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Abstract
We report the effectiveness of laser-induced breakdown spectroscopy (LIBS) in probing the
content of pharmaceutical tablets and also investigate its feasibility for routine classification. This
method is particularly beneficial in applications where its exquisite chemical specificity and
suitability for remote and on site characterization significantly improves the speed and accuracy of
quality control and assurance process. Our experiments reveal that in addition to the presence of
carbon, hydrogen, nitrogen and oxygen, which can be primarily attributed to the active
pharmaceutical ingredients, specific inorganic atoms were also present in all the tablets. Initial
attempts at classification by a ratiometric approach using oxygen to nitrogen compositional values
yielded an optimal value (at 746.83 nm) with the least relative standard deviation but nevertheless
failed to provide an acceptable classification. To overcome this bottleneck in the detection
process, two chemometric algorithms, i.e. principal component analysis (PCA) and soft
independent modeling of class analogy (SIMCA), were implemented to exploit the multivariate
nature of the LIBS data demonstrating that LIBS has the potential to differentiate and discriminate
among pharmaceutical tablets. We report excellent prospective classification accuracy using
supervised classification via the SIMCA algorithm, demonstrating its potential for future
applications in process analytical technology, especially for fast on-line process control
monitoring applications in the pharmaceutical industry.
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1. Introduction
Laser Induced Breakdown Spectroscopy (LIBS) is an atomic emission based technique
where a pulsed laser light is focused on to the sample producing hot plasma [1–3]. The
resultant plasma plume consists of electrons and ions of the sample constituents which emit
radiation as the plasma cools down. Typically, several peaks are observed in the LIBS
spectra in the 200–1000 nm spectral region. The emission wavelength is characteristic of
atoms/ions present in the plasma and area under the specific curve(s) (i.e. intensity of the
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specific spectral features) is proportional to concentration(s) of the analyte(s) contributing to
it. In some cases molecular emissions are also be observed [4–5]. The standard atomic and
ionic emission wavelengths are tabulated in NIST database [6]. Although this technique was
discovered a few decades back, it has received a great deal of attention from researchers in
the past few years because of the many advantages it offers as a spectroscopic analytical
tool. One of the most attractive features of LIBS is the lack of substantial sample preparation
requirements which, considerably reduces the typical time needed for comparable detection
processes. Samples in any form, be it solid, liquid or gas, can be used for the LIBS
experiments. Solid samples can be used in their original form directly for the experiment.
Furthermore, the total time needed to perform an experiment and acquire the results is very
small. Moreover, with the availability of high power lasers and sensitive detectors it is now
possible to perform LIBS experiments on samples located at few meters of distance (i.e.
stand-off detection) [7]. These attributes make this technique suitable for on-site and remote
characterization, which is of significant interest in a variety of industrial applications.

Particularly, on-site LIBS based detection, combined with chemometrics, can expedite
quality assurance of the important pharmaceutical products. All pharmaceutical tablets
typically comprise a mixture of organic active substances (also known as active
pharmaceutical ingredient (API)) and excipients, which may have various inorganic
elements present as additives or impurities. Importantly, LIBS can detect both organic and
inorganic part of the sample in a single step, which is not possible in other techniques such
as ICP-OES or ICP-MS. The knowledge of organic part of the sample can be valuable in the
drug discovery stage as well as in the production process of the drugs. Additionally, in cases
of counterfeit pharmaceutical drugs, LIBS can be potentially used for extracting formulation
information and, importantly, for screening them.

In this context, despite LIBS investigations of several materials have been reported in the
literature, detection and compositional analysis of pharmaceutical samples has received
much less attention [8–10]. In this paper, we investigate the feasibility of LIBS for routine
pharmaceutical tablet investigation for compositional information and discrimination among
tablets procured over the counter from local pharmacy. Here, we first report our
observations of the LIBS-based elemental analysis on common pharmaceutical tablets
purchased over-the-counter. In particular, we note that in addition to the presence of carbon,
hydrogen, nitrogen and oxygen (as a part of the pharmacologically active substances), each
sample exhibited the presence of specific inorganic atoms such as iron, manganese and
calcium. Further, we attempted to classify these tablets into their corresponding functional
groups based on a ratiometric approach, using three different ratios of oxygen to nitrogen
peak intensities. Finally, we incorporated multivariate chemometric analysis to exploit the
multi-channel spectral dataset. Using PCA and SIMCA, the ability of our LIBS-based
approach to correctly discriminate the tablets is demonstrated based on prospective
classification results. Given the intrinsic advantages of these multivariate techniques in
improving prediction accuracy and precision while reducing the possibility of spurious
correlations arising from redundancies and outliers in the spectral dataset, we anticipate that
the combination of LIBS experimentation and chemometric algorithms can provide a
powerful future addition to the existing toolbox for process analytical technology, especially
for rapid on-line process control monitoring applications in the pharmaceutical industry.

2. Materials and Methods
2.1 Experimental

The over-the-counter drug samples were purchased from a local pharmacy. The details of
the samples are provided in Table 1. For the coated samples, the spectra were first recorded
directly with the coating. (Here, coated samples refer to the tablets that are available with
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colored coatings on them.) The protocol outlined in Missaghi et al. [11] was used for
removal of coating ensuring the relative flatness of sample. The potential variations
introduced by this sample preparation technique are elaborated in the “Results and
Discussion” section.

To ensure that each laser pulse hits a fresh portion, the samples were translated using a
motorized linear X-Y translation stage. Laser pulses with the energy of 25 mJ from a second
harmonic of Nd:YAG laser at 532 nm (7 ns pulse width, 10 Hz repetition rate) were focused
on to the sample using an 80 mm convex lens. The signal was collected using a lens system
and was coupled to the spectrograph (Mechelle ANDOR ME5000, coupled to an iSTAR
DH734 ICCD). The resolving power of the spectrometer used was 5000. Spectra were
recorded with an integration time of 1 µs and a delay of 0.5µs. The delay refers to the time
difference between the incidence of the laser pulse on the sample and opening of the ICCD
gate. The Pockel’s cell output of the laser triggered a SRS delay generator, which in turn
provided a TTL pulse to trigger the ICCD.

A set of ten tablets were used for each of the drug samples. Two spectra from each tablet
were acquired after taking average over ten consecutive pulses. In this way, twenty spectra
for each sample were recorded. However, a subset of these spectra for each sample (as listed
in Table 1) were used for chemometric analysis after accounting for threshold signal-to-
noise ratios and outlier rejection using student’s t-test employing the Mahalanobis distance
function [12–13]. No other data pre-processing was performed prior to chemometric
analysis to avoid the potential incorporation of spurious effects into our calibration models.

2.2 Multivariate Chemometric Methods
2.2.1 Theory—As is well-known in the field of analytical chemistry and process
technology, simple ratiometric approaches, where the relative intensity of spectral lines is
monitored, often do not provide acceptable classification results. To overcome this difficulty
and to utilize the full extent of multi-channel data available, multivariate chemometric
algorithms can be employed using which constituent concentrations can be modeled with the
intent of predicting the same in prospective samples. For our application of discrimination of
over-the-counter pharmaceutical samples using LIBS, we employ an unsupervised (principal
component analysis, PCA) as well as a related supervised (soft independent modeling of
class analogy, SIMCA) classification method [14–16]. Previous investigators have also
employed these [17–21] as well as other chemometric methods, including partial least
square discriminant analysis [22–23], neural networks [17,24] and discriminant function
analysis [25–26], for processing LIBS data acquired from a diverse spectrum of samples
ranging from high energy materials to rocks. The working concepts and the primary
advantages of using PCA and SIMCA are briefly stated in the following paragraphs.

Principal component analysis (PCA) is one of the most extensively used multivariate
statistical techniques in chemometrics and represents a powerful tool for exploratory data
analysis and for making predictive models [27]. The linear multivariate PCA models are
developed using orthogonal basis vectors (eigenvectors), which are called principal
components, thereby reducing the high-dimensional LIBS data onto a lower dimensional
space. In PCA one performs a linear mathematical transformation of the data into a new
coordinate system such that the largest variance lies on the first axis and decreases thereafter
for each successive axis. For the analysis presented in this article, PCA can be thought of as
an unsupervised classification technique that separates the samples into clusters based on the
variance of their corresponding LIBS spectra. Ideally, the separation obtained based on PCA
analysis of LIBS spectra would correspond to the separate classes of over-the-counter
pharmaceutical drugs tested in this study.
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In contrast to PCA, SIMCA is a supervised classification technique. It is worth noting that
the SIMCA method incorporates the application of PCA for dimensionality reduction [28–
29]. Because of its supervised nature, it necessitates a training data set consisting of samples
with a set of attributes (e.g. LIBS spectra) and, importantly, their class membership (e.g.
type of pharmaceutical tablet). The primary idea of soft modeling refers to the fact that the
classifier can identify samples as belonging to multiple (overlapping) classes and is not
constrained to producing a classification of samples into strictly discrete (non-overlapping)
classes. Importantly, SIMCA enables independent modeling of the classes as opposed to an
overall variance modeling as performed in PCA. (The optimization of number of principal
components retained in our models is further detailed in the ensuing Data Analysis section.)
The class distance is estimated as the geometric distance (e.g. mean orthogonal distance)
from the respective PC models. SIMCA-based predictive classification is subsequently
performed by comparing the residual variance of the prospective sample with the mean
residual variance of the training samples belonging to the specific class.

2.2.2 Data Analysis—For both of the aforementioned methods, 85 spectral datasets
acquired from pharmaceutical samples were used for analysis. Each spectrum contained
25505 information pixels and further variable selection was not pursued in the analysis
presented here. First, PCA models were created based on the entire spectral dataset using the
Statistics Toolbox of MATLAB R2010b (Math Works, Natick, MA). Since the constructed
PCA models were used only for visualization purposes (rather than for class prediction), no
optimization was performed for determining the number of principal components to be
retained (unlike for SIMCA, as described below).

SIMCA was performed on the spectral dataset in conjunction with the class membership
information. In this investigation, 30 test samples (5 samples per each of the 6 classes of
tablets) were randomly chosen and kept aside for prospective application. The construction
of an independent test set is a standard chemometrics approach employed to diminish and/or
examine for the presence of spurious correlations. Subsequently, the 55 training samples
were used to develop the SIMCA models using a modified version of the LIBRA toolbox for
MATLAB originally developed by Verboven et al. [30]. (It is worth emphasizing that
separate PCA models were developed for each class of drug on the corresponding 55
training samples per iteration and that these PC models were not linked to the previous PCA
implementation on 85 samples, which was only used for visualization purposes.) To ensure
the reproducibility of the classification results, 100 iterations were performed to obtain an
average value of the classification accuracy (where for every iteration re-splitting of the
entire 85 sample dataset into training (55) and test (30) samples was performed). A key
point in SIMCA model development is to decide how many of the principal components
should be retained in the subsequent analysis. In an ideal situation, this number should equal
the number of sample constituents. However, in real life applications (such as in our study),
the number is rarely known a priori; moreover, correlations between sample constituents,
system drift and noise also play a key role in the final number of principal components
retained in real world situations. Here, we employed a standard leave-one-out cross-
validation procedure to determine the number of PCs for each PCA model. The optimal
number of PCs was observed to be in the range of 3–5 for each of the classes under
investigation.

Finally, we employed equally weighted scaled orthogonal and score distances for
assignment of class membership. In addition, an unclassification criterion was defined to
prevent the misclassification of potential samples that were not close to the center of any of
the PCA models. Similar to the method outlined in the study performed by Sirven and co-
workers [31], we assumed that the distances of training sample to center of the
corresponding class followed a normal distribution. This normal distribution was then
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employed to compute the probability of class membership of any test spectrum, given its
distance to the center of the different classes. In the event that the membership probability
for every class was observed to be less than 5%, we assigned it as an "unclassified" sample
and removed it from further classification analysis. This protocol helps reduce the number of
misclassifications and the decision threshold (i.e. statistical significance of 5%) can be tuned
depending on the requirements for the specific monitoring technology.

3. Results and Discussion
3.1 Spectral Analysis

A representative LIBS spectrum for each of the six drug samples is plotted separately in Fig.
1(a)–(f)for the sake of clarity. All the spectra exhibited peaks corresponding to nitrogen,
oxygen, hydrogen and carbon. These lines can be attributed to the primary components
responsible for the action of the tablets (active pharmaceutical ingredients), which are
organic molecules. Though the primary component of Brufen and Vitamin C do not contain
any nitrogen in them, yet their LIBS spectra show the nitrogen peaks. The possible reason
for observing nitrogen peaks in these samples could be the presence of other ingredients
such as flavoring and coloring agents that are added to the pharmaceutical tablets. The
spectra also exhibited peaks corresponding to iron, manganese, sodium, vanadium,
magnesium, titanium and calcium. Except for vanadium, all the elements were detected
when separate measurements were performed using ICP-OES (data not shown here). While
sodium and iron could be additives, we suspect that the other metals are contaminants.
Differences were also observed with respect to coated and uncoated samples. While both the
recordings showed peaks corresponding to carbon, hydrogen, oxygen and nitrogen, the
coated spectra showed strong peaks corresponding to titanium. Table 2 shows the list of the
elements observed in the spectra and their corresponding emission wavelengths.

3.2 Ratiometric Analysis
We explore the potential of the ratiometric approach in identifying the tablets based on their
respective oxygen to nitrogen intensity ratios. This approach was previously shown to yield
reasonable identification of organic nitro-compounds, namely 4-nitroaniline and 4-
nitrotoluene, by Rai et al [32]. The oxygen peak at 777 nm (O) and nitrogen peaks at 742.36
nm (N1), 744.23 nm (N2), and 746.83 nm (N3) were used for evaluating the O/N ratios. The
oxygen peak at 777 nm is a triplet and was not fully resolved in our LIBS spectra. Three
different O/N ratios were calculated corresponding to the peaks of nitrogen at O/N1O/N2
and O/N3. A direct evaluation of the O/N intensity ratios by considering the areas under the
peaks resulted in very large values. This is understandable as density of the species is
represented by I/Ag, where I is the observed area under the peak, A is the transition
probability and g is the degeneracy of the upper energy level involved in the transition. As
the observed oxygen peak at 777 nm is a triplet, it was deconvolved using a triple Lorentzian
fit. Fig. 2 shows a typical fit for the nitrogen using a Lorentzian fit and oxygen with a triple
Lorentzian.

I/Ag was calculated for three peaks corresponding to 777.19 nm (I/Ag)1, 777. 41 nm (I/Ag)2
and 777. 53 nm (I/Ag)3 for oxygen. The values of A and g were taken from NIST database
[6]. I/Ag for oxygen was taken as the sum of these three ratios [(I/Ag)oxygen = (I/Ag)1+(I/
Ag)2+(I/Ag)3]. The ratio of (I/Ag)oxygen/(I/Ag)nitrogen was taken with N1N2 and N3. Table 3
shows the O/N ratios for all the samples. The ratios for all the spectra were first calculated.
An elimination of ratios outside the mean±standard deviation was performed. The ratios
reported in the table are the averages over this set. We observed that except for Paracetamol
and Vitamin C for which RSD were less than 10, the ratios showed a large variation. This
could be a result of inhomogeneity in the sample consisting of various additives including
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the matrix. It was also observed that there is a general increasing trend of RSD from O/N3 to
O/N1. In order to assess the effect of the ambient air, which also contains the oxygen and
nitrogen, the spectra for Paracetamol were recorded under argon gas purging. This resulted
in all the three ratios becoming close to each other and close to the actual value of 2. A
CHNO analysis (Thermo Finnigan flash EA 112 analyzer) of Paracetamol also yielded a
ratio of 1.99. Interestingly, this ratio matches very well with the O/N ratio of the primary
component in Paracetamol as well as the value obtained by the LIBS spectra with argon
purging.

3.3 Multivariate Chemometric Analysis
To enhance the accuracy for LIBS-based pharmaceutical tablet classification beyond that
obtained by standard ratiometric approaches, PCA and SIMCA were employed. PCA was
first performed on the entire 85 sample dataset for understanding the critical spectral
features in the LIBS dataset as well as for probing the cluster behavior of the pharmaceutical
samples.

Figure 3 shows the first three principal components, which reveal the dimensions that
explain most of the variance present in the dataset. These components, while abstract in
form as they are obtained through a mathematical change of basis (e.g. via singular value
decomposition), are useful in indicating the informative spectral features associated with the
different samples. Here, we observed that the first PC appears strikingly similar to the
glucosamine spectra (compared to Fig. 1) and the corresponding magnitudes of the scores
for the glucosamine samples are larger than that for the other samples. Specifically, the
distinctive calcium lines appear solely in PC1. On the other hand, PC2 shows a substantive
influence of manganese alongside the contributions of the API elements such as carbon,
hydrogen, nitrogen and oxygen. This is reflected in the higher PC scores for the Paracetamol
and vitamin C samples. The first two PCs explain 90.67% of the total variance in the dataset
(as computed from the cumulative contribution of their eigenvalues). After incorporating the
third PC, this metric rises to 96.29%. The relatively less significance of the third PC can also
be visualized from Fig. 3as some of the spectral features are repetitions from the previous
PCs. The subsequent PCs (i.e. fourth, fifth etc.) are fairly noisy and their incorporation
deteriorates the quality of the model.

Fig. 4 shows the PC scores plot for LIBS analysis of the six different classes of
pharmaceutical drugs (for the aforementioned first three PCs). Clearly, the samples of each
class tend to cluster together and in almost all cases are fairly well separated from the other
classes. Of these, Vitamin C and Paracetamol appear to be the easiest to distinguish based on
their distance from the other classes. It is also interesting to probe the dispersion of the
different classes along the PC directions. For example, Vitamin C and glucosamine tablets
show a considerably larger dispersion as compared to both the coated and uncoated Brufen
samples which exhibit a more uniform pattern. This provides a novel insight into the tablet-
to-tablet intra-class variations (e.g. arising from the heterogeneity of each tablet
composition). Additionally, we can also observe outliers based on the spectral data, notably
one coated glucosamine sample and two Paracetamol samples as seen in Fig. 4. Based on
these results we can reasonably infer that: (a) the LIBS spectra provides vital information
which can be used in routine sample monitoring for pharmaceutical tablets (or at least the
ones used in this study); and (b) the PCA classification is able to identify the primary
elements which help in distinguishing the various classes, which corresponds to the existing
knowledge of the sample composition. The latter proves that there is a direct causality
between PCA classification and chemical basis of the samples, rather than an arbitrary
(potentially spurious) correlation which cannot be successfully reproduced in prospective
application. Nevertheless, while PCA is a valuable tool for recognizing similarities between
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sample types, it does not automatically provide class memberships due to its unsupervised
nature. To assign class membership to the tested tablets, we have employed SIMCA.

As mentioned earlier, SIMCA computes a PCA model for each of the six classes of
pharmaceutical samples and identifies the prospective samples based on their distance to the
respective models. Based on this key concept and the previously stated unclassification
criterion, class memberships were assigned to 30 prediction samples for each iteration. Fig.
5 shows a bar plot visualization of SIMCA classifications for a representative set of 30 test
samples (for a specific iteration). In this representative case we observed that none of the
samples were unclassified (unclassified samples are assigned a class membership of 0) and
three of them are misclassified.

To obtain a more comprehensive sense of the results, we computed the average rate of
unclassification, misclassification and correct classification over 100 iterations (Table 4).
We observe that on average we obtain acceptable rate of correct classification for all the
classes of pharmaceutical samples (>90%). In addition, rate of unclassification is fairly low
indicating that the acquired data consisted of few outliers and the training model was
sensitive to all remaining samples (i.e. all but the outliers). We observed that the
unclassification is relatively higher for the coated glucosamine (5.8%) and Paracetamol
(3.2%) samples. This is not surprising based on the PCA scores plot (Fig. 4), where one
could clearly observe one coated glucosamine and two Paracetamol spectral outliers.
Furthermore, we find that the Paracetamol, Vitamin C and coated glucosamine samples are
almost perfectly classified (i.e. there is no misclassification), which is again consistent with
the clear separation of these samples observed in the PCA scores plot (Fig. 4). The others,
namely the Brufen (both coated and uncoated) and uncoated glucosamine sample, are
significantly more difficult to classify resulting in higher errors (7.6%, 6.2% and 8.8%,
respectively).

An interesting point in this regard is the striking difference in classification accuracy for the
coated and uncoated samples, both for Brufen and glucosamine. The significantly better
classification accuracy for the coated samples (93.4% and 94% correct classification for
Brufen and glucosamine, respectively, compared to 90.8% and 90.4% for their uncoated
counterparts) can be primarily attributed to the distinctive coating composition of these
tablets. Coating is mostly made of titanium oxide, which is evidently absent in the uncoated
tablets as was shown in Fig. 1. Alternately, one may attribute the superior classification
results obtained for coated samples to experimental errors/inaccuracies in removal of the
coating from the respective tablets. Improper removal of the coating may lead to non-
uniform surfaces (i.e. roughness) at the microscopic scale, which may in turn result in noise
in the LIBS measurements. In addition, the residual coating elements could contaminate the
signal acquired at the LIBS spectrometer due to their (undesirable) presence in the plasma
plume of the uncoated samples.

Finally, we note that for the Brufen (coated and uncoated) and the uncoated glucosamine
tablets, the variance between the classes is of the scale of the variance within the respective
classes, thereby impeding prospective SIMCA analysis. This problem can be potentially
solved by employing an alternate classification method such as PLS-DA (partial least
squares based discriminant analysis) in the future [33]. PLS-DA seeks to establish the
maximum separation between classes as opposed to PCA which does not discriminate
between class-to-class and intra-class variability in explaining the total variance in the
dataset. Consequently, PLS-DA may present a better alternative when these two variability
numbers are of the same order, as observed above for Brufen and uncoated glucosamine
samples.
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In summary, we have shown the potential of LIBS as an alternate method for in-line
monitoring and analysis of different pharmaceutical drugs. The current study lays the
feasibility foundation for further investigations of the robustness of the proposed approach
as well as an evaluation of its true value with respect to conventional approaches such as
ICP-OES. In addition, we envision that incorporation of feature selection approaches will
lead to a significant reduction in computation time and a possible increase in accuracy and
robustness of the classification models. This may also result in a concomitant simplification
of the necessary hardware for LIBS data acquisition and will form the core of our future
studies.

4. Conclusions
In this report, we have studied the effectiveness of routine monitoring of commercial
pharmaceutical tablets using a combination of LIBS and chemometric methods. Oxygen to
nitrogen ratios were calculated based on the spectra but nevertheless failed to provide an
acceptable classification. Ratios for Paracetamol and vitamin C showed a RSD of less than
10 with O/N3 RSD for vitamin C being 4.03. Large variations in the calculated ratios are a
result of multiple components being present in the tablet. The observed O/N ratios can be
further improved by performing the experiment in inert gas purging. In contrast to the
ratiometric approach, PCA exhibited a clear visual diagnosis of the different classes of
samples/spectra and also provides a physical interpretation of the classification results by
identifying the key components that explain the variance in the dataset. Finally, SIMCA was
employed for automatic prediction modeling with an average rate of approximately 94%
correct classification. Based on the results obtained in this study, we expect that the
combination of LIBS and chemometrics can be used successfully for quality control and
routine monitoring of pharmaceutical tablets. Further, this combination can be used to
screen and establish qualitative formulation differences between suspect counterfeit and
authentic tablets, as long as appropriate training of the classification models is undertaken.
In addition, the proposed approach is broad and general enough to be extended to similar
(and otherwise intractable) applications in process control and on-site reaction monitoring.
We envision that future work in the area of developing more robust classification methods,
which can suitably treat even non-representative prospective samples, will enhance the
feasibility of this approach in the industrial domain.
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Fig. 1.
LIBS spectra of the samples used in the study. a) Paracetamol b) Vitamin C c) Brufen d)
coated Brufen e) Glucosamine f) Glucosamine-coated. OI refers to neutral oxygen and CaII
refers to singly ionized calcium.
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Fig. 2.
a) Oxygen and b) Nitrogen LIBS peaks from the Paracetamol spectra. The dots represent the
experimental points and the solid lines are the Lorentzian fits.
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Fig. 3.
The first three principal components corresponding to the entire spectral dataset acquired
from the pharmaceutical samples. These three principal components, combined, explain
96.29% of the net variance in the dataset.
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Fig. 4.
PC scores plot of the first three principal components for the spectral dataset acquired from
the six classes of pharmaceutical samples.
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Fig. 5.
Bar plot of SIMCA classifications for a representative set of 30 test samples. The test
samples are ordered such that each successive subset of 5 samples belong to a different
class, as shown by the different bar coloring. Predicted Class ID are as follows: 0:
unclassified; 1: Brufen; 2: Brufen (coated); 3: glucosamine; 4: glucosamine (coated); 5:
Paracetamol; and 6: Vitamin C. Here, three misclassifications are observed, one
corresponding to coated Brufen and two corresponding to glucosamine.
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Table 1

Details of pharmaceutical samples investigated in this study

Sl.
No

Sample Formula of
the primary
component

Ingredients No. of
spectra

1 Brufen C13H8O2 Ibuprofen, Erythosine 15

2 Brufen-coated C13H8O2 Ibuprofen, Erythosine, titanium dioxide 15

3 Glucosamine C6H13NO5 Glucosamine sulphate, chondroitin suplhate 10

4 Glucosamine-coated C6H13NO5 Glucosamine sulphate, chondroitin suplhate, titanium dioxide 10

5 Vitamin C C6H8O6 Sodium ascorbate, ascorbic acid 15

6 Paracetamol C8H9NO2 Paracetamol 20
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Table 2

Different peaks observed in the LIBS spectra and the corresponding atomic elements

S. No. Element Wavelength (nm)

1 Carbon 247.85

2 Iron 279.78,283.59,285.18

3 Manganese 279.10,279.48,380.96

4 Sodium 589.0,589.60

5 Vanadium 251.16, 572.68, 635.70

6 Oxygen 777.19,777.41,777.53,822.18,822.76

7 Nitrogen 742.36,744.23,746.83,818.48,818.80,821.63,824.23

8 Hydrogen 656.27

9 Magnesium 518.36

10 Titanium 394.8, 395.6, 395.8, 399.8

11 Calcium 393.37, 396.86
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Table 3

Oxygen to nitrogen ratios with the oxygen peak at 777 nm (O) and nitrogen peaks at 742.36 nm (N1), 744.23
nm (N2), and 746.83 nm (N3)

S No. Sample O/N1 O/N2 O/N3

1 Brufen 3.08±1.28 2.55±0.37 1.95±0.15

2 Brufen-coated 2.91±0.50 2.51±0.34 2.37±0.41

3 Glucosamine 2.66±0.75 3.15±0.46 2.62±0.31

4 Glucosamine-coated 3.65±1.81 2.13±0.28 2.57±0.20

5 Vitamin C 2.83±0.22 2.74±0.27 2.23±0.09

6 Paracetamol 2.32±0.21 2.23±0.15 1.80±0.09

Paracetamol – Argon purging 1.86±0.2 1.82±0.12 1.93±0.08
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Table 4

SIMCA classification results obtained from 30 test samples over 100 iterations

Average rate of … Correct classification Wrong classification Unclassification

Brufen 0.908 0.076 0.016

Brufen-coated 0.934 0.062 0.004

Glucosamine 0.904 0.088 0.008

Glucosamine-coated 0.940 0.002 0.058

Paracetamol 0.968 0 0.032

Vitamin C 0.988 0 0.012

Average 0.9403 0.038 0.0217
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