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In the last decade, a new statistical methodology, namely, network meta-analysis, has been developed to address limitations in
traditional pairwise meta-analysis. Network meta-analysis incorporates all available evidence into a general statistical framework
for comparisons of all available treatments. A further development in the network meta-analysis is to use a Bayesian statistical
approach, which provides a more flexible modelling framework to take into account heterogeneity in the evidence and complexity
in the data structure. The aim of this paper is therefore to provide a nontechnical introduction to network meta-analysis for dental
research community and raise the awareness of it. An example was used to demonstrate how to conduct a network meta-analysis
and the differences between it and traditional meta-analysis. The statistical theory behind network meta-analysis is nevertheless
complex, so we strongly encourage close collaboration between dental researchers and experienced statisticians when planning
and conducting a network meta-analysis. The use of more sophisticated statistical approaches such as network meta-analysis will
improve the efficiency in comparing the effectiveness between multiple treatments across a set of trials.

1. Introduction

With the rise of evidence-based medicine movement in the
last two decades, systematic reviews and meta-analyses have
been widely used for synthesis of evidence on beneficial
and/or harmful effects of different treatments. Results from
those reviews and meta-analyses provide important infor-
mation for drawing clinical guidelines and making health
policy recommendations. For most clinical conditions, sev-
eral interventions (which may be drugs, medical devices,
surgeries, or a combination of them) are usually available,
but most systematic reviews of randomised controlled trials
(RCTs) tend to limit their scopes by only evaluating two
active treatments or comparing one treatment to a control.
Even if a systematic review evaluates multiple treatments,
traditional meta-analysis can only perform pairwise compar-
isons.

There are several limitations to this approach [1–4]. For
instance, suppose there are three new and more expensive

treatments A, B, and C and a standard treatment D, six pair-
wise metaanalyses (A-B, B-C, A–C, A–D, B–D, and C-D) may
be undertaken to compare the differences for pairs of the
four treatments. None or few of included RCTs in the paper
would have compared all four treatments, and most RCTs
compared only 2 or 3 of them. Consequently, those pairwise
meta-analyses use different sets of RCTs for each comparison,
and the evidence base is therefore different across all compar-
isons. A possible consequence is that results from multiple
pairwise meta-analyses may not be consistent: for example,
in three pairwise comparisons, treatment A is shown to be
better than treatment B, and B better than treatment C; but A
is inferior to C. Secondly, some head-to-head trials may not
have been conducted yet (especially between the new treat-
ments), so it is not possible to undertake traditional pairwise
meta-analysis for these comparisons. Thirdly, because the
number of studies available for pairwise comparisons is
few, each meta-analysis may not have sufficient power to
detect any genuine difference between treatments, yielding
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inconclusive results and providing no useful guidance on
decision making.

In the last decade, a new statistical methodology, namely,
network meta-analysis, has been developed to address those
limitations [5–7]. Network meta-analysis incorporates all
available evidence into a general statistical framework for
comparisons of all available treatments. Thus, network meta-
analysis may play an important role in the improvement
of the decision making process by optimizing the use of
the existing data. A further development in the network
meta-analysis is to use a Bayesian statistical approach, which
provides a more flexible modelling framework to take into
account of heterogeneity in the evidence and complexity in
the data structure [1–4].

Although systematic reviews with network meta-analysis
for evidence synthesis has been published in mainstream
medical journals [8–12], many dental researchers are still
not aware of this new methodology, and, to the best of our
knowledge, only a few network meta-analyses have appeared
in dental journals [13–16]. The aim of this paper is therefore
to provide a nontechnical introduction to network meta-
analysis for dental research community and raise the aware-
ness of it. In the next sections, we first explained the rationale
and assumptions behind the network meta-analysis; then, we
described the statistical model for the network meta-analysis
and used an example from periodontology for illustration.
In the final section, we discussed a few practical issues to be
considered when conducting a network meta-analysis.

2. Network Meta-Analysis

The basic rationale behind network meta-analysis is simple:
suppose we have three treatments A, B, and C. Results from
RCTs comparing A and B provide direct evidence on the dif-
ference in the treatment effects between A and B. In contrast,
results from RCTs comparing A–C and those comparing B-C
provide indirect evidence on the difference between A and B.
The three treatments A, B, and C therefore form a network
for treatment effect comparisons (Figure 1). Let us use dAB,
dAC, and dBC to denote the differences in the treatment
effects for A-B, A–C, and B-C comparisons, respectively. The
difference in treatment effects between A and B from indirect
comparisons is therefore dAC − dBC = dInd

AB . If dAB is similar to
dInd

AB , the direct and indirect evidence is consistent; otherwise,
there is inconsistency in the evidence, that is, results from
direct and indirect evidence are not the same.

2.1. Assumptions behind the Network Meta-Analysis. There
are several assumptions for the network meta-analysis to
yield meaningful results [1–4]. The first assumption is
homogeneity for standard meta-analysis, that is, all A–C trials
are “comparable” and all B-C trials are “comparable.” This
is a universal assumption for all meta-analysis, although
some heterogeneity increases the generalizability of results.
However, whilst evidence may be homogeneous within a set
of trials for certain pairwise comparisons, but it may not be
so across sets of trials within the network. This leads us to the
similarity assumption for the network meta-analysis, that is,

A B

C

dAB

dAC
dBC

Figure 1: Diagram for the network of three treatments A, B, and C.
dAB, dBC, and dAC are the differences in treatment effect between A
and B, between B and C, and between A and C, respectively.

the included trials are clinically and methodologically similar
in term of key factors that modify the response to a treat-
ment, such as patients’ characteristics, study settings, lengths
of followup, and outcome measurements. In other words,
potential confounders for treatment effect comparisons are
similarly distributed across included studies. When these
two assumptions are questionable, results from direct and
indirect evidence may be inconsistent, and consistency is the
third assumption that will be discussed in the next section.

It has been suggested that results from the network meta-
analysis may be less trustworthy than results from multiple
pairwise comparisons, because indirect evidence is less
reliable than direct evidence and more prone to biases [17,
18]. Whilst we agree that interpretation of results from the
network meta-analysis always needs to be cautious because
of potential biases, network meta-analysis is no more prone
to biases that traditional meta-analysis, for instance, hetero-
geneity is also common in traditional meta-analysis. This is
because the distinction between direct and indirect evidence
is not meaningful in multiple treatments comparisons, as
direct evidence for one comparison becomes indirect for
some other comparisons [1, 2]. For example, trials including
A and C are direct evidence for A–C comparisons, and trials
including A and B are evidence for A-B comparisons, but
they are also indirect evidence for B-C comparison. So the
argument that results from mixed treatment comparison are
less reliable than those from direct comparisons is untenable.
We do agree that because the scope of a network meta-
analysis is much broader than a traditional pairwise meta-
analysis and a greater number of studies is included in the
analysis, more resources and efforts are required to minimize
potential errors and biases in the literature search, quality
assessment, data analysis, and final interpretation of results
[19, 20].

2.2. Inconsistency between Direct and Indirect Evidence.
Consistency in direct and indirect evidence is another
assumption behind network meta-analysis. Suppose results
from trials comparing A with B show A is on average
better than B, and trials comparing B with C show B is
on average better than C, and indirect comparisons will
then show A is better than C. If trials comparing A with
C also show A is on average better than C, the indirect
and direct evidence is consistent. However, what if direct
evidence shows C is better than A? Does this contradiction
mean that evidence from indirect comparisons is unreliable
and should be disregarded?
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If this argument is true, it implies the direct comparisons
for A-B and B-C cannot be trusted either. This can be applied
to all pairwise comparisons in the network. Therefore, when
there is inconsistency in the direct and indirect evidence, the
issue is not whether indirect comparisons are less reliable but
how this inconsistency may be explained. If trials involved
in the indirect comparisons have a better quality and fewer
biases, results from indirect evidence may be more reliable
than those from direct evidence. Heterogeneity in study pro-
tocols (e.g., doses, follow-up time, etc.), patient populations
(age, underlying medical conditions, clinical settings, etc.),
and methods for the assessment of outcomes is likely to
be the source for inconsistency, while random variations
may also cause inconsistency. Therefore, it is imperative to
check consistency in evidence when undertaking network
meta-analysis, and we will explain later in this paper how
to conduct a simple test for checking it. Interpretation of
network meta-analysis should always take inconsistency into
account as the interpretation of traditional meta-analysis
should take heterogeneity into account [21–23]. Assessment
of quality and characteristics of included trials should be
undertaken for network meta-analysis; thus, heterogeneity in
evidence can be explored when inconsistency occurs.

2.3. Statistical Model for Network Meta-Analysis. Different
statistical approaches have been proposed in the literature for
comparing multiple treatments [5, 7]. A fixed effects model
assumes a common effect behind the observed effects, while a
random effects model assumes that the “true” effect follows a
distribution. In this section, we introduce the random effects
model approach as suggested by Whitehead [24]:

f
(
yi jk
)
= u + si + t j + (st)i j , (1)

where yi jk is the outcome for subject k in treatment group j
in study i, u the grand mean, si the study effect, t j treatment
effect, and sti j interaction between study i and treatment j.
The function f defines the relation between the outcome y
and effects of s, t, and st. In meta-analysis, individual patient
data are usually not available, and summary statistics for
treatment effect, such as means or odds, are used instead.
Therefore, (1) can be rewritten as

θi j = u + si + t j + (st)i j , (2)

where θi j is the treatment effects for treatment j in the
study i. For example, θi j may be mean probing pocket
depth reduction, or log odds for dental implant failure in 3-
year followup. The interpretation of (2) is that the average
treatment effect for all treatments is u, and for a specific
treatment arm j in one study, its treatment effects depends
on the study where it is applied (i.e., study characteristics
affect the performance of all treatments in that specific
study), treatment (treatments have different genuine effects),
and the interaction between study and treatment (the effect
of treatment j varies across studies). This model may be
estimated using standard statistical software packages for
random effects models or multilevel models, such as SAS,
Stata, and MLwiN [7, 24, 25].

Statistical models for network meta-analysis become
more complex, when some of the included studies have
more than 2 treatment arms. This is because the differences
in treatment effects within a study with multiple arms are
not independent. Currently, a Bayesian approach to network
meta-analysis developed by researchers in the Bristol and
Leicester Universities is the most popular approach in the
literature and used for the analysis of our example data in the
next section [26, 27]. The differences between non-Bayesian
and Bayesian approaches are mainly computational (i.e., the
statistical algorithms for obtaining the results) rather than
conceptual (i.e., the basic statistical models are the same).

2.4. Bayesian Network Meta-Analyses. Bayesian network
meta-analysis, also known as mixed treatments comparison,
uses a Bayesian statistical framework for a synthesis of direct
and indirect comparisons of different treatments [8–12, 14,
16]. In the Bayesian paradigm, prior beliefs about parameters
in the models are specified and factored into the estimation.
For example, the mean treatment effect may be specified
as 0.5 mm and with a standard error of 2 mm. However, in
most scenarios, a noninformative prior is usually specified,
for example, the mean effect is zero with a extremely large
standard error. Posterior distributions of model parameters
are then derived from the prior information and observed
data [28]. In the Bayesian network meta-analysis, nonin-
formative prior is usually used to minimise the impact of
prior information on final results, as evidence for supporting
a specific treatment effect is generally lacking. A flat prior
distribution such as a uniform distribution or a normal
distribution with a large variance can be specified for a study
on the difference in the therapeutic effects between two treat-
ments; consequently, the posterior distributions were almost
entirely derived from the observed data. For example, we
can specify that the prior distribution of log hazard ratio in
implant survival between two treatments for peri-implantitis
follows a normal distribution with zero mean and variance
of 10,000. Suppose the observed variance of the difference
between periodontal treatments is usually around 3 and
5, within which our prior distribution will consequently
look flat and is therefore noninformative. As the probability
distribution within the range of possible values is the same,
the posterior distribution for the difference in log hazard
ratio is mainly determined by the observed data.

In Bayesian analysis, posterior distributions are usually
quite complex, so software packages use simulations-based
algorithms known as Markov Chain Monte Carlo method to
derive the approximate posterior probability distributions.
Markov Chain Monte Carlo method starts with a set of
initial values and then runs an iteration process to obtain
the approximate posterior distribution. Samples are then
taken from these posterior distributions for calculating each
parameter in the model. Because Bayesian approach is a
simulations-based methodology, it also has several other
advantages. For instance, it can estimate predicted treatment
effects based on the observed data, and it can provide ranking
for treatments, which is especially useful when the differences
between treatments are small. The statistical software for
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Bayesian approach is also more flexible than standard
software in adapting to each unique situation where, for
example, some studies have more than two treatment arms
and where studies have different designs, such as parallel-
group and split-mouth design.

The downside to Bayesian approach is that the statistical
theory and estimation method for Bayesian network meta-
analysis are mathematically advanced, and the software for
Bayesian analysis, such as WinBUGS, has a steep learning
curve. The website of the department of community-
based medicine in Bristol University (https://www.bris.ac.uk/
cobm/research/mpes/mtc.html/) contains many WinBUGS
code examples for network meta-analysis, and researchers
can modify those codes for their analysis.

3. Network Meta-Analysis in Practice

3.1. Example Data. In this section, we used an example to
illustrate how to undertake a network meta-analysis. We
recently conducted a systematic review for the effectiveness
of guided tissue regeneration (GTR), enamel matrix deriva-
tives (EMD), and their combination therapies on the treat-
ment of periodontal infrabony lesions [16]. In this tutorial,
we used a subgroup of RCTs that compared GTR with non-
resorbable or resorbable membranes to flap operation and
that compared GTR with different types of membranes. The
literature search strategy and quality assessment of included
studies can be found in our previous publication. The out-
come variable for our illustration is change in clinical attach-
ment level (CAL), and we found 18 RCTs that compared at
least two of the three treatments (flap operation, GTR with
nonresorbable membranes, and GTR with resorbable mem-
branes) [29–46]. One study [46] was then excluded, because
it did not report the standard errors for the treatment effects
for different GTR treatment groups. One study [35] had
two GTR treatment groups with nonresorbable membranes,
and results from the two groups were combined into one.
Of the 17 studies, only one study [36] compared all three
treatment groups. Table 1 provided a summary for the 17
studies included in the final network meta-analysis.

3.2. Traditional Pairwise Comparisons. Traditional pairwise
comparisons only use the direct evidence, and they should
be undertaken in order to evaluate the consistency in direct
and indirect comparisons. We used statistical software Stata
(Version 12, StataCorp, College Station, TX, USA) for the
analysis, and results were shown in Figure 2. Six studies
compared GTR with nonresorbable membrane (GTR-N)
to flap operation, and results from random effects meta-
analysis showed GTR-N achieved 1.99 mm (95% confidence
intervals (CI): 1.02 to 2.95) greater CAL gain than flap
operation. Twelve studies compared GTR with resorbable
membranes (GTR-R) to flap operation, and results from
random effects meta-analysis showed GTR-R achieved
1 mm (95% confidence intervals (CI): 0.61 to 1.39) greater
CAL gain than flap operation. Both meta-analyses showed
substantial heterogeneity: the Cochrane-Q test is statistically
significant (P < 0.001), and the I-squared was 76% and 85%,

respectively. Funnel plot and Egger test suggested there might
be small study bias in the comparison between GTR-R and
flap operation (Figure 3). Only one study compares the two
GTR treatments, and its results showed that GTR-N achieved
0.6 mm (95%CI: −0.44 to 1.64) greater CAL gain than
GTR-R.

3.3. Bayesian Network Meta-Analysis. Bayesian network
meta-analysis was then undertaken using the software
WinBUGS (MRC Biostatistics Unit, Cambridge, England).
WinBUGS codes used in our analysis were a modification
of codes available on the website of the department of
community-based medicine in Bristol University to accom-
modate continuous outcomes and studies with split-mouth
design. Noninformative priors were used throughout the
analyses. Markov Chain Monte Carlo method with 50,000
burn-in and further 50,000 simulations and with three chains
of different initial values (i.e., 150,000 simulations in total)
was used to obtain medians and 95% credible intervals (i.e.,
the 2.5 and 97.5 percentiles of simulation results), which may
be interpreted as the likely range of the estimated parameter
by excluding the extreme values. Results from the Bayesian
network meta-analysis using the 17 studies were similar
to those from the traditional pairwise comparison: GTR-N
and GTR-R achieved 1.88 mm (95% credible intervals (CrI):
1.15 to 2.63) and 0.99 mm (95% CrI: 0.48 to 1.52) greater
CAL gain than flap operation, respectively; GTR-N achieved
0.88 mm (95% CrI: 0.09 to 1.78) greater CAL gain than GTR-
R. Figure 4 provided comparisons between results from the
Bayesian and traditional meta-analysis.

3.4. Evaluating the Inconsistency between Direct and Indirect
Evidence. Figure 4 showed that the three treatments in our
network formed a loop, and, for every loop, it was possible
to evaluate the consistency between direct and indirect evi-
dence. For example, results from the single trial comparing
GTR-N to GTR-R are direct comparison, whilst results from
the traditional pairwise meta-analysis of the 6 trials compar-
ing GTR-N to flap operation and those from the 12 trials
comparing GTR-R to flap operation provide indirect com-
parisons between GTR-N and GTR-R by using flap operation
as the reference treatment [47]. We denote the difference
in CAL gain for comparing GTR-N to flap operation as
dN-F , the difference in CAL gain for comparing GTR-R to
flap operation as dR-F , and the difference in CAL gain for
comparing GTR-N to GTR-R as dN-R. The indirect compar-
ison between GTR-N and GTR-R is therefore dN-F − dR-F =
1.99 − 1 = 0.99 = dInd

N-R. The inconsistency is the difference
between dN-R and dInd

N-R: δ = dN-R− dInd
N-R = 0.99− 0.6 = 0.39.

A simple statistical test for evaluating the inconsistency is
[47]:

z = δ√
σ2
δ

, (3)

where z is the ratio of δ over its standard error σs and follows
a normal distribution. The variance σ2

δ can be estimated
by σ2

δ = σ2
dN-F

+ σ2
dR-F

+ σ2
dN-R

, where σ2
dN-F

, σ2
dR-F

, and σ2
dN-R

https://www.bris.ac.uk/cobm/research/mpes/mtc.html/
https://www.bris.ac.uk/cobm/research/mpes/mtc.html/
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Table 1: Summary of studies included in the network meta-analysis for CAL gain. SE: standard error; FO: flap operation; GTR-N: guided
tissue regeneration with nonresorbable membranes; GTR-R: guided tissue regeneration with resorbable membranes.

Study Mean SE Treatment Study design

Sculean et al. 2001 [29] 1.70 0.40 FO parallel-group

Sculean et al. 2001 [29] 3.10 0.40 GTR-R parallel-group

Silvestri et al. 2000 [30] 1.20 0.33 FO parallel-group

Silvestri et al. 2000 [30] 4.80 0.66 GTR-N parallel-group

Zucchelli et al. 2002 [31] 2.60 0.15 FO parallel-group

Zucchelli et al. 2002 [31] 4.90 0.29 GTR-N parallel-group

Mayfield et al. 1998 [32] 1.30 0.40 FO parallel-group

Mayfield et al. 1998 [32] 1.50 0.42 GTR-R parallel-group

Tonetti et al. 1998 [33] 2.18 0.18 FO parallel-group

Tonetti et al. 1998 [33] 3.04 0.20 GTR-R parallel-group

Cortellini et al. 2001 [34] 2.60 0.24 FO parallel-group

Cortellini et al. 2001 [34] 3.50 0.28 GTR-R parallel-group

Cortellini et al. 1995 [35] 2.50 0.46 FO parallel-group

Cortellini et al. 1995 [35] 4.70 0.53 GTR-N parallel-group

Cortellini et al. 1996 [36] 2.30 0.23 FO parallel-group

Cortellini et al. 1996 [36] 5.20 0.40 GTR-N parallel-group

Cortellini et al. 1996 [36] 4.6 0.35 GTR-R parallel-group

Paolantonio et al. 2008 [37] 1.50 0.25 FO parallel-group

Paolantonio et al. 2008 [37] 3.10 0.34 GTR-R parallel-group

Stavropoulos et al. 2003 [38] 1.50 0.58 FO parallel-group

Stavropoulos et al. 2003 [38] 2.90 0.54 GTR-R parallel-group

Blumenthal and Steinberg 1990 [39] 0.75 0.06 FO split-mouth

Blumenthal and Steinberg 1990 [39] 1.17 0.03 GTR-R split-mouth

Pritlove-Carson et al. 1995 [40] 1.73 0.36 FO split-mouth

Pritlove-Carson et al. 1995 [40] 1.78 0.45 GTR-N split-mouth

Ratka-Krüger et al. 2000 [41] 4.00 0.77 FO split-mouth

Ratka-Krüger et al. 2000 [41] 4.18 0.64 GTR-R split-mouth

Loos et al. 2002 [42] 1.29 0.31 FO split-mouth

Loos et al. 2002 [42] 1.40 0.28 GTR-R split-mouth

Cortellini et al. 1998 [43] 1.60 0.38 FO split-mouth

Cortellini et al. 1998 [43] 3.00 0.35 GTR-R split-mouth

Chung et al. 1990 [44] −0.71 0.29 FO split-mouth

Chung et al. 1990 [44] 0.56 0.18 GTR-R split-mouth

Mora et al. 1996 [45] 2.55 0.32 FO split-mouth

Mora et al. 1996 [45] 3.85 0.28 GTR-N split-mouth

are variances of dN-F , dR-F , and dN-R, respectively. Using the
results from Figure 2

σ2
δ = σ2

dN-F
+ σ2

dR-F
+ σ2

dN-R

= (0.493)2 + (0.201)2 + (0.532)2 = 0.566,

z = δ√
σ2
δ

= 0.39√
0.566

= 0.39
0.752

= 0.52.

(4)

The P value for z = 0.52 was 0.603, indicating that the incon-
sistency in direct and direct evidence was not significant.

Note that, for any loop, results of testing inconsistency
remain the same, irrespective of the reference group chosen
from the loop.

3.5. Ranking for the Treatments. Because Markov Chain
Monte Carlo method for estimation used by Bayesian anal-
ysis is a simulation-based approach, we can calculate the
rank for each treatment according its performance in each
simulation [48]. In 98.3% of simulations, GTR-N ranked
the best amongst the three treatments, and, in 1.7% of
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Note: weights are from random effects analysis

FO versus GTR-R
Sculean 2001
Mayfield 1998
Tonetti 1998
Cortellini 2001
Cortellini 1996
Paolantonio 2008
Stavropoulos 2003
Blumenthal and Steinberg 1990
Ratka-Kruger 2000
Loos 2002
Cortellini 1998
Chung 1990

FO versus GTR-N
Silvestri 2000
Zucchelli 2002
Cortellini 1995
Cortellini 1996
Pritlove-Carson 1995
Mora 1996

GTR-N vs GTR-R
Cortellini 1996

ID
Study

1.4 (0.29, 2.51)
0.2 (−0.95, 1.35)
0.86 (0.34, 1.38)
0.9 (0.16, 1.64)
2.3 (1.48, 3.12)
1.6 (0.78, 2.42)
1.4 (−0.16, 2.96)
0.42 (0.3, 0.54)
0.18 (−1.62, 1.98)
0.11 (−0.6, 0.82)
1.4 (0.46, 2.34)
1.27 (0.75, 1.79)
1 (0.61, 1.39)

3.6 (2.16, 5.04)
2.3 (1.66, 2.94)
2.2 (0.59, 3.81)
2.9 (2, 3.80)
0.02 (−0.84, 0.88)
1.3 (0.58, 2.02)
1.99 (1.02, 2.95)

−0.6 (−1.64, 0.44)
−0.6 (−1.64, 0.44)

CAL gain (95% CI)

6.56
6.32
11.05
9.27
8.58
8.58
4.34
13.52
3.54
9.45
7.7
11.08
100

14.14
18.95
13.12
17.5
17.76
18.54
100

100
100

Weight
(%)

0−2 −1 0 1 2 3 4

Subtotal (I-squared = 84.6%,

Subtotal (I-squared = 76.1%, )

Subtotal 

P < 0.001

)P < 0.001

Figure 2: Forest plot for the three pairwise meta-analyses: flap operation (FO) versus GTR-N, FO versus GTR-R, and GTR-N versus GTR-R.
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d

Funnel plot with pseudo 95% confidence limits

Figure 3: Funnel plot for the comparison between GTR-R and flap operation. The red line is fitted line from the Egger’s test, indicating a
small study bias as studies with small sample sizes tended to show greater treatment benefit for GTR-R.

simulations, GTR-R ranked the best; this is consistent with
results for point estimates and their credible intervals. Infor-
mation about Ranking is especially useful when the number
of treatments in the network meta-analysis is large and the
differences in their treatment effects are small. Figure 5 shows
the treatment rankings for all three treatments.

4. Practical Issues in Conducting a Network
Meta-Analysis

As shown in our example, the main difference between a
network meta-analysis and multiple pairwise meta-analyses
for comparisons of multiple treatments is that the former use
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GTR-N GTR-N

Flap 
operation

0.88 (0.09 to 1.78)

1.99 (1.02 to 2.95)
1.88 (1.15 to 2.63)

1 (0.61 to 1.39)
0.99 (0.48 to 1.52)

0.6 (−0.44 to 1.64)

Figure 4: Diagram for the network meta-analysis. The width of
lines is proportional to the number of studies included in the pair-
wise comparisons. The estimates for the differences in treatment
effects from traditional meta-analysis were in black, whilst those
from the Bayesian network meta-analysis were in blue.
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Figure 5: Treatment rankings. The bar chart showed the probability
of each treatment for being the best, the second best, and the third
in terms of CAL gain.

both direct and indirect evidence whilst the latter only use
the direct evidence. All meta-analyses require comprehensive
literature search, careful evaluation of available studies, and
attentions to potential biases and heterogeneity. In this
section, we discussed a few practical issues that may arise in
conducting a network meta-analysis in dental research and
provided some recommendations on how to deal with those
issues.

4.1. Inclusion Criteria for Relevant Studies Need to Be Clearly
Explained. Decisions on which studies should be included
in the network meta-analysis are not always straightforward
when undertaking network meta-analysis, because indirect
evidence can be very broad [49, 50]. In our example, we
included RCTs that compared at least two of the three
treatments, GTR-N, GTR-R, and flap operation with the
latter as the reference group. However, in terms of indirect
comparisons, studies that contained one of even none of
the three treatments could also be included. For example,
studies that compared GTR-N to enamel matrix derivatives
(EMD) or EMD to flap operation provided indirect evidence
for comparing GTR-N with flap operation. Consequently,
almost all RCTs on the treatment of periodontal infrabony

lesions might be included in the network meta-analysis,
and a practical decision has to be made for the inclusion
criteria. This is why we decided that only studies that
compared at least two of the three treatments were included.
If the definition for relevant studies is too broad, the
number of included studies will be large and results from
network meta-analysis may be difficult to interpret due to
the excessive heterogeneity and inconsistency in the evidence.
The definition for relevant studies needs to be based on
clinical knowledge; for instance, treatments or drugs that are
either no longer used or available may be excluded. However,
for a group of treatments within a network meta-analysis, the
literature search should be comprehensive so that all eligible
studies are included.

4.2. Data from Trials with Multiple Arms Should Be Appropri-
ately Analysed. When there are more than two treatments in
a trial, the study-specific treatment effects are unlikely to be
independent; for example, suppose a trial has three treatment
arms, GTR-N, GTR-R, and flap operation, and they are car-
ried out by experienced periodontists. Consequently, treat-
ment effects of both GTR-N and GTR-R compared to flap
operation are likely to be greater than those in a trial where
treatments are carried out by a periodontist in training. Spe-
cial care has to be taken to avoid using the same control group
more than once in estimating the differences in treatment
effects between the test groups and the control group [25].
In our example, one study has three treatment arms, and it
was assumed that the correlation between the two treatment
effects differences (i.e., flap operation versus GTR-N, and flap
operation versus GTR-R) was 0.5 following the suggestion
by Lu and Ades [27]. The impact on the network meta-
analysis of disregarding the correlations among treatment
effects depends on the number of studies with more than two
treatment arms and the strength of those correlations.

4.3. Possible Reasons for Any Observed Discrepancies between
Direct and Indirect Evidence Should Be Investigated. In our
example, there is no significant inconsistency in direct
and indirect evidence, and, consequently, the discrepancy
between results from traditional pairwise and Bayesian
network meta-analyses is small. If the inconsistency test is
significant, the discrepancy is likely to be large, as results
from the Bayesian analysis are a combination of direct and
indirect evidence. Substantial discrepancies usually indicate
the heterogeneity, and similarity assumptions as discussed
in Section 2.1 may be questionable, and researchers need
to investigate the sources of heterogeneity. For instance,
suppose treatment effects are related to baseline disease
severity; if patients in A versus placebo trials have more
severe baseline disease than those in B versus placebo trials,
indirect comparisons will show that A seems to have greater
treatment effects than B, even if there is no difference
between A and B. In other scenarios, direct evidence compar-
ing A with B may have a dubious quality and suffer a greater
bias; consequently, indirect evidence becomes more reliable
[51]. Heterogeneity is an issue that should be investigated
in any meta-analysis (including both pairwise and network
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Table 2: Results from a hypothetic study with two treatment
groups. The outcome is the mean clinical attachment level (CAL)
and the standard deviation in brackets.

CAL Baseline Followup at 12 months Change

Test 10.5 (1.9) 6.2 (1.5) 4.3 (1.3)

Control 10.3 (1.8) 8.4 (1.6) 1.9 (1.1)

meta-analyses), and, when there is inconsistency in direct
and indirect evidence, characteristics of studies involved
in comparisons should be carefully evaluated; if feasible, a
meta-regression or subgroup analysis should be undertaken
to explore the sources of heterogeneity [21–23].

4.4. Missing Information May Be Imputed Using Simple Meth-
ods. The most common missing information encountered in
conducting a meta-analysis in dental research is the standard
errors for the mean treatment effects which are usually used
as the weights for combining the treatment effects reported
by different studies, when the outcomes are continuous
variables such as CAL. For binary outcomes, such as success
or survival, treatment effects and its confidence intervals are
derived from the numbers of patients in different categories,
for example, the numbers of patients with or without success
in different treatment groups. When the outcome is a
continuous variable, we need the mean and its standard error
for meta-analysis. The most common scenario is that a study
reported the mean treatment effects and their standard errors
without reporting the difference in treatment effects and its
confidence intervals. Table 2 shows results from a hypothetic
study with two treatments to illustrate how to impute the
missing standard errors.

The change in the outcome CAL for the test group is
4.3 mm with standard deviation 1.3 mm, and the change
in the outcome CAL for the control group is 1.9 mm
with standard deviation 1.1 mm. Suppose this study uses a
parallel-group design and has 10 patients in each group; the
mean difference in treatment effects between the test and
control groups is 4.3− 1.9 = 2.4, and its standard error (σD)
can be obtained by using the following formula [52]:

σD = S

√(
1
nT

+
1
nC

)
, (5)

where

S =
√√√√
[

(nT − 1)s2
T + (nC − 1)s2

C

(nT + nC − 2)

]
, (6)

nT and nC are the number of patients in the treatment and
control groups, respectively, and ST and SC are the standard
deviations of treatment effects for the treatment and control

groups, respectively. Using the information in Table 2, we can
obtain the pooled standard deviation S:

S =
√√√√
[

9(1.3)2 + 9(1.1)2

18

]
=
√

1.69 + 1.21
2

= 1.204,

σD = 1.204

√(
1

10
+

1
10

)
= 0.54.

(7)

The t-value for the mean difference in treatment effects
between the test and control groups is therefore 2.4/0.54 =
4.44, and the P value is 0.0003.

In a study with parallel-group design, the two treatments
effects are supposed to be independent, but, in a study
with split-mouth design (e.g., two teeth of the same patient
are randomly assigned to the test and control groups), the
treatment effects are likely to be correlated [53] and (6) is no
longer suitable for obtaining the pooled standard deviation
S. Instead, we use the following formula to obtain S:

σD = S√
n
=
√

s2
T + s2

C − 2rsTsC
n

, (8)

where n is the sample size and r is the correlation coefficient
between the two treatment effects. The only missing infor-
mation is r, and we have to make an informed guess about it.
Lesaffre et al. [53] suggested using r = 0.25 for split-mouth
study. Using Table 2 and n = 10,

σD = S√
n
=
√

(1.69 + 1.21− 0.5∗ 1.3∗ 1.1)
10

= 0.47.

(9)

Sometimes, a study only reported the means and standard
deviations for the baseline and follow-up measurements for
each group, and we need to calculate the means and standard
deviations for change in the outcome for both groups first
before we can apply either (6) or (8). Suppose x1 and x2 are
the baseline and follow-up CAL for the test group, and d is
the difference in CAL between x1 and x2. The mean of d is the
difference in the means of x1 and x2, and the variance of d(s2

D)
can be obtained using the following formula: s2

D = s2
1 + s2

2 −
2rs1s2, where s1 and s2 are the standard deviations for x1 and
x2, respectively, and r is the correlation coefficient between
x1 and x2. Again, we need to make an informed guess about
r, and r = 0.5 seems to be a reasonable one [54].

Imputing missing values can increase the number of
included studies in a meta-analysis, and this is especially
useful for a network meta-analysis when the number of
treatments in comparisons is large but the number of studies
is relatively few.

5. Conclusion

Network meta-analysis is an extension of pairwise compar-
isons of treatments to comparisons of all available treatments
by incorporating both direct and indirect evidence. This new
methodology has become widely adopted by meta-analysts
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in medical research and has been proven to be a very useful
tool for evidence synthesis. The use of more sophisticated
statistical approaches such as network meta-analysis can
improve the efficiency in comparative effectiveness research
and in the quality of decisions making. This tutorial aims
to bring this new methodology to the attentions of dental
researchers and to facilitate its adoption but also highlight
several important issues in conducting and interpreting a
network meta-analysis. Further information and technical
details can be found in [3, 4, 25–27]. The statistical theory
behind network meta-analysis is nevertheless complex, so
we strongly encourage close collaboration between dental
researchers and experienced statisticians when planning and
conducting a network meta-analysis.
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