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Abstract
Record linkage is the task of identifying records from disparate data sources that refer to the same
entity. It is an integral component of data processing in distributed settings, where the integration
of information from multiple sources can prevent duplication and enrich overall data quality, thus
enabling more detailed and correct analysis. Privacy-preserving record linkage (PPRL) is a variant
of the task in which data owners wish to perform linkage without revealing identifiers associated
with the records. This task is desirable in various domains, including healthcare, where it may not
be possible to reveal patient identity due to confidentiality requirements, and in business, where it
could be disadvantageous to divulge customers' identities. To perform PPRL, it is necessary to
apply string comparators that function in the privacy-preserving space. A number of privacy-
preserving string comparators (PPSCs) have been proposed, but little research has compared them
in the context of a real record linkage application. This paper performs a principled and
comprehensive evaluation of six PPSCs in terms of three key properties: 1) correctness of record
linkage predictions, 2) computational complexity, and 3) security. We utilize a real publicly-
available dataset, derived from the North Carolina voter registration database, to evaluate the
tradeoffs between the aforementioned properties. Among our results, we find that PPSCs that
partition, encode, and compare strings yield highly accurate record linkage results. However, as a
tradeoff, we observe that such PPSCs are less secure than those that map and compare strings in a
reduced dimensional space.
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1. Introduction
Information fusion is a process in which disparate, but related, pieces of data are combined
in a meaningful way. The process of record linkage corresponds to a class of information
fusion in which records2 held by multiple data owners are compared to identify and
aggregate records referring to the same entity [1]. Record linkage is a crucial first step in
data processing due to the fact that it enriches data quality, prevents duplication, and
ultimately enables more accurate analysis [2]. Record linkage, however, is not always
possible due to various societal concerns, as well as regulatory constraints, with respect to
personal privacy [3]. As a result, the process of privacy-preserving record linkage (PPRL)
has been established as a variant of the task in which the data owners can perform record
linkage without revealing identifying information about the entities [4].

1.1. Applications and Opportunities
PPRL can enhance or enable novel record linkage applications in many different domains.
One particular domain of interest is the biomedical realm, where the sharing of patient
information is critical for research purposes [5]. The U.S. National Institutes of Health
(NIH), for instance, requires that patient information used in federally funded studies must
be shared for reuse in a “de-identified” form [6]. In other words, such data must not be
shared with personal identifiers. Now, imagine that a life science researcher wishes to
conduct a study on the relationship between two distinct biomedical attributes (e.g., DNA
sequence and disease status) and intends to use such shared data. It is possible for patients to
visit multiple healthcare providers, where their data is collected and applied in distinct
studies [7]. If a patient's information is duplicated, queries issued across disparate
submissions would result in overestimated correlations. On the other hand, if a patient's data
is fragmented, such that a particular attribute (e.g., DNA sequence) is submitted from one
institution and a separate attribute (e.g., disease status) is submitted by another, the query
results would be underestimates. In this context, PPRL is necessary to mitigate bias in such
statistical analyses without disclosing patient's identities3.

A second application of interest for PPRL is in counter-terrorism efforts. Currently, when a
terrorist suspect is specified by an intelligence agency, record linkage is applied to identify
records from multiple data owners to detect aliases or combine information about the
individual to learn about their actions or co-conspirators [9]. More recently, from an
international perspective, the European Union started to share information about inbound
travelers (i.e., Passenger Name Records) to U.S. officials for inspection against terrorist
“watchlists” [10]. These actions have met significant opposition due to concerns over
personal privacy and autonomy (e.g., [11]). However, the adoption of PPRL could alleviate
this tension because it eliminates the need to reveal the actual identities of suspects or
travelers until a match on a watchlist is satisfied (i.e., only records referring to the suspect
should be revealed) [12].

1.2. Overview of Record Linkage
Record linkage is a multi-step process as depicted in Figure 1. The first step is field
comparison, in which each field in each record pair is compared. In the record pair
comparison step, the field similarities are converted into a single similarity score for each
record pair. In the record pair classification step, the pairs are partitioned and classified into

2In order for record linkage to be possible, the records must be drawn from the same population.
3Statistical matching, a tangentially related technique that preserves the statistical inferential properties without requiring the correct
assignment of matching record pairs [8], can also be applied in this query-based setting where the accuracy of only aggregated
information is important.
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either the set of matches (e.g., record pairs that do refer to the same individual) or the set of
non-matches (e.g., record pairs that do not refer to the same individual).

The focus of this study is the field comparison step. Further details of the other steps of the
record linkage process can be found in Section 3.2.

1.3. Motivation for this Study
Within this paper, we consider the linkage of records from two data owners, which we refer
to as Alice and Bob. Privacy-preserving string comparison is applied within the context of
the following PPRL protocol.

1. First, Alice and Bob exchange the information required to encode records.

2. Next, Alice and Bob send encoded records to a third party Charlie.

3. Finally, the third party executes the linkage protocol.

We adopt the third party model based on the observation that such parties exist in real world
privacy-preserving data sharing environments (e.g., [13]). In addition, in many cases, by
using such parties, it is possible to create more efficient protocols [4].

A number of privacy-preserving string comparison techniques have been proposed in the
literature, which begs the question, “Which is the best method”? It should first be
recognized that privacy-preserving string comparators (PPSCs) are generally designed to
compare encoded versions of an entity's identifying values. Unfortunately, many of these
approaches function only when identifying values are recorded consistently and without
error across disparate databases (e.g., [14, 15, 16, 17, 18]). This neglects the fact that
variation (e.g., nicknames) or typographical error can corrupt personal identifiers [19]. In
such cases, the application of equivalence-based models can result in subpar record linkage
results. For example, the hashed4 value of “Jon” appears equally distant from the hashed
values of “John” and “Sampson”5 [20].

In recognition of this limitation, various approximate comparators have been developed to
compute string similarity, some of which have been translated into PPSCs (e.g., [21, 22]). In
contrast to a measure of binary field similarity (i.e., exact matching), which results in a field
similarity in [0,1], a measure of approximate field similarity provides a continuous measure
of field similarity in the range [0,…,1]. Distance and similarity are inversely related (i.e.,
strings with a distance of 0 have a similarity of 1). While there is clear evidence (e.g., [23,
24]) that accounting for string similarity can improve record linkage results, it is unclear
which PPSC should be selected for PPRL applications.

We recognize that several reviews of PPSCs have been conducted [25, 26, 27, 28], but they
lack either the breadth (i.e., range of methods considered) or the depth necessary (i.e., a
quantitative evaluation of the correctness, security, and computational complexity) to
compare approaches on a common scale. For instance, Elmagarmid and colleagues [25]
presented a comprehensive survey of record linkage techniques, but did not consider the
privacy issues and the related PPRL techniques. Meanwhile, Trepetin [26] performed a brief
review of PPSCs in association with the introduction of a new PPSC, but the review focused
more on a qualitative discussion of computational complexity, rather than record linkage
correctness and security of the various approaches. Another paper [27] provides an overview
of privacy-preserving record linkage, current approaches, and open research questions, but
again does not provide a formal, quantified analysis of existing approaches. In another

4A cryptographic hash function is a deterministic encoding function that converts a plaintext string into a fixed-length encoding.
5This statement does not apply to the specific class of hash functions known as locality-sensitive hash functions.
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study, Verykios and colleagues [28] performed a principled review of PPSCs, but focused
on string comparison, rather than string comparison within the context of record linkage.
Moreover, the latter study also neglected a formal security analysis of the PPSCs.

1.4. Contributions
Given the current state of affairs, in order for data owners to perform PPRL, they must sift
through a variety of approaches that have not been directly compared to one another.
Therefore, there is a need for a comprehensive evaluation of existing PPSCs that places the
comparators on a level playing field. Our research makes the following contributions:

1. Taxonomy: We perform a comprehensive literature review of PPSCs. In doing so,
we derive a taxonomy of existing approaches, which partitions PPSCs into distinct
classes of techniques. Taxonomizing the approaches allows for analysis of features
that are common to each class of methods.

2. Framework: We introduce a PPRL framework that is suitable for PPSCs that
measure approximate field similarity, rather than field equivalence alone. Notably,
this is an aspect of the broader PPRL problem which has been neglected.

3. Common Criteria: We define several quantifiable measures to compare PPSCs on
common scales. These measures enable data managers to investigate the tradeoffs
between PPSCs on three critical axes, namely 1) correctness in record linkage, 2)
computational complexity as measured by running time, and 3) security.

4. Evaluation: We systematically investigate the relationship between six classes of
PPSCs using a publicly available dataset. The fields present in the dataset consist of
personal identifiers and demographics that have been proposed as key attributes for
record linkage (e.g., personal name and residential address).

The remainder of the paper is organized as follows. In Section 2, we introduce a taxonomy
of PPSCs. In Section 3, we present an overview of general record linkage frameworks and
the specific methodologies used in this work. This section also presents the dataset utilized
in our evaluation. In Section 4, we present details of the parameters used for each
comparator in addition to the evaluation metrics. Then in Section 5, the correctness,
computational complexity, and security metrics are reported for each comparator. Section 6
provides a discussion of factors affecting the performance of each comparator, limitations,
and future work. Finally, we conclude the work in Section 7.

2. Background and Related Work
In this section, we introduce a taxonomy for privacy-preserving field comparators. Please
note that only the privacy-preserving field comparators proposed in previous works are
considered. This is in contrast to other aspects of the record linkage process, such as the
record pair comparison and record pair classification steps. Holding constant the other steps
in the record linkage process allows for the evaluation of multiple field comparison methods
in an otherwise equivalent record linkage framework. This enables us to generalize the
strengths and weaknesses of each class of methods.

A review of the literature surrounding privacy-preserving field comparators revealed the six
broad categories shown in Table 1. The PPSCs empirically evaluated in this paper are
denoted in italics. Several noteworthy privacy-preserving comparators more suitable for
numerical fields [29, 30, 31] were considered, but were excluded from this study because
our goal was to evaluate string, rather than numerical, comparators.
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2.1. Exact Matching Methods
As alluded to, many PPSC protocols use variations of an “encode-and-compare” model in
which identifiers are encoded and compared for equality [14, 15, 16, 17, 18]. When a
plaintext string (i.e., human readable) is encoded, it is transformed into a form known as an
encoding.

Comparators based on equivalence testing do not take into account the notion of similarity
between the strings. This means that strings very similar in the plaintext space are generally
very dissimilar in the encoded space [20]. Our hypothesis is that leveraging similarity will
improve record linkage accuracy. To gauge the degree of improvement achieved through the
use of approximate string comparators, we will use the Exact Matching comparator as a
baseline.

2.2. n-gram Methods
In the n-gram class of PPSCs, strings are broken into the n-grams that compose the string,
where n is an integer that can range from 1 to the length of the string. n-grams are usually
padded on both ends with n − 1 blank spaces. to properly account for the first and last
letters. For example, the 2-grams, also called bigrams, associated with the name “John” are
“J”, “Jo”, “oh”, “hn”, and “n”.

2.2.1. Number of common bigrams—Churches and Christen proposed an approximate
PPSC based on determining the number of bigrams shared in common between strings [21].
However, previous evaluations have already demonstrated this comparator did not perform
well in record linkage and is too computationally intense to be practical [25, 26]. Therefore,
we do not evaluate this comparator in this study.

2.2.2. Trigrams—The comparator in [33] uses the set of encoded 3-grams, or trigrams,
associated with the string. Each string is encoded as a sparse binary vector where each cell
in the vector corresponds to a trigram. The length of the vector is the number of possible
trigrams for the given alphabet. Each cell contains the count of the number of times the
trigram corresponding to the cell appears in the given string. For example, “0” in a cell
indicates the trigram to which the cell corresponds is not present in the given string whereas
a “1” in a cell indicates the trigram to which the cell corresponds appears once in the given
string. When two strings are compared, a difference vector D is calculated (see Figure 2)
where each cell represents the difference in the number of times a trigram appears in each
string. To determine the similarity of two strings, a threshold T is used6:

(1)

where z is the number of unique trigrams contained among the set of trigrams belonging to
both strings. If the magnitude of the difference vector D is less than the threshold T, the
strings are assigned a similarity score of 1 (i.e., the strings are completely similar);
otherwise, the strings are assigned a similarity score of 0 (i.e., the strings are completely
dissimilar).

2.2.3. Bloom Filter—This comparator encodes a string by hashing the n-grams of the
string into a Bloom filter [32]. A Bloom filter is a data structure commonly used to
determine set membership or to compare sets of stored items [40, 41, 42]. It is represented as
a bit array where all bits are initialized to 0. When an item is stored in the Bloom filter, the
bits corresponding to the item are set to 1. When an additional item is stored in that Bloom

6This data-independent threshold was experimentally determined in [33] and was shown to work well in practice.
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filter, a bit set to 1 by the previous item can be “hit” again by the newly added item. In this
case, the value of the bit remains at 1. This means that false positives, but not false
negatives, are possible. The Bloom Filter approach in [32] generates an encoding for each
string by hashing the bigrams associated with the string into a Bloom filter using q different
hash functions. When Alice and Bob compare their strings, they agree upon the number of
bits that compose the Bloom filter (i.e., its length), the number q of hash functions to apply,
and which hash functions to utilize. Alice then encodes her string by hashing its
corresponding bigrams into a new Bloom filter using all of the q agreed upon hash
functions. Bob encodes his string similarly. To determine the approximated similarity of
their strings, the corresponding Bloom filters are compared using a set-based similarity
measure, such as the Dice coefficient:

(2)

where α and β are the Bloom filters containing the hashed bigrams of Alice's and Bob's
encoded strings, respectively. An example is shown in Figure 3.

2.3. Embedding Methods
The comparators in the Embedding class use a set of reference strings to define an
embedding space. Alice and Bob embed a string by calculating the distance (as determined
by some distance function7) between their string and the reference sets, resulting in a vector
of distances. To compare the strings, Alice and Bob compare the distance vectors associated
with each of their strings. The idea behind this approach is that if the strings are similar, they
will also be of similar distance in the reference space.

Embedding approaches have been proposed that utilize either publicly available [34] or
privately held [35] reference spaces. In the latter approach, Alice and Bob generate the
reference space, which is kept secret from Charlie. We select this comparator for evaluation
because a privately held reference space provides greater security than a publicly available
reference space. For simplicity, this comparator will henceforth be referred to as
Embedding.

The Embedding approach [35] is based on the use of the Sparse Map variant of Lipschitz
embeddings. The general idea is that the embedding space is defined by several reference
sets, each of which contain randomly generated reference strings. When a string is
embedded in this space, its distance to each of those reference sets is measured. The distance
from a string s to a reference set is the minimal distance between s and each string
composing the reference set. The embedding of a string is therefore a vector of distances,
where each element j denotes the distance from the string to reference set j. To compare
strings, the Euclidean distance of their embeddings is calculated. A greedy resampling
heuristic is used to limit the computational complexity by reducing the dimensionality of the
embeddings such that, rather using all possible reference sets, only a subset of the most
information-rich reference sets are used. A proper explanation is beyond the scope of this
paper, but we refer the reader to [35] for the Embedding comparator and [43] for Sparse
Map.

7While any distance function can be used, selection of an appropriate, informative function is important for achieving accurate record
linkage results, as stated in [35].
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2.4. Teamwork Methods
The comparators in the teamwork class are so-called because they require that Alice and
Bob interactively cooperate throughout the protocol to compare their strings.

2.4.1. Edit Similarity—The Levenshtein edit distance between two strings is the minimal
number of insertions, deletions, and substitutions required to transform one string into the
other [44]. A dynamic programming algorithm is often used to compute edit distance such
that the minimal edit distance between the strings is iteratively calculated. For example, if
the edit distance between strings of lenth d and e is calculated, a matrix of size d × e is set
up. At the completion of the algorithm, the matrix cell M[d][e] represents the minimal edit
distance between the two strings. Further details can be found in [45].

Attalah and colleagues present a comparator for securely calculating edit distance without
revealing either string [36]. In this protocol, the standard dynamic programming algorithm
for edit distance is applied with the exception that the matrix and its values are split between
Alice and Bob. Alice and Bob fill in the cells of their respective matrices using a protocol
that allows them to determine the optimal method for calculating matrix values, without
revealing any information to one another. At the completion of the protocol, Alice and Bob
encode and send the value in the final cell of the matrix to the third party Charlie. Charlie
sums the values he received from Alice and Bob to determine the final edit distance.

While the original method [36] is edit distance, a more informative variant of this metric,
edit similarity, was selected for evaluation in this manuscript. The difference between edit
distance and edit similarity is discussed in Section 4.1.6.

2.5. Phonetic Filtering Methods
Phonetic filters are used to generate a phonetic representation of a string. This representation
can overcome various errors, such typos and the use of nicknames. For example, “John” and
“Jon” can be mapped to the same phonetic encoding (see Figure 4). Multiple phonetic
encoding strategies, such as Soundex [37], Metaphone [46], and NYSIIS [47] have been
used in record linkage applications.

2.5.1. Phonetic Filter—Karakasidis and Verykios suggest using the Soundex phonetic
filter to transform a string into its phonetic representation and then encoding the phonetic
representation [37]. If the encoded phonetic representations match, the strings are given a
similarity score of 1; otherwise, they are given a similarity score of 0.

2.6. Guess & Encode Errors Methods
When strings are encoded and compared, small differences in the plaintext strings can result
in very different ciphertexts. To overcome the small differences that can be created through
typographical, spelling, or other errors in strings, a class of of approaches have been
proposed that attempt to preemptively generate errors that might be associated with a string.
Rather than compare a single pair of strings, the sets of error-riddled relatives of the initial
strings are compared [22, 38, 39]. When Alice and Bob compare their strings, if any of the
error-riddled relatives of Alice's string match any of the error-riddled relatives of Bob's
string, the strings are declared a match. However, these comparators result in many false
positives with weak matching precision and require unreasonable storage [26].

3. Materials and methods
The previous section presented a taxonomy of existing PPSCs. However, string comparison
is only one part of the larger record linkage process. In this section, we provide a broad
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overview of the steps involved in record linkage: field comparison, record pair comparison,
and record pair classification. This section also provides the details of the algorithm used in
the record pair comparison step and the process used for record pair classification. Finally,
the dataset and implementation details are provided.

3.1. Notation
For this work, we assume each record is comprised of k fields that are useful for linkage
purposes. For example, first name, last name, and gender are fields that could be included in
each record. A denotes a set of records, a indicates a record within set A, and a[i] refers to
the value of the ith field in record a, where i ∈ {1,…,k}. We B, b, and b[i], to represent a set
of records. The goal of record linkage is to correctly classify all record pairs 〈a, b〉, into the
class M (match) or the class U (non-match). In traditional forms of record linkage, a third
intermediate class may by included, in which record pairs are set aside for clerical review by
a human who will determine the true match status. However, in the context of PPRL,
clerical review clearly compromises privacy and, thus, this third, intermediate class is
excluded.

3.2. Overview of Record Linkage
As briefly described in Section 1.2 and depicted in Figure 1, record linkage involves
multiple steps. The first step is field comparison in which each field in each record pair is
compared, resulting in a vector, called γ, of size k. Each cell in the vector, γ〈a,b〉[i],
indicates the similarity of field i in record pair 〈a, b〉. In the record pair comparison step, the
k-sized γ similarity vector for each record pair is converted into a single similarity score for
the record pair. In the record pair classification step, the pairs are partitioned and classified
into either the set M or U. The specific instantiations of these steps in this study are as
follows:

• Field comparison: Six experimental string comparators (Section 4.1) are used for
field comparison. Additionally, a non-PPSC [23] shown to work well in record
linkage [48, 49] is used as a reference standard.

• Record pair comparison: A modification (Section 3.3.2) to a widely adopted
algorithm (Section 3.3.1) that allows for continuous field similarity scores is used
for record pair comparison.

• Record pair classification: During this step, the record pairs are classified into the
class M or U based on their similarity scores. Further details are provided in
Section 3.4.

Throughout this work we hold constant the methods for both record pair comparison and
classification so that we can clearly evaluate the field comparison step. The following
subsections provide details of the comparison and classification steps as they were applied.
Information regarding the implementation of the field comparators is presented in Section 4.

3.3. Record pair comparison
The Fellegi-Sunter (FS) algorithm typically works with binary field similarity scores, which
are converted into a single similarity score for each record pair. This algorithm can be
modified to allow for the incorporation of continuous field similarity scores. Both of these
methods are described below and are used for record pair comparison in this study.

3.3.1. Fellegi-Sunter—The binary field comparison method is generally used with FS, so
the γ vector is filled in as follows:
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(3)

where “==” indicates complete agreement. The m and u vectors represent the conditional
probability of field agreement given match status. These vectors are computed once per
record linkage and are calculated over all record pairs:

(4)

(5)

where “==” indicates complete agreement. In this evaluation we know the true match status
for the test datasets, so we calculate the conditional probabilities exactly. This best case
scenario allows clear evaluation of the string comparators without the hindrance of errors
due to estimation. As this technique is used for all comparators, it places them on a level
playing field and does not affect the comparisons provided8. The conditional match
probabilities are then applied to calculate a vector of agreement weights, wa, and
disagreement weights, wd, for each field i = 1, …, k:

(6)

(7)

To recap, the conditional probabilities of agreement given match status are calculated for
each field. These conditional probabilities are then used to calculate an agreement and
disagreement weight for each field. For an example, see Figure 5, part a.

The next step is to apply these per-field agreement and disagreement weights to calculate a
total score for each record pair 〈a, b〉. This score is calculated for each record pair according
to Equation 8.

(8)

Therefore, if field i agrees, the agreement weight associated with field i, wa[i], will be added
to the total score for the record pair; if field i disagrees, the disagreement weight associated
with field i, wd[i], will be added to the total score for the record pair (Figure 5, part b).

3.3.2. Winkler modification for continuous Fellegi-Sunter—The original FS
algorithm is designed to work with only binary field comparison metrics (i.e., fields either
completely agree or disagree). To incorporate approximate field comparators that detect
similarity in addition to agreement/disagreement, the FS algorithm must be modified.

8In practice, the Expectation Maximization (EM) algorithm can be used to estimate the conditional probabilities associated with each
feature [50, 51, 52, 53]. EM can also be applied to estimate the proportion of matches anticipated among Alice and Bob's records,
which provides guidance on where to set the classification boundary.
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Winkler introduced a modification, that incorporates continuous field comparators, which
yields a continuous score in the range [0,…,1] to capture the similarity of strings, rather than
binary agreement or disagreement [23]. Under the modification, the conditional
probabilities, agreement weights, and disagreement weights are calculated in the manner
previously described. However, the agreement weights now lay out a scale onto which the
field comparison scores are mapped. A field similarity of 0 maps to the value of the
disagreement weight, and a field similarity of 1 maps to the value of the agreement weight.
Intermediate field similarities map to intermediate score weights. For example, if the field
similarity score is 0.75, then the score at the 75th percentile on the scale laid out by the
agreement and disagreement weights is selected. For an example, see Figure 5, parts c and d.
More formally, the score calculated according to this method is given as follows:

(9)

3.4. Record pair classification
The record pair comparison step assigns a similarity score to each record pair. We use the
following approach to classify all record pairs into M and U based on their similarity scores.
Each record file A studied in this paper contains 1,000 records and is linked to a record file
B that also contains 1,000 records. Each record in A must be compared to each record in B,
which results in 1, 000×1, 000 = 106 record pairs that must be classified into the sets M and
U. Each record in A has a record in B that refers to the same individual, so we know 1,000
of the record pairs, or 0.001%, are true matches. Therefore, we classify the 1,000 record
pairs having the highest scores as M and all other record pairs as U9.

3.5. Dataset creation
To perform our evaluation with a large set of records, we downloaded the publicly-available
North Carolina voter registration (NCVR) files [55], which contain 6,190,504 individual
records. From these records, we randomly selected (without replacement) 100 datasets, each
containing 1,000 records, which we refer to as A1, …, A100. To generate datasets B1, …,
B100 to which we link the aforementioned sets, we implemented a “data corrupter” based on
the research of Pudjijono and Christen [56]. The corrupter introduced optical character
recognition errors (e.g., S swapped for 8), phonetic errors (e.g., ph swapped for f), and
typographic errors, such as insertions, deletions, transpositions, and substitutions. The
probability with which the errors are introduced was chosen to be consistent with the error
rates seen in real datasets [56].

In addition to character-level errors, we extended the data corrupter by introducing token-
level errors. These errors were introduced at frequencies estimated to be encountered in real
record linkage datasets. Nicknames were substituted for full names (and vice-versa) with
probability 0.15, addresses are changed to represent an individual moving with probability
0.1, last names were changed with probability 0.1 for females (due to the common practice
of taking the husband's last name), 0.01 for males, and last names were hyphenated with
probability 0.01. The nicknames were based on the Massmind Nicknames Database [57], the
last names were based on the 2000 U.S. Census names dataset [58], and the addresses were
selected from a subset of the NCVR file not used in the record linkage datasets. Figure 6
provides an example of two records and their corrupted counterparts.

9This method does not enforce a one-to-one mapping of records. In practice, this may be enforced through an exhaustive linear sum
assignment procedure or a greedy matching heuristic. Futher details can be found in [54].
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In each case, the fields “street direction”, “race”, and “gender” are compared with exact
matching rather than approximate matching. Each of these fields consists of a single letter,
so approximate matching is not possible.

When data was missing, it received a weight of 0 and therefore did not factor into the record
linkage. This practice was also used in [59].

3.6. Implementation Details
All methods were implemented in Perl, a language known for its string handling capabilities.
The running time for PPRL computation was measured using the Time∷HiRes package. The
datasets were stored as flat text files. Experiments were run on a 2.5 GHz quad core PC with
4GB of memory.

4. Experimental Design
4.1. PPSCs Evaluated and Parameter Settings

We selected a subset of the aforementioned PPSCs for evaluation in this manuscript. PPSCs
that have performed poorly in previous evaluations were not considered [21, 22, 39]. To
comprehensively evaluate the range of techniques, a comparator was selected from each of
the categories described above, with the exception of the “Guess & Encode” methods, which
have been shown to perform poorly in a previous record linkage study [26]. The PPSCs
selected, and the parameters invoked, are discussed in Sections 4.1.1 through 4.1.6 below. In
all cases, we attempted to use the parameters suggested in the original articles. Where this
was not possible or parameters were not suggested, this is explicitly stated.

4.1.1. Exact Matching—For the exact match comparator, each identifier is hashed (by the
widely-used SHA-1 hash function) and compared. The output of the comparison is 1 if the
hashed strings match exactly, and 0 otherwise. In practice, each string should be
concatenated with a random string known as “salt” to prevent a dictionary attack; i.e., an
exhaustive hashing of plaintexts to determine which encoded value corresponds to each
plaintext value [60].

4.1.2. Bloom Filter—The Bloom Filter comparator was evaluated because it showed
promising results in a preliminary evaluation [61]. As recommended in the original paper
[32], we use a Bloom filter of length 1,000 bits and use 30 hash functions, all variations of
SHA-1, to hash each bigram into the Bloom filter. Strings are padded with spaces on both
ends in bigram creation as mentioned earlier.

4.1.3. Trigrams—The Trigrams [33] comparator was favorably reviewed [28] and was
therefore selected for evaluation in this work. Each string was padded on both ends with two
spaces in trigram creation. SHA-1, in conjunction with “salt”, was again applied to hash
each trigram. A space-efficient implementation was used where each string was represented
as a bag of trigrams and their associated counts. This is in contrast to representing each
string as a very sparse vector of all possible trigrams where the value for the cell associated
with each trigram is the number of times the trigram occurs in a given string.

4.1.4. Embedding—The Embedding approach described in [35] was selected to represent
the “Reference Space Embedding” class due to the ability of a privately held reference space
to provide greater security. With respect to the parameters for this comparator, we attempted
to follow the recommendations of the authors of [35] as much as possible. As such, twenty
strings were used in generating sixteen reference sets. For each field, the length of the
reference strings is the average length of strings in the field. With respect to the greedy
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resampling heuristic, 10% of random pairs were sampled (without replacement) as
recommended in [43]. To determine the optimal number of coordinates in the final
embeddings, we systematically tested all values in the range [2,…,16]. We found that using
9 coordinates produced the best record linkage results in a small test set, and was therefore
selected as the dimensionality of the final embeddings. Details can be found in the
Appendix.

Euclidean distance was used to determine the similarity between embeddings. For each
field, the Euclidean distance was normalized by the largest Euclidean distance seen to
normalize the similarities into the range [0,…,1].

4.1.5. Phonetic Filter—In the Phonetic Filter comparator, strings were transformed by the
Soundex phonetic filter, hashed, and tested for equivalence. In practice, salting should be
used to protect against a dictionary attack. Perl's Text∷Soundex package was used.

4.1.6. Edit Similarity—The Edit Similarity approach in [36] was selected for evaluation
due to its rigorous treatment of privacy protection. We draw attention to the distinction
between distance and similarity. Distance is in the range [0,…,∞], where lower distance
indicates strings are alike. Similarity, on the other hand, is in the range [0,…,1], where 1
indicates strings are completely alike and 0 indicates the strings are completely unalike.
Distance can be converted to similarity as follows:

(10)

While the original comparator, as presented, returns the edit distance between two strings,
we believe that edit similarity is a more informative measure because it incorporates string
length. For example, an edit distance of three between the strings “Bob” and “Jan” is very
different from an edit distance of three between the strings “Catherine” and “Katerina”. The
edit distance protocol described above can be modified to report edit similarity when Alice
and Bob divide their final answers (i.e., the last cell in their matrices) by the maximum
string length. Note, this does not reveal any additional information because Alice and Bob
already know the string lengths as these are revealed in the protocol.

4.2. Reference Standard String comparator
To compare the PPSCs to a standard, we use the Jaro-Winkler distance, a non-privacy-
preserving string comparator that, while highly dependent on heuristics, has been shown to
work very well in record linkage [23, 48, 49]. Winkler introduced a modification to the Jaro
distance that incorporated the observation that errors are more likely to occur at the end of a
string, rather than the beginning [23]. The modified comparator therefore places greater
emphasis on the characters of the beginning of the string in determining string similarity.
The Jaro-Winkler string comparator is defined as:

(11)

where dj is the Jaro distance for strings s1 and s2, l is the length of the prefix common to
both strings (up to 4 characters), and p is a scaling factor. The default value for p is 0.1. The
Jaro distance [51] is defined as:
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(12)

where m is the number of matching characters and t is the number of transpositions. A
transposition is the swapping of two adjacent letters (for example, “John” and “Jonh”). Two

characters c1 and c2 are considered matching if they are no further than  –
1 characters apart. An example is shown in Figure 7.

4.3. Evaluation Metrics
We evaluate each string comparator along three axes: 1) correctness in record linkage, 2)
security (the extent to which the strings are protected in the linkage process), and 3)
computational complexity as determined by the running time.

4.3.1. Correctness in Record Linkage—To evaluate correctness in record linkage, we
examine the ability of each string comparator to accurately classify record pairs into the sets
M and U. As mentioned earlier, only 1,000 of the possible record pairs are true matches. The
number of true negatives (999,000) so dominates the number of true positives that some
measures, such as specificity, were not very informative. Therefore, to focus on the 0.001%
of record pairs that are true matches, the True Positive (TP) rate10 is examined for each
comparator. The TP rate is defined as:

(13)

where TP is the number of true positives and FP is the number of false positives. The TP
rate reports the proportion of record pairs predicted to be matches that are, in fact, true
matches. A comparator that perfectly classifies the record pairs has a TP rate of 1.

4.3.2. Computational Complexity—We use the running time to evaluate the
computational complexity of each comparator. In this paper, a record linkage method that
requires more than one day to process the linkage of two record files, each containing 1,000
records, is considered computationally infeasible for real world use. We make this
assumption because the datasets used in this work are relatively small compared to typical
real world record linkage datasets. Additionally, the running time increases quadratically
with the number of records11. Therefore, comparators that take more than one day to run on
these small datasets would take much longer to run on larger datasets.

4.3.3. Security—We next study the extent to which each comparator protects the security
of the records. Recall that in the protocol presented in Section 1.3, data owners Alice and
Bob rely on a third party Charlie to perform the record linkage. Specifically, Alice and Bob
first exchange the information required to encode their records (which varies for each
comparator). This information can be viewed as a “key” which is then used to encode the
records. Charlie receives the encoded records and performs record linkage without the key.
To conduct a security analysis of each comparator, we make the following standard
assumptions with respect to the knowledge and the behavior of all parties in the above
protocol:

10The TP rate is also referred to as precision in the computer science community.
11With respect to the theoretical complexity, let k represent the number of fields in each record, and let n represent the number of
records held by each dataholder. The theoretical complexity of record linkage is then O(kn2). However, we assume that k is much less
than n, and therefore assume record linkage is O(n2).
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1. All parties strictly follow the protocol in data operations and communications. This
means that Alice and Bob always encode the records using the shared encoding
key. They will only send the encoded record to Charlie. None of the parties will
maliciously change the content of the records or the linkage results.

2. Charlie sees the encoded records, but not the original records.

3. Charlie does not know the encoding key.

Under these assumptions, the security analysis of the PPSCs focuses on how much
information Charlie can acquire from the encodings to infer the original record. Since each
field is independently encoded in all comparators, we pick one field (e.g., last name) to
illustrate our metric for evaluating security. Here we use the mutual information entropy, a
standard practice in security evaluations, to quantify the dependence of the plaintext
(original field) and the encoding [20].

We use the dataset shown in Table 2 as a running example throughout this section to
illustrate the entropy calculations. Notice that there are two people with the last name
“ADAMS” in the population. Also note that both the name “SMITH” and “SMYTH” map to
the same phonetic encoding.

Formally, let random variable X denote the original information at the selected field, which
takes values x1 …xn. Let P(xi) be the probability mass function of outcome xi. The entropy
(H)of X is then defined as:

(14)

In our specific case, X is a variable whose sample space is all plaintext last names present in
the entire NCVR database, and x refers to each specific name. In the sample dataset
provided in Table 2, H(X) is calculated as shown in Table 3. In this example, H(X) = 0.579.

Similarly, we consider random variable Y as the encoded form of this selected field, which
takes values y1 …ym and let P(y) be its probability mass function. Then the entropy (H) of Y

can be similarly defined as: . In our specific case, Y is a
variable whose sample space is the encodings corresponding to each last name, and y refers
to each specific encoding. For example, in the Phonetic Filter comparator, the encoded form
is a hashed version of a phonetic encoding. In the sample dataset provided in Table 2, H(Y)
is calculated as shown in Table 4. In this example, H(Y) = 0.458.

Let each pair of outcomes (xi, yj)(i.e., the encoded form of xi is yj) occur with probability
P(xi, yj). The joint entropy of variables X and Y is then defined as:

(15)

In our specific case, the joint entropy is calculated by examining the unique (plaintext,
encoding) pairs. This is acheived by concatenating the plaintexts and encodings as shown in
Table 5. In this example, H(X,Y) = 0.203.

The mutual information (MI) of variables X and Y is defined as:

(16)
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Therefore, the MI with respect to the sample population show in Table 2 is 0.579 + 0.458 −
0.203 = 0.833. Based on information theory, the mutual information measures the
dependence of the two variables. Thus, if an encoding scheme is secure, the plaintext and
the ciphertext should be independent of one another (i.e., X and Y are independent), then
MI(X, Y) = 0. In general, lower MI indicates higher independence between the plaintext and
the ciphertext and thus greater encoding security12.

5. Results
In this section, we examine the results with respect 1) correctness in record linkage, 2)
computational complexity, and 3) security.

5.1. Correctness in Record Linkage
To ensure that the agreement and disagreement weights associated with each field are in line
with intuition, Figure 8 depicts the weights from a randomly selected 〈Ai, Bi〉 linkage. As
expected, the agreement weights are always higher than the disagreement weights, which
means that the score for a record pair increases when its fields agree and decreases when its
fields do not agree. Also as expected, information-rich fields, such as last name, are more
important than information-poor fields, such as gender, as indicated by the high agreement
weight for last name. While first name is still important, it is not as discriminatory as last
name, as indicated by the lower agreement weight. This agrees with intuition as there are
274,790 unique last names as compared to 187,743 unique first names in the NCVR
database, indicating that the field last name contains more information.

In Figure 9, the TP rate13 is reported for each string comparator. The Bloom Filter
comparator performs best (TP rate = 0.9945) followed closely by the Trigrams (TP rate =
0.9883) and Edit Similarity (TP rate = 0.9854) comparators. The Embedding comparator
does not perform as well as the others and achieves only a TP rate of 0.1384. Of note, all of
the approximate PPSCs, with the exception of the Embedding comparator, outperform the
baseline, traditional PPSC Exact Matching (TP rate = 0.8397). Also of note, several of the
approximate PPSCs outperform the reference standard, Jaro-Winkler (TP rate = 0.9804).

5.2. Computational Complexity
It is also important to examine which comparators are computationally feasible for real
record linkage applications. Figure 10 provides the running time of each field comparison
method for comparing the fields in 106 record pairs. Edit Similarity required too much time
to complete, so a smaller record linkage with files containing 10 records each (resulting in
100 pairs) was performed. The resulting running time, 74.09 ± 13.43 seconds, was then
extrapolated to provide an estimate of the time required to compare the fields in 106 record
pairs. In practice, this would take over two years to run and is clearly infeasible.
Additionally, a time-consuming part of the protocol (specifically, an interactive
cryptographic technique known as “1-out-of-n oblivious transfer”) was not included in this
implementation and would only serve to further increase the running time14.

The running time of the Embedding comparator was an order of magnitude longer than the
other comparators. The Exact Matching, Jaro-Winkler, and Phonetic Filter comparators all

12Note that Edit Similarity is an exception to this analysis because records are not encoded in this protocol.
13The way the classification boundary is set, as described in Section 3.4, means that the number of false positives (FP) is equivalent to
the number of false negatives (FN). While recall is often reported in information retrieval experiments, it provides no additional
information in the case where FP equals FN, and is therefore not reported.
14The values in 5.1 Section were generated using an insecure, yet far quicker, version of edit similarity.
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have comparable running times at around 330 seconds. The Bloom Filter is slightly slower
at nearly 400 seconds and the Trigrams comparator trails at nearly 700 seconds.

5.3. Security
We examine the MI between the plaintext and encoded form of the last names associated
with each field comparator. These results are shown in Figure 11. The order of security as
indicated by low MI is Embedding > Phonetic Filter >> Bloom Filter > Trigrams which
agrees with intuition (see qualitative discussion below)15. Further details of the calculations
are provided in Table 6. For reference, H(Plaintext) = 8.9586 and there are 274,790 unique
last names in the NCVR database.

At first glance, it appears unusual that Embedding and Phonetic Filter are similar in entropy
while the number of unique encodings associated with each comparator is quite different.
However, this can be explained by considering the distribution of probabilities associated
with each of those unique encodings. The probabilities within the Phonetic Filter are
relatively evenly distributed resulting in a higher entropy per encoding, whereas the
probabilities within the Embedding are relatively skewed resulting in a lower entropy per
encoding.

As mentioned earlier, Edit Similarity is the most secure method, with respect to what is
revealed by the encodings, because the method does involve encoding the strings. Therefore,
Charlie cannot learn anything by examining the string encodings as he never sees string
encodings. Similarly, Exact Matching is not included in this analysis as each plaintext value
maps to a unique encoding, and the mutual information is therefore 0.

5.4. Summary of Results
The tradeoffs between correctness, computational complexity, and security are visualized in
Figures 12, 13, and 14.

Figure 12 shows that the highly accurate comparators, (Bloom Filter and Trigrams), tend to
be less secure. The Embedding comparator is more secure but not as accurate. An exception
is the Phonetic Filter comparator which is both highly accurate and secure.

Figure 13 shows the general trend that the faster comparators are not as secure. Conversely,
the Embedding comparator is very secure, but is also very slow. The Phonetic Filter
comparator is an exception to this trend as it is both secure and fast as compared to the other
comparators.

The tradeoff between correctness and computational complexity is more complex, as shown
in Figure 14. The Edit Similarity comparator is highly accurate yet is orders of magnitudes
slower than the other metrics. Many of the other comparators achieve both high accuracy
and expedient running times.

6. Discussion
In this section, we provide a summary of the results in addition to a discussion of the results
with respect to each of the three axes evaluated. Finally, we present additional
considerations and limitations of this work.

15The >> symbol indicates “much greater than”.
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6.1. Correctness in Record Linkage
The Exact Matching comparator achieves a TP rate of 0.8397. We believe it is able to
correctly classify some record pairs as the large number of fields (i.e., eleven) allows for
error correction. When there are many fields, even if several fields do not agree exactly, the
number of additional fields that do agree increases the record pair's similarity score are
enough to achieve a correct classification. We hypothesize that when fewer fields are
included in each record, the ability to perform approximate string comparison will become
even more important. This is because there will be fewer additional fields to increase the
record pair's similarity score and “push it over” the classifying line. However, this same
error correction affects each of the PPSCs equally, and the results are therefore still
comparable.

Perhaps surprisingly, several of the PPSCs (Bloom Filter, Trigrams, and Edit Similarity)
achieved higher TP rates than the non-privacy-preserving reference standard, Jaro-Winkler.
One possible reason for this is that the data corrupter did not introduce errors in a way that
Jaro-Winkler expects; the corrupter introduced errors uniformly throughout the string
whereas Jaro-Winkler expects to see fewer errors at the beginning. This may have
handicapped Jaro-Winkler, and it may perform better on datasets that contain fewer errors at
the beginning of strings. Additionally, Jaro-Winkler is particularly well-suited for personal
names, and in these experiments it was applied to non-name strings, such as cities and street
names.

The Embedding approach did not perform as well as other PPSCs. One reason for this may
be the use of edit distance, rather than edit similarity, as the distance function. Another
possible reason may be the use of randomly generated reference strings. If the reference
strings were chosen more systematically such that they better cover the comparison space,
the results might improve. While testing on a small sample indicated that using nine
reference sets to define the embedding space is optimal (see Appendix for further details),
further calibration of this parameter may yield better results.

Although the Bloom Filter already performs very well, further improvements may be
realized if the parameters (i.e., filter length and the number of hash functions used) were
tailored to the expected length of the strings in each field. For example, far fewer bits are set
to one when the bigrams of the two-digit state code are hashed into a Bloom filter than when
the bigrams of the longer field, street address, are hashed.

The Phonetic Filter is limited in that only the first several characters of a string are
integrated into its encoding. In long or multi-token strings, such as “Lori Beth” (double
name) or “Windy Hills” (street address), often the first token is the only one captured by this
approach.

In nearly all cases (with the exception of the Embedding approach), approximate field
comparison provided greater accuracy than exact matching, confirming our hypothesis
stated in Section 2.1.

6.2. Computational Complexity
While Edit Similarity provides excellent security and high correctness, its computational
complexity renders it unreasonable. The other comparators perform the relatively expensive
encoding process once per record (2,000 times in the case of linking two 1,000-record files),
and then perform an inexpensive record pair comparison process for each record pair (106

times). However, Edit Similarity does not include an up-front encoding process, so the
expensive edit distance matrix calculation must be performed for each record pair16. Since
the number of record pairs is quadratic with respect to the number of input records, the
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running time of this approach quickly becomes infeasible. Additionally, this comparator
relies on an expensive form of encryption. Specifically, this protocol incorporates a secure
minimum finding protocol, which requires six expensive cryptographic operations for each
cell of the matrix. An additional expensive operation included in this protocol, 1-out-of-n
oblivious transfer, was not implemented but would serve to further increase the running
time.

The Embedding approach involves multiple steps. Generating the initial string embeddings
and record pair comparison are relatively fast steps. However, the greedy resampling
heuristic, during which the reference sets used are whittled down from all reference sets to a
subset of “good” information-rich reference sets, is computationally expensive. If reference
strings are selected with care so as to use information-rich reference strings (as opposed to
randomly generated reference strings), the time-intensive greedy resampling step could be
eliminated and the correctness of results may improve.

A tradeoff between the running time and the storage space exists with the Trigrams. While
we used a space-efficient implementation, a vectorized implementation would yield reduced
running time.

6.3. Security
Edit Similarity is the most secure method in terms of the information revealed by the
encodings – since this method does not involve revealing an encoded form of the
information, no information is revealed by the encoding.

As indicated by the MI values, Embedding and Phonetic Filter are the most secure and
approximately equivalent. Little information is revealed by Embedding because Charlie is
unaware of the strings defining the reference space; thus, the embeddings provide little
information. Each phonetically filtered string is a Soundex code of the form letter, number,
number, number resulting in 26,000 possible Soundex codes. In practice, the 274,790 unique
last names in the NCVR database were mapped to only 5,815 phonetic filter encodings,
resulting in information loss. Therefore, the Phonetic Filter approach also does not provide
much information.

The Bloom Filter and Trigrams approaches are the least secure as indicated by MI. In both
of these comparators, salt is used to prevent a dictionary attack. However, these comparators
are still subject to frequency analysis. The frequency distribution of n-grams is not as well-
defined as the frequency distribution of full names; however, an attacker may still be able to
use this information to determine the values associated with some n-grams. The Trigrams
comparator additionally reveals the length of each string to Charlie. He can derive this
information based on the number of trigrams associated with each string17. The Bloom
Filter comparator does not directly reveal the length of each string due to the fact that false
positives and “crowding” in the Bloom filter can occur, but it likely provides Charlie with
the ability to bound the string length based on the number of bits set to one.

The goal of this security analysis was to evaluate all of the PPSCs in a common, quantified
way. As such, the analysis is focused on answering the question “Given only the ciphertexts,
how much can Charlie learn about the plaintexts?” Another question that could be asked is
“Given external data sources, such as the distribution of plaintexts and ciphertexts in the
population, how much can Charlie learn about the plaintexts?” We leave this analysis to

16However, a practical shortcut to reducing the computation time for this approach is to calculate the edit distance between all pairs of
unique values only, rather than all record pairs.
17The string length is generally the number of trigrams plus two when the strings are padded with two spaces on both ends.
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future work. In practice, an attacker could mount different attacks specific to the unique
features of each PPSC. Therefore, additional security analyses specific to these unique
features could also be conducted.

6.4. Additional Considerations
Several aspects of the record linkage process require further research prior to adoption in
real PPRL applications.

First of all, our experiments were performed with relatively small datasets, but record
linkage is often performed on a much larger scale. In such cases, a technique called blocking
is used to make the task computationally feasible in which records are sorted into bins with
other similar records [62]. For example, records may be “blocked” into bins based on the
first letter of last name. Comparisons could then be made only to records in the same bin,
which would greatly reduce the number of record pairs that must be compared. It is
reasonable to consider each of the 1,000-record files analyzed in our experiments as
representative of a single block in a larger record linkage. We recognize that certain privacy-
preserving blocking methods exist (e.g., [63, 64, 65]); however, it has yet to be determined if
such methods are practical for real world application18.

Second, the goal of record linkage is to use the information available within records to
determine which records refer to the same entity. Therefore in practice, fields used in record
linkage may be numerical, rather than just string-based. Some of the PPSCs considered are
more extendable to numerical fields than others. We believe Bloom Filter, Exact Matching,
and Trigrams should work equally well on numerical fields. If the distance function and
embedding space were selected specifically for numerical fields, Embedding would also be
applicable for numerical fields. The Jaro-Winkler and Phonetic Filter approaches are
specifically tuned to work for strings and are not applicable to numerical fields.

Third, some of the comparators are more sensitive to the way in which information is
partitioned into fields. For example, residential address can be represented as a single field,
such as {Street Address}, or can be broken into more granular bits such as {Street Number},
{Street Name}, {Street Suffix}, and {Street Direction}. The Exact Matching approach will
perform best when fields are partitioned into smaller-sized fields because this approach
cannot leverage the similarity information within a field. The Phonetic Filter and Jaro-
Winkler approaches also perform better when fields are represented at more granular levels,
as both of these comparators rely on the tokens at the beginning of a string. The other
approximate PPSCs are less sensitive to the way in which information is divided into fields,
but only to a certain extent. If too many fields are combined, the FS matching algorithm
loses the ability to distinguish between more and less informative fields. For example, in the
extreme case, all fields could be concatenated into a single field. In this case, less
informative fields, such as gender, cannot be distinguished from more important fields, such
as name, and therefore the classification correctness is expected to decrease.

Fourth, one of the limitations of this research is that, though fields were selected to only
contain strings, the inclusion of some numerical tokens was unavoidable. For example,
although street number was excluded, sometimes the street name itself contains numbers
(i.e., “Highway 194”). Although this was very rare and efforts were made to include only
string fields, this may have provide a slight advantage to string comparators more tolerant of
numerical fields. In future research, we intend to determine how to best handle fields with a
mixture of strings and numeric information.

18Non-privacy-preserving blocking techniques have, however, been widely used in practice. A detailed empirical survey can be found
in [66].
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7. Conclusions
In this work, we provided a principled and comprehensive evaluation of the state-of-the-art
privacy-preserving string comparators (PPSCs). The evaluation considered three axes
critical to privacy-preserving record linkage (PPRL) applications: 1) correctness, 2)
computational complexity, and 3) security. This research used a real dataset, evaluated the
PPSCs on a common quantified space, and provided the information needed to support
decisions in designing a PPRL protocol in the real world. Using our methods, and analysis, a
data manager can clearly model the tradeoffs and choose the best string comparator based on
his resource constraints. In summary, the Bloom Filter and Trigrams comparators were
found to be the most correct. The Edit Similarity comparator was the most secure, followed
by the Embedding and Phonetic Filter comparators. The Edit Similarity comparator proved
to be computationally expensive, whereas the Phonetic Filter, Exact Match, and Bloom
Filter comparators were the fastest PPSCs. In future work, we intend to research privacy-
preserving blocking schemes to ensure the feasibility of conducting record linkage of large
datasets.

A. Embedding Parameter Selection

The Embedding comparator [35] evaluated in this paper uses the Sparse Map variant of
Lipschitz embeddings. A detailed description of Sparse Map can be found in [43]. Rather
than using all reference sets that compose the embedding space, Sparse Map employs a
greedy resampling heuristic to whittle down to a subset containing the most informative
strings. These reference sets serve as coordinates that define the embedding space. A
recommended number of coordinates was not specified in [35]; therefore, we
systematically evaluated all possible subset sizes from 2 coordinates up to the maximum
number of coordinates. In this case, the maximum number of coordinates was determined
to be 16 (as recommended in [35]). The results are shown in Figure 15. The highest true
positive rate was achieved using subsets of size both 9 and 13. We selected the subset of
minimal size and use 9 coordinates to define the embedding space used in this work.
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Figure 1.
Steps required in record linkage.
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Figure 2.
An example of the Trigrams comparator. H represents a hash function. The vector D
contains the difference in the count of trigrams found in each string. For ease of
representation, only trigrams present in at least one of the sample strings are shown in this
figure. Assume that the value “JOHN' is held by Alice and the value “JON' by Bob. The
magnitude of the vector is less than the threshold, so the similarity is determined to be 1.
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Figure 3.
An example of the Bloom filter comparator where each Bloom filter has 10 bits and a single
hash function is used to hash each bigram into the filter. The Dice coefficient (Equation 2) is
used to determine the similarity of the Bloom filters. The number of intersecting bits in the
Bloom filters is 3, the number of bits set in Bloom filter a is 5, and the number of bits set in
Bloom filter b is 4, yielding a similarity of 0.67.
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Figure 4.
An example of the Phonetic Filter comparator. The Soundex code for each string is hashed
and checked for equality. The hashed Soundex codes are equivalent, so the similarity of the
strings is 1.
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Figure 5.
Record linkage with the FS algorithm. a) Match parameters associated with the dataset. b)
Calculation of the record pair score for the record pair when binary matching is used for the
field comparison step and traditional FS is used for score calculation. c) Calculation of the
record pair score for the record pair when Edit Similarity is used for the field comparison
and the Winkler modification to FS is used for score calculation. d) Demonstration of the
numerical scale laid out by the agreement and disagreement weights for the first name field.
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Figure 6.
An example of two records and their corrupted counterparts.
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Figure 7.
An example of the Jaro-Winkler distance between the strings “JOHN” and “JON”.
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Figure 8.
Example of the agreement and disagreement weights for each field from a sample dataset.
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Figure 9.
True Positive Rate. The values reported are the averages over the 100 pairs of record files.
Standard deviation error bars are shown.

Durham et al. Page 32

Inf Fusion. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
Field Comparison Running times. The values reported are the averages, in log scale, over
the 100 pairs of record files. Standard deviation error bars are shown.
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Figure 11.
The Mutual Information between the plain texts and encoded plain texts associated with
each field comparison comparator.
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Figure 12.
The tradeoffs between correctness as measured by TP rate, and security, as measured by MI.
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Figure 13.
The tradeoffs between computational complexity (in log scale), as measured by running
time, and security, as measured by MI.
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Figure 14.
The tradeoffs between correctness, as measured by TP rate, and computational complexity
(in log scale), as measured by the running time.
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Figure 15.
The TPR achieved for the Embedding comparator is dependent upon the number of
reference sets used in estimating distance between strings.

Durham et al. Page 38

Inf Fusion. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Durham et al. Page 39

Table 1

Taxonomy of privacy-preserving field comparators. The comparators evaluated in this paper are denoted in
italics.

Equivalence Testing n-gram Methods Exact Matching [14, 15, 16, 17, 18]

Number of Common Bigrams [21]

Bloom Filter [32]

Trigrams [33]

Reference Space Embedding Public Reference Space Embedding [34]

Private Reference Space Embedding [35]

Dissimilarity Matrix [30]

Teamwork Edit Similarity [36]

Secret Sharing [29]

Euclidean Distance [31]

Phonetic Filtering Guess & Encode Errors Phonetic Filter [37]

Random Introduction of Errors [22, 38]

Systematic Introduction of Errors [39]
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Table 2

Sample plaintexts and encodings for a population of size 5. The Phonetic Filter encodings are used as an
example and SHA represents a hash function.

Plaintexts (x ∈ X) Encodings (y ∈ Y)

ADAMS SHA(A352)

ADAMS SHA(A352)

JOHNSON SHA(J525)

SMITH SHA(S530)

SMYTH SHA(S530)
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Table 3

Calculation of H(X) for the sample population. The contribution to H(X) is defined in Equation 14.

Unique Plaintexts (x ∈ X) P(x) Contribution to H(X)

ADAMS 0.4 0.159

JOHNSON 0.2 0.140

SMITH 0.2 0.140

SMYTH 0.2 0.140

Sum 1.0 0.579
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Table 4

Calculation of H(Y) for the sample population. The contribution to H(Y) is defined in Equation 14.

Unique Encodings (y ∈ Y) P(y) Contribution to H(Y)

SHA(A352) 0.4 0.159

SHA(J525) 0.2 0.140

SHA(S530) 0.4 0.159

Sum 1.0 0.458
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Table 5

Calculation of H(X,Y) for the sample population. The contribution to H(X,Y) is defined in Equation 15.

Unique (x,y) pairs P(x,y) P(x) P(y) Contribution to H(X,Y)

ADAMS_SHA(A352) 0.4 0.4 0.4 0.064

JOHNSON_SHA(J525) 0.2 0.2 0.2 0.028

SMITH_SHA(S530) 0.2 0.2 0.4 0.056

SMYTH_SHA(S530) 0.2 0.2 0.4 0.056

Sum 1.0 0.203

Inf Fusion. Author manuscript; available in PMC 2013 October 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Durham et al. Page 44

Table 6

Entropy Analysis

PPSC H(Y) H(Plaintext,Y) MI(Plaintext,Y) # Unique Encodings

Bloom Filter 8.9581 0.0060 17.9106 274,430

Embedding 6.9008 0.0250 15.8344 55,097

Phonetic Filter 6.9214 0.0159 15.8641 5,815

Trigram 8.9586 0.0060 17.9111 274,790
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