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Objective. To extend recent conceptual and methodological advances in disparities
research to include the incorporation of genomic information in analyses of racial/eth-
nic disparities in health care and health outcomes.
Data Sources. Published literature on human genetic variation, the role of genetics in
disease and response to treatment, and methodological developments in disparities
research.
Study Design. We present a conceptual framework for incorporating genomic infor-
mation into the Institute of Medicine definition of racial/ethnic disparities in health
care, identify key concepts used in disparities research that can be informed by genom-
ics research, and illustrate the incorporation of genomic information into current meth-
ods using the example of HER-2mutations guiding care for breast cancer.
Principal Findings. Genomic information has not yet been incorporated into dispari-
ties research, though it has direct relevance to concepts of race/ethnicity, health status,
appropriate care, and socioeconomic status. The HER-2 example demonstrates how
available genetic information can be incorporated into current disparities methods to
reduce selection bias and measurement error. Advances in health information infra-
structure may soon make standardized genetic information more available to health
services researchers.
Conclusion. Genomic information can refine measurement of racial/ethnic dispari-
ties in health care and health outcomes and should be included wherever possible in
disparities research.
Key Words. Health economics, social determinants of health, racial/ethnic
differences in health and health care, personalized medicine, genomics

Despite the national commitment to eliminate health disparities (U.S. Depart-
ment of Health and Human Services 2000; Institute of Medicine 2001), signifi-
cant disparities persist in the quality of care received by racial/ethnic groups
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and subsequent health outcomes (Institute of Medicine 2003). In 2003, the
Institute of Medicine (IOM) defined a health care disparity as “racial or ethnic
differences in the quality of health care that are not due to patients’ clinical
needs and preferences, and appropriateness of intervention” (Institute ofMed-
icine 2003). In measuring health care disparities, most studies focus on the
coefficient of the race/ethnicity variable after adjusting for a range of covari-
ates, but this approach does not acknowledge that racial/ethnic differences are
mediated by—not independent of—socioeconomic status (McGuire et al.
2006; Agency for Healthcare Research and Quality 2011; Cook et al. current
issue). Drawing from methods used in the economics literature on wage dis-
crimination, McGuire, Cook, and others have advocated a methodological
approach based on the IOM definition of health care disparity in which dis-
parities are decomposed to estimate the contribution of socioeconomic status
to racial/ethnic disparities in health care (McGuire et al. 2006; Cook et al.
2008). Similar methods have begun to appear in the health outcomes litera-
ture as well (Crown 2010). At the same time, advances in genomics research,
through which patterns in the human genome are examined to identify vari-
ants or regions of the genome important to disease etiology or treatment
response (National Human Genome Research Institute 2010), are increasing
our understanding of the role of genetics in disease risk and treatment
response (Manolio et al. 2009), and even the ways in which socioeconomic
status can mediate genetic risk through gene–environment interactions (GEI)
and epigenetic effects (Olden et al. 2011). A growing number of clinical guide-
lines, particularly in oncological care, now include practice recommendations
based on a patient’s genetic status (Amstutz and Carleton 2011). This new
knowledge has not yet been widely incorporated into disparities research.

This paper addresses the implications of emerging genomic information
for disparities research. We argue that genetic information is an important
omitted variable in health services research generally and disparities research
in particular, and one that will become even more important as time goes on.
Genomic data can help to differentiate geographical ancestry from self-identi-
fied race; provide additional information about health status, appropriate care,
and expected clinical outcomes; and shed new light on the importance of
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certain socioeconomic factors (e.g., greater exposure to stress) as critical con-
trol variables due to their role in amplifying genetic risk of disease. The inclu-
sion of genetic variables in racial/ethnic disparities analyses, where possible,
can thus help reduce measurement error and reduce bias in estimates of treat-
ment effects, and allow for a better understanding of the sources of health
disparities between self-identified racial/ethnic groups in our society.

We begin with a discussion of the intersection of emerging genomics
research and four key concepts in disparities research: race, health status, clini-
cal appropriateness, and socioeconomic status. We then present a conceptual
framework showing how genomic information can be incorporated into
disparities research, using the case of HER-2 status among women with breast
cancer. Finally, recognizing that genomic information has yet to become
widely available in health services data, we discuss statistical methods that test
and help to control for measurement error due to the omission of variables
that capture clinically relevant genetic heterogeneity.

GENOMICS RESEARCH EXPANDING KEYCONCEPTS
USED IN DISPARITIES RESEARCH

Genomics research is expanding or refining several key concepts used in dis-
parities research and in health services researchmore generally. Figure 1 illus-
trates the IOM definition of racial/ethnic health care disparities, measures
commonly used to operationalize this definition (Cook et al. current issue),
and how specific measures can be extended or refined using genomic informa-
tion. Below, we address the intersection of genomics research with four con-
cepts central to disparities research: race, health status, clinical
appropriateness, and socioeconomic status.

What Is “Race”?

Foundational to any discussion of disparities research is the meaning of
“race.” The concept of race has been employed in very different ways in
the fields of health services research and genomics research. Disparities
research has been dominated by the use of the racial/ethnic categories
institutionalized by the Office of Management and Budget (OMB) in 1997
—the same categories used in the U.S. Census—to assess differences in the
quality of care received across groups (Office of Management and Budget
1997). The National Institutes of Health (NIH) regulation requiring all
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federally funded researchers to report study participants based on the
OMB categories was not based on presumed biological differences
(National Institutes of Health 1993), but rather by concerns for distributive
justice (e.g., equal access to the benefits and burdens of clinical research)
(National Commission for the Protection of Human Subjects of Biomedical
and Behavioral Research 1978; McCarthy 1994; Shields et al. 2005). The
NIH requirement that researchers collect and report their study partici-
pants using these categories fostered the use of these same categories in
data analysis. Thus, in most early genetics studies, the OMB racial/ethnic
categories were used as a proxy for human genetic heterogeneity (i.e.,
human genetic variation or population structure). Human genetic variation,
however, is a “continuous variable” that represents patterns of human
mating and migration. These patterns can be mapped spatially (Parra 2007)
and are often categorized according to geographical ancestry (Tishkoff and
Verrelli 2003). Self-identified race variables have often been used as a
proxy for geographical ancestry (e.g., black for “African ancestry”; white

Figure 1: Incorporating Genomic Information into the IOM Definition of
Health Care Disparities1
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for “European ancestry”), although both geneticists and social scientists
have argued that self-identified racial/ethnic categories are poor proxies for
capturing human genetic heterogeneity (Royal and Dunston 2004; Shields
et al. 2005).

In time, the field of human population genetics devised more precise
ways to control for underlying population structure that have shown the limi-
tations of the OMB racial/ethnic categories as a useful proxy for genetically
meaningful groups. Methods for admixture mapping use data from the entire
genome to empirically group individuals according to geographical ancestry
based on their genetic data (Patterson et al. 2004). While empirical measures
of geographical ancestry may be correlated with self-identified OMB racial/
ethnic categories, OMB categories do not begin to capture the biological
diversity of even the most basic geographical groupings. For example, a recent
study showed that genetically-determined African ancestry among persons in
the United States identifying as African American ranged from 1 to 99 percent
(Bryc et al. 2010). Similar analyses have shown the extraordinary genetic
diversity in European populations previously thought to be fairly homoge-
neous “whites” (Novembre et al. 2008).

Given the well-documented and unacceptable gaps in the quality of
health care received by self-identified white and minority patients in the U.S.
health care system, disparities measured according to self-identified race/eth-
nicity will continue to be powerful policy levers for working toward equity, but
these categories should not be considered adequate proxies for human genetic
variation. Health services researchers will rarely have data available that
include empirical measures of geographical ancestry. When available, these
data could provide additional information regarding health status insofar as
they capture as yet undiscovered, clinically relevant genetic variants that vary
according to geographical ancestry, although the effect size of such variants
will likely be modest compared to the contribution of social and environmen-
tal factors in explaining disparities (Hirschhorn and Gajdos 2011). In the vast
majority of cases, however, data on geographical ancestry will not be available,
and the best that can be done is to take great care in specifying precisely what is
and is not being captured in the self-identified racial/ethnic variables being
used.

Health Status

Patients’ clinical need has been measured primarily as health status, using
whatever general or disease-specific measures might be available. Recent
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advances in genomics research, most notably genome-wide association
studies, have identified numerous genetic variants associated with
increased disease risk, thereby identifying new subsets of patients likely to
have more intensive future clinical needs. For example, seven genes
account for approximately 10 percent of variation in diabetes risk (Voight
et al. 2010). Thirty genetic variants account for close to 10 percent of
inter-individual variation in HDL, LDL, and triglyceride levels indicative
of cardiovascular disease (Kathiresan et al. 2009). BRCA1/2 mutations
increase women’s lifetime risk of breast cancer from 12 percent in the gen-
eral population to about 80 percent (King, Marks, and Mandell 2003).
Three genetic variants have been shown to account for a 2–4-fold increase
in risk for developing age-related macular degeneration (Maller et al.
2006). Multiple variants have also been found to more than double the
risk for nondiabetic end-stage renal disease, and these variants account
for much of the excess risk among persons of African versus European
ancestry (Kao et al. 2008). As data on genetic disease risk become
validated and available to health services researchers, they should be
included as individual-level measures in disparities research models to con-
trol for underlying differences in general or disease-specific health status,
as appropriate.

Once individual mutations or constellations of variants have been
shown to be reliable indicators of increased disease risk, they should be
included in disparities analyses whenever possible as additional measures of
health status in order to reduce measurement error. Some of these risk vari-
ants will vary in frequency among populations characterized according to
geographical ancestry, and thus they will have varying degrees of correlation
with the OMB racial/ethnic categories. A subset of these will have
substantial clinical relevance. The 8q24 variant, for example, confers signifi-
cantly increased risk of prostate cancer and is found predominantly in men of
African ancestry (Freedman et al. 2006). However, in the proposed frame-
work, we advocate the inclusion of genetic markers of health status as a means
of reducing measurement error, not as proxies for race/ethnicity. The magni-
tude of the reduction in bias and improvements in precision as a result of
incorporating genomic markers of health status will vary widely by phenotype
and the degree to which the variant (or constellation of variants) is correlated
with either the OMB race/ethnicity categories or outcome variables. Research
results to date indicate that genetic variation will typically account for a small
proportion of variance in disease risk and health outcomes among
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OMB-defined racial/ethnic groups, although in many cases genetic variation
will be sufficiently informative to meaningfully reduce measurement error.

Clinical Appropriateness

Beyond controlling for health status, or clinical need more generally,
genomics research is also beginning to generate information that can be
used to match patients to optimal treatments (Beitelshees and Veenstra
2011). Genetically-tailored treatments are most widely established in cancer
care, where it has now become standard practice to match patients to
appropriate therapy according to their specific tumor biology (i.e., somatic
mutations) (Garman, Nevins, and Potti 2007). Guidelines now recommend,
for example, that women with breast cancer whose tumors are HER-2 posi-
tive receive the medication trastuzumab (Herceptin) to reduce risk of recur-
rence (Piccart-Gebhart et al. 2005). Approximately 10 percent of breast
cancer patients have tumors that respond to trastuzumab; but among
patients with HER-2 positive cancers, this figure is as high as 50 percent
(Chang 2010). Use of trastuzumab among HER-2 negative women, by con-
trast, results in little clinical gain while exposing them to potential adverse
effects of the drug (e.g., heart damage) (Romond et al. 2005). As another
example, certain non-small cell lung cancers over-express the epidermal
growth factor receptor (EGFR) (Paez et al. 2004). Among this subset of
lung cancer patients, gefitinib (Iressa) inhibits this growth factor receptor
and significantly improves survival (Kris et al. 2003). Some academic medi-
cal centers now routinely assess EGFR expression among all non-small cell
lung cancer patients (Hayden 2009).

A growing number of examples outside oncology exist as well.
Genetic variants that code for cytochrome P450 (CYP450) enzymes (i.e.,
CYP2C9, CYP2C19, and CYP2D6), which determine how fast an individual
can metabolize certain medications (e.g., certain beta-blockers, tricyclic an-
tidepressants, and anticoagulants), are being used to classify patients’ metab-
olizing profiles and adjust dosing accordingly (Tomalik-Scharte et al. 2007).
This type of genetic information is also being used to guide treatment deci-
sions for thrombosis and HIV/AIDS (Mallal et al. 2008; Schwarz et al.
2008).

As with genetic measures of health status, once a specific genetic status
is proven to characterize a clinically relevant subset of patients who would
especially benefit from (or be harmed by) a given treatment, this information
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should be incorporated into health services research and disparities research
whenever possible. Again, these clinically relevant variants will rarely be
equally distributed across all human beings, and will more often differ in fre-
quency among persons of differing geographical ancestry. Thus, the degree of
correlation between genetic markers important to refining assessment of
appropriate care and the OMB racial/ethnic categories used in disparities
research will vary, depending on the variant(s) pertinent to the study at hand.
To the extent that genomic data are important for guiding treatment choices,
their omission in a given analysis will introduce a correlation between the
treatment variable and the error term in the equation and will result in biased
estimates of treatment effects.

Socioeconomic Status

In disparities research, socioeconomic status is conceptualized as mediating
racial/ethnic disparities through health systems. However, a growing body
of research shows how socioeconomic status also mediates health status
through GEI and epigenetic effects, where environmental exposures that
track with socioeconomic status are found to amplify genetic risk of dis-
ease (Hunter 2005; Jirtle and Skinner 2007). GEI research, for example,
investigates how complex relationships between genes and environmental
stressors produce differential disease risk. A specific genetic variant may
be common across all human populations but only deleteriously affect a
biological process in the presence of a particular environmental exposure.
For example, carriers of CD14 mutations are more susceptible to experi-
encing decreased lung function when exposed to airborne endotoxins
(Smit et al. 2011). Poor diet (Low and Tai 2007) and air pollution
(Moysich et al. 1999; Park et al. 2006) interact with specific genes to
increase risk for breast cancer and cardiovascular disease. As genomics
research identifies specific environmental exposures that are mediated by
socioeconomic status and amplify genetic risk of disease, the inclusion of
such exposure information, if available, would further reduce measure-
ment error in disparities analyses. As a growing number of studies link air
pollution to compounded genetic risk for decreased lung function (Ege
et al. 2011), for instance, one can imagine geographic information systems
(GIS)-linked air pollution exposure data becoming an expected covariate
in future studies investigating asthma or chronic obstructive pulmonary
disorder disparities.
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AMETHODOLOGICAL FRAMEWORK FOR
INCORPORATING GENOMIC INFORMATION INTO
HEALTH DISPARITIES RESEARCH

Among the many intersections between current conceptual and methodologi-
cal frameworks for examining racial/ethnic health disparities and genomic
information, genomic information can be immediately applied to three areas:
(a) accounting for previously unmeasured genetic variation that affects health
status or treatment response; (b) refining measurement of “appropriate care”;
and (c) incorporating genetic information indicating likely benefit from a
given treatment into the assessment of health outcomes. We illustrate these
areas using the example of HER-2 status guiding breast cancer care.

Accounting for Previously Unmeasured Genetic Variation

To date, the growing knowledge about genetic variation and the role of genet-
ics in predicting an individual’s risk of disease or response to a given treatment
has rarely been incorporated into disparities research methods. Determining
the best methods for addressing the issue of previously unobserved genetic
influences that may be correlated with both treatment and outcomes is a cur-
rent challenge for the health services research field. As increasing amounts of
evidence-based, clinically relevant genetic information becomes available, the
incorporation of such data into analyses of health disparities can be expected
to reduce measurement error and selection bias, and improve the value of
racial/ethnic disparities research.

We describe below an analytic framework that incorporates genetic vari-
ables in disparities research in anticipation of the growing availability of geno-
mic data, recognizing that many of the data needed to implement the
proposed framework are not yet widely available to health services research-
ers. Central to this framework is the acknowledgment that there is clinically
relevant genetic heterogeneity within and between the OMB-defined racial/
ethnic groups. Ideally, one would want to control for genetic variability within
and between self-identified OMB racial/ethnic groups with robust markers of
geographical ancestry, as well as known markers relevant to health status and
disease risk. This would address the selection bias problems (i.e., bias intro-
duced by the omission of variables that are correlated with both treatment and
patient outcomes) associated with unobserved heterogeneity in treatment
selection and response. In addition to including genetic variables in our
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framework, we utilize, within each racial/ethnic group, the decomposition
methods that have been used to assess racial/ethnic disparities in health care
in the recent literature (Cook et al. current issue). Finally, these methods are
extended to incorporate racial/ethnic disparities in nonrandom selection
(matching patients to treatments based on their genetic profile) into treatment
and heterogeneity of treatment response (due to one’s genetic make-up) within
treatment categories. The resulting analytic framework combines statistical
methods from both disparities research and outcomes research, and incor-
porates genetic information to enable more robust analyses of racial/ethnic
disparities in health care utilization and outcomes.

Any number of factors can undermine the reliability of statistical
inferences drawn from observational data. Common problems in observa-
tional data analysis include omitted variables, measurement error, joint
causation, and unobserved factors (e.g., positive HER-2 status) that are
correlated with both treatment selection and patient outcomes. The use of
race/ethnicity categories as proxies for underlying genetic variation is a
measurement error problem because of the imprecision of the OMB race
categories and the wide genetic variation found within these racial catego-
ries (Novembre et al. 2008; Bryc et al. 2010). As a result, disease risk
among genetic subgroups within a given OMB racial/ethnic category
would be expected to vary. The potential clinical benefit to be derived
from a given treatment can also vary dramatically according to genotype.
Thus, genetic variation found within the OMB racial/ethnic categories has
implications both for errors in treatment selection (i.e., appropriate care) as
well as observed variation in treatment response and health outcomes. Selec-
tion bias in treatment choice and variation in treatment response can be
reduced by identifying clinically relevant genetic subgroups. As genetic data
become increasingly available, the inclusion of these variables will enable
researchers to explain a greater proportion of disease burden and outcomes.

Some variables that are important predictors of health care utilization
(e.g., health status, socioeconomic status) can be readily observed by
researchers, but others (e.g., family history, genetic traits) may not be
observed. The inability to include such variables can lead to a special type
of measurement error known as omitted variable bias. The most direct solu-
tion is to include the missing data when possible. However, when this is not
possible, researchers can use statistical methods that test and correct for
selection bias in treatment and outcomes. To illustrate these points more
concretely, consider the example of breast cancer treatment. A basic frame-
work is provided in Equations (1–4).
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Refining Measurement of “Appropriate Care”

YB ¼ Ĉ0 þ Ĉ1X2 þ �̂1 ð1Þ
YW ¼ D̂0 þ D̂1X2 þ �̂2 ð2Þ

Equations (1) and (2) represent the clinician’s diagnostic and treatment pro-
cess. YB and YW represent the prescribed treatments for blacks and whites,
respectively. As discussed above, the OMB categories are a blunt instrument
for classifying disease risk and controlling for heterogeneity of treatment selec-
tion.White women are known to be at higher risk for developing breast cancer
than black women, but black women are diagnosed at later stages of disease
and have higher mortality ( Jemal et al. 2009). However, once diagnosed, the
differential risk of disease may have limited utility in guiding treatment;
matching women to the best treatment to optimize outcomes is the priority.
As detailed above, within each racial category, information about HER-2
status has become a critical predictor of treatment selection. Thus, genetic test-
ing for HER-2 receptor status should help to improve access to appropriate
care for women with breast cancer, regardless of race. To the extent that black
women experience poorer access to appropriate treatments for breast cancer,
testing for HER-2 status may reduce racial disparities in breast cancer treat-
ment. Using the counterfactual approach (online Supporting Information
Appendix SA2), it would be possible to evaluate racial disparities in treatment
with trastuzumab under the assumption that black women had the same mean
HER-2 status and other characteristics as white women.

While the example of HER-2 is useful in illustrating the value of match-
ing patients to treatment based on their mutation status, it simultaneously
highlights a limitation of currently available genomic data of particular rele-
vance to disparities researchers. Though roughly the same proportion of Afri-
can American and white women will have a negative HER-2 status (Lund
et al. 2010; Swede et al. 2011), black women with HER-2 negative status will
be far more likely to have triple negative cancer (which is a muchmore aggres-
sive form of breast cancer) (Carey et al. 2006; Cleator, Heller, and Coombes
2007). The vast majority of genomic studies in breast cancer, however—as
with all conditions—have been conducted in European ancestry populations
(Haga 2010), and so the genetics research needed to fully understand the etiol-
ogy and treatment of triple negative cancer has not yet been performed. Large
scale genomic studies of women of African ancestry with breast cancer are
only now being undertaken (Hutter et al. 2011).
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The racial disparities literature has largely focused on differential access
to appropriate care by race. In the following sections, the racial disparities
framework is extended to include an assessment of disparities in patient out-
comes that may arise from disparities in care.

Incorporating Genomic Information into the Assessment of Health Outcomes

OB ¼ Â0 þ Â1XB þ Â2YB þ �̂3 ð3Þ

OW ¼ B̂0 þ B̂1XW þ B̂2YW þ �̂4 ð4Þ

Equations (3) and (4) illustrate predicted outcomes OB and OW contingent
upon observed patient characteristics XB and XWand treatment choice YB and
YW for blacks and whites, respectively. One would expect that the use of
HER-2 positive gene expression results to guide treatment selection should
also lead to improvements in treatment outcomes within each racial category.
By reducing within-group variation, the ability to measure true between group
differences will be improved.

Once again, Equations (3) and (4) could be used to implement the tradi-
tional counterfactual approach to assess racial/ethnic differences in treatment
outcomes. The counterfactual approach would enable researchers to examine
whether differential outcomes by race/ethnicity persist after controlling for
the same rate of treatment with trastuzumab, as well as other patient character-
istics such as health status and socioeconomic status.

DISCUSSION

Advances in genomics research are generating new insight into the role of
genetics in disease risk and treatment response. The pace of discovery is
impressive, promising an increasing number of clinically relevant genetic
markers that will become validated as evidence-based indicators of health sta-
tus or clinical need and used to guide medical care. Due to patterns of human
migration, these genetic markers often vary in frequency according to geo-
graphical ancestry, which in turn is often correlated with, but not to be con-
fused with, groups based on self-identified race/ethnicity. The complex
interplay of human genetic diversity and the OMB categories of race/ethnic-
ity commonly deployed in disparities research present distinctive challenges.
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To incorporate emerging genomic data into cutting-edge disparities research,
several key concepts and measures, including race, health status, clinical
appropriateness, and socioeconomic status, must be refined or expanded.
Furthermore, appropriate genomic variables that account for population
structure, health status, and appropriate care should be included wherever
possible to reduce measurement error in disparities research models. Realiz-
ing the potential value of genomic information to disparities research will
depend on addressing key normative and practical issues.

First and foremost, standards for evaluating the scientific reliability of
emerging genomic information are needed. When is the scientific evidence
strong enough to warrant including genetic information in disparities stud-
ies? In general, the scientific process for identifying control variables in any
health services research is a function of evidence from the literature. In this
sense, the threshold for inclusion of genomic variables in disparities studies
is no different. The emerging field of personalized medicine, however, has
been slow to embrace evidence-based medicine (Khoury et al. 2008), and
the pace of research has made it difficult to reach consensus regarding the
clinical utility of many genetic markers. Currently, the Centers for Disease
Control’s Evaluation of Genomic Applications in Practice and Prevention
Initiative (Teutsch et al. 2009) is the premier source of independent,
evidence-based assessment of the clinical utility and reliability of genomic
applications. The U.S. Preventive Services Task Force (Agency for Health-
care Research and Quality 2012), Cochrane Collaboration (Sivell et al.
2007), and Secretary’s Advisory Committee on Genetics, Health and Soci-
ety (National Institutes of Health 2012) have also published reports assess-
ing the validity and reliability of specific genetic applications, as have
professional organizations recommending the use of specific mutations to
guide treatment (Carlson et al. 2006; Levin et al. 2006; Lynch 2006; Burt-
ness et al. 2009; Greenberg et al. 2009). When deciding whether mutations
associated with disease risk or treatment response should be included in dis-
parities research, their use in clinical practice and inclusion in evidence-
based guidelines are reasonable evidentiary thresholds for health services
researchers to consider.

The practical challenge for health services researchers trying to opera-
tionalize clinical guidelines based on genomic information lies in the lack of
research infrastructure. The genomic information necessary to define
denominator populations is not readily available in claims data or even
electronic medical records. Germline (e.g., BRCA1/2) or somatic (e.g.,
HER-2) mutation status, which is used to determine appropriate treatment,
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is often only available in medical charts or other data sources (e.g., cancer
registries). Few datasets outside cancer include genomic information. Even
within fully automated electronic health records (EHRs), mutation status is
rarely entered electronically (Wilke et al. 2011). This data gap limits the fea-
sibility of mounting large-scale studies assessing disparities in receipt of
guideline-recommended care where genomic information is used to define
the applicable patient populations.

Some health plans and health systems have begun collecting genetic
information on patients’ genetic status for select variants key to directing
care, particularly in the areas of cancer and cardiovascular disease. The VA
Hypertension Primary Care Longitudinal cohort, for example, has been
incorporating genetic markers into EHRs since 2003 (Salem et al. 2010;
Puppala et al. 2011). Recently, Kaiser Permanente was funded to link
genetic and clinical data for up to 500,000 enrollees to assess the efficacy
and toxicity of drugs, as well as the effect of different environmental expo-
sures across different genetic profiles (Thomson et al. 2010; Wilke et al.
2011). The Kaiser Permanente Research Program on Genes, Environment
and Health has now genotyped the DNA and the length of chromosome
tips of more than 100,000 individuals. This program is merging these data
with patients’ EHRs, providing a valuable, integrated database. Such data
resources will become more common in the coming years (Kaiser Perma-
nente 2011). Other initiatives to incorporate genomic data into EHR sys-
tems include the Harvard University/Partners Healthcare system i2b2, the
Vanderbilt BioVu44 database, and the multi-center, National Human Gen-
ome Research Institute-funded eMERGE (electronic Medical Records and
Genomics Network) (Kohane 2011).

The infrastructure to facilitate the routine incorporation of genomic data
into EHRs in the future is key to making use of the added power of genetic
information to understand variation in disease risk and treatment outcomes
among different populations, and to craft interventions most likely to ensure
optimal outcomes for all. Federal initiatives determined to accelerate adoption
of EHRs will likely be a major force in developing the infrastructure that will
begin capturing clinically relevant genetic information andmaking it available
to health services researchers. Adoption rates of EHRs remains low nation-
ally, at approximately 13 percent among physicians and 8 percent among hos-
pitals (DesRoches et al. 2008; Jha et al. 2009a), with safety net providers
facing particular barriers to adoption (Shields et al. 2007; Jha et al. 2009b).
However, large providers and health systems are already beginning to trans-
form their information systems by merging data (including genomic data)
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previously collected only in research into EHR formats (Massachusetts Gen-
eral Hospital 2009;Wilke et al. 2011).

As the first generation of genetic testing data becomes available to
health services researchers, these data should be interpreted with care. Con-
cerns about privacy and genetic discrimination may result in biased samples
of patients for whom germline genetic test results are available, thus limit-
ing generalizability. Patient preferences for testing play a significant role in
determining whether a patient receives genetic testing (Bruno et al. 2010).
Importantly, patient preferences for genetic testing have been shown to dif-
fer according to patients’ race and socioeconomic status, with minority
patients less likely to be aware of and less likely to believe in the benefits of
testing (Peters, Rose, and Armstrong 2004; Halbert, Kessler, and Mitchell
2005). In reality, patients are rarely equipped to make informed decisions
about their health care preferences (O’Connor et al. 2007; Peters et al.
2007). The complex nature of genetic information may make it more
difficult for patients to understand available information and may lead to
heightened anxieties about how genetic information will be used. The
passage of the Genetic Information Nondiscrimination Act of 2008 may
allay these fears over time.

The field of genomics is growing at an exponential rate, and new tech-
nological capacity has yielded results that have eclipsed findings from only
a few years ago. As a result, an increasing wealth of clinically relevant, vali-
dated genomic data will become available to health services researchers for
use in disparities research models in the coming years. Although we believe
social, environmental, and political factors will continue to account for the
lion’s share of racial/ethnic disparities in the United States, we also believe
that genetic data will be valuable in accounting for unobserved differences
in health status and treatment heterogeneity due to genetic variation that
may contribute to underlying prevalence of illness, treatment selection, and
treatment response. As genomics research continues to identify clinically
relevant patient subpopulations and knowledge of the complex factors that
predict disease and treatment outcomes increases, we anticipate a gradual
shift from statistical models with extremely large variability in selecting
appropriate treatments and in predicting health outcomes toward models
that explain an ever growing proportion of inter-individual variation. This
added analytical power, in turn, has the potential to increase our under-
standing of the various sources of racial/ethnic disparities in health care
and health outcomes, and generate new interventions aimed at reducing
disparities.
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