3a has
been associated with in vitro and in vivo induction of tumors including breast, colorectal,
gastric and pancreatic cancers as well as leukemia, lymphoma and myeloma (26, 54–56).
Treatment of many tumors by chemical drugs such as microRNA-155, imatinib, tamoxifen,
and all-trans retinoic acids, has been shown to be mediated by the induction of pro-apoptotic
Foxo3a activity through increased expression of Bim, Puma and TRAIL(56–61). Essafi et al.
have recently demonstrated that the delivery of exogenous Foxo3a proteins into cancer cells
might constitute a novel potential therapeutic strategy in the treatment of several cancers
(62). Down-regulation of Foxo3a transcriptional activity in mice and humans has
furthermore been associated with the establishment of atherosclerotic plaques and
autoimmune and inflammatory diseases such as arthritis (22, 63–65). Conversely, conditions
that lead to increased Foxo3 activity cause neurodegenerative diseases such as Parkinson's
and Alzheimer's, brain damage after hypoxia/ischemia or stroke, and cardiomyocyte
dysfunctions (66–70).

In the next sections, we will focus on the role of Foxo3a during HIV infection, as alterations
of its transcriptional activity could be associated with disease progression and natural
protection against HIV infection. We will also present evidence showing that the
deregulation of Foxo3a signaling during HIV infection occurs through two major
mechanisms: one mediated by the viral proteins, and the second by the deregulated
microenvironment within infected blood and tissues.

4. HIV viral proteins alter Foxo3a signaling
HIV expresses a number of viral proteins such as Env, Vpr and Tat that can have significant
effects on host cellular function (38, 71–73). Apoptosis of HIV infected CD4+ T cells has
been shown to be triggered by Foxo3a whose pro-apoptotic transcriptional function appears
to be significantly up-regulated by HIV-1 Tat through the interference with AKT kinase
activity (74, 75). Accordingly, silencing Foxo3a signaling within infected CD4+ T cells
using small interfering RNAs (siRNAs) significantly improve their survival (74, 75). Kino et
al. have reported that the HIV protein Vpr inhibits the ability of insulin to induce the
phosphorylation of Foxo3a via AKT, thus interfering with its exclusion from the nucleus
(76). Because viremia and long-term use of HAART have been linked to the establishment
of severe metabolic abnormalities including hyperglycemia and insulin resistance (77), this
may indicate that Vpr is involved in these processes by up-regulating Foxo3a in HIV
infected subjects. Interestingly, decreasing Foxo3a activity and subsequent Bim expression
by Insulin-like Growth Factor counteracts the high levels of neuronal apoptosis occurring in
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patients suffering from HIV encephalitis (78). Alterations of Foxo3a transcriptional
activities have also been reported in macrophages and dendritic cells; this could have major
implications on innate defenses during HIV infection. For instance, HIV infection of
monocyte-derived macrophages by different HIV strains induces apoptosis through a
Foxo3a dependent process (80, 81). Indeed, HIV infected macrophages display reduced
levels of AKT and Foxo3a phosphorylated forms. This coincides with elevated expression
levels of the Foxo3a pro-apoptotic target genes TRAIL and the subsequent TRAIL-mediated
apoptosis (80, 81). It is worthy noting that the decrease of Foxo3a activity by siRNAs or by
the over-expression of its dominant negative form leads to significant improvement of
macrophage survival (80).

5. Foxo3a signaling contributes to global cell death during HIV infection
The direct cytopathic effects mediated by HIV cannot explain the massive CD4+ T cell
depletion observed in infected patients. Therefore, extrinsic factors that are generated as a
result of HIV infection, such as disruption of cellular anatomical niches, alterations of tissue
and cellular microenvironments, affect bystander populations in infected hosts and
contribute to global cell death. In this context, pro-inflammatory cytokines, interferons, and
bacterial products, known to be increased during HIV infection (1, 4, 5), induce Foxo3a
dephosphorylation and enhance its pro-apoptotic activity (11, 82), leading to global cell
death. On the other hand, HIV infection is also characterized by the decrease of cytokines
such as IL-2 (83) and IL-21 (9). Both of these cytokines have the ability to induce Foxo3a
phosphorylation and block its pro-apoptotic function (11, 19). Accordingly, Foxo3a
transcriptional targets TRAIL and FasL (26, 27), whose expression levels have been shown
to be up-regulated by interferons in infected blood and tissues, are responsible for T cell and
B cell death in HIV+ subjects (4, 84–88). Thus, the Foxo3a pathway integrates multiple
signals that can influence lymphoid proliferation and survival. Understanding the role of
Foxo3a in memory lymphocyte loss and disease progression during chronic HIV infection
could shed some light on the underlying mechanisms of global T cell and B cell death
during HIV infection (11, 12, 82).

It is worth mentioning that Foxo3a-mediated lymphocyte dysfunction is also apparent even
in chronically HIV-infected subjects that are under HAART. This suggests that HIV-
induced destruction and changes of tissue and cellular microenvironments occur early during
HIV infection and persist in the chronic phase of the disease even in the absence of HIV
viral replication. In this context, decreased persistence of peripheral TCM and TEM subsets
has been reported in HIV infected subjects under HAART and this was directly linked to
enhanced Foxo3a transcriptional activity and FasL expression (12, 19). Similarly, memory B
cell survival has also been shown to be impaired during chronic HIV infection and that
Foxo3a and its target gene TRAIL are strongly involved in this process (11). Bacterial
products such as lipopolysaccharide (LPS), and soluble factors such as TGF-β1 and IFN-α
are increased during HIV and SIV infection (4, 5, 7). All of these induce Foxo3a
transcriptional activity and the expression of pro-apoptotic targets including TRAIL and
Bim (11).

Interestingly, silencing Foxo3a by siRNA or by using a dominant negative mutant of
Foxo3a, restores the survival of memory T and B cells to levels similar to those observed in
uninfected subjects (11, 12), indicating that these defects are reversible even after many
years of HIV infection.

6. Implication of Foxo3a in natural immune protection against HIV infection
Perhaps validation of the role of Foxo3a pathway in the immune response is best illustrated
in a rare subset (< 0.3%) of chronic HIV-infected subjects, the elite controllers (ECs), that
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are able to fully control viral replication (plasma loads < 50 copies/ml) and maintain high
CD4 cell counts (> 500 cells/μl) for many years without HAART (89). ECs do not exhibit
immune activation and do not display any increase in inflammatory cytokines or products of
bacterial translocation. More importantly, these subjects express increased levels of T cell
and B cell survival cytokines including IL-2 and IL-21; these are normally reduced in
chronic HIV infected subjects (5, 9, 90). Accordingly, we found that ECs display lower
levels of Foxo3a-mediated pro-apoptotic transcriptional activity in both memory T cells and
B cells when compared to HIV non-controller and uninfected subjects (11, 12). Thus,
identifying selective pathways in ECs, that are known to be involved in the maintenance of
memory T and B cells, provides critical information to better understand the underlying
mechanisms of HIV control in these subjects (91).

7. Foxo3a in HIV infection: a friend or a foe
The Foxo3a transcription factor represents a key-signaling hub at the intersection of
numerous pathways that are associated with apoptosis, cell cycle, quiescence, stress
response, and cell metabolism. Thus, the Foxo3a pathway needs to be tightly regulated
otherwise enhancement of disease pathogenesis could result.

During HIV infection, chronic immune activation has been shown to be associated with the
release of bacterial products from the gut (5), coincided with elevated levels of interferon
and pro-inflammatory cytokine expression (1, 4) as well as with viral replication in
untreated HIV infected subjects. These induce alterations in the microenvironment and lead
to persistent expression of several negative regulators of T cell activation such as PD-1,
CD160 and CTLA-4 (92–94) (Fig. 2). This results in T-cell exhaustion characterized by the
inability of CD4+ T helper cells to proliferate and to secrete pro-survival cytokines such as
IL-2 and IL-21 (9, 83). Of note, IL-2 has been shown to drive the survival of TCM cells by a
Foxo3a-dependent manner (19). We recently found that the loss of memory CD4+ T cell
subsets in HIV chronically infected subjects involves pro-apoptotic Foxo3a activity (12).
Accordingly, it remains to be seen if PD-1 triggering influences Foxo3a signaling pathway.
Moreover, HIV proteins including Tat interfere with the Foxo3a pathway in infected CD4+

T cells and this results in their progressive depletion (74, 75, 92, 93) (Fig. 2). The lack of
pro-survival cytokines, increased chronic immune activation, and the augmented PD-1
ligation also lead to memory B cell dysfunction. Indeed, we recently showed that the loss of
memory B cells in chronically infected individuals occurs through the increase of Foxo3a
transcriptional activity and likely involves the contribution of multiple extrinsic signals
including LPS, IL-2, IL-21 and interferons (11). Of note, preliminary reports have suggested
that CD4 helper cells from HIV infected subjects are not capable of providing B cell help as
these cells have lost their capacity to secrete IL-4 and IL-21. This might impede the survival
of memory B cells and antibody production in HIV non-controller subjects. In this context,
it would be interesting to determine whether the impaired HIV microenvironment
contributes to the dysfunction of CD4 helper T cells.

Conversely, EC subjects, that fully control HIV replication without the intervention of anti-
retroviral therapy, exhibit a pro-survival molecular advantage illustrated by lower Foxo3a
transcriptional activity, when compared to HIV non-controllers and healthy subjects. Thus,
it would be interesting to examine whether polymorphisms within the genes that are part of
the Foxo3a pathway exist in ECs and could be associated with disease non-progression.
Overall, these data strongly implicate Foxo3a as a critical regulator of memory T and B cell
survival as well as an integrator of aberrant signals during HIV infection.

The immune defects related to Foxo3a signaling observed in HIV infected subjects, in the
presence or absence of HAART, are reversible even after many years of infection. Thus,

van Grevenynghe et al. Page 5

Cytokine Growth Factor Rev. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



identification of target molecules within the Foxo3a pathway could be used for the
development of therapeutic and preventive HIV vaccines.
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Figure 1. Regulation of Foxo3a transcriptional activity
Triggering T cell receptor (TcR), B cell receptor (BCR) or common gamma chain cytokine
receptors activates of several kinases such as AKT, IKK and ERK11,12,19. These kinases
induce the phosphorylation of Foxo3a at multiple residues, leading to its sequestration into
the cytoplasm and ultimately to its degradation23,24. On the other hand, when Foxo3a is
unphosphorylated, it translocates to the nucleus, binds to the promotors of a number of
target genes and induces their transcriptional activation23,24. Foxo3a drives the expression of
proapoptotic and anti-proliferative molecules as well as proteins implicated in the ROS
detoxification and glucose metabolism22–25.
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Figure 2.
Integrative and multi-lineage immune dysfunction during HIV infection.
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