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      Asthma affects 5% to 10% of adults, and 10% of 
those with asthma have   severe disease.  1   These 

patients consume over 50% of the health-care 
resources.  2   Asthma is characterized by variable air-
fl ow obstruction; airway hyperresponsiveness and 
mast cell-airway smooth muscle (ASM) interactions 
are important in the development of disordered air-
way physiology.  3,4   

 Thymic stromal lymphopoietin (TSLP) is implicated 
in both the innate and adaptive immune response.  5   
T-helper cell type 2 (Th2) polarization of the infl am-
matory response is an important component of the 
asthma paradigm.  5,6   A major effector axis resulting in 
this polarization is the recognition of allergen pre-

sented by dendritic cells in local lymph nodes to the 
CD4 1  T cell. The differentiation of naive T cells or 
reactivation of memory T cells is dependent upon 
costimulatory molecules, such as OX40, and their 
cognate ligand OX40L,  5-10   which is increased in the 

bronchial submucosa in asthma  9   and upregulated by 
TSLP.  5,8   TSLP messenger RNA (mRNA) is upregu-
lated in the bronchial epithelium and submucosa in 
asthma in   response to allergen, viruses, and envi-
ronmental stimuli.  11   TSLP is expressed by mast 

  Background:    The mast cell localization to airway smooth muscle (ASM) bundle in asthma is important 
in the development of disordered airway physiology. Thymic stromal lymphopoietin (TSLP) is 
expressed by airway structural cells. Whether it has a role in the crosstalk between these cells is 
uncertain. We sought to defi ne TSLP expression in bronchial tissue across the spectrum of asthma 
severity and to investigate the TSLP and TSLP receptor (TSLPR) expression and function by primary 
ASM and mast cells alone and in coculture. 
  Methods:    TSLP expression was assessed in bronchial tissue from 18 subjects with mild to mod-
erate asthma, 12 with severe disease, and nine healthy control subjects. TSLP and TSLPR expres-
sion in primary mast cells and ASM was assessed by immunofl uorescence, fl ow cytometry, and 
enzyme-linked immunosorbent assay, and its function was assessed by calcium imaging. The role 
of TSLP in mast cell and ASM proliferation, survival, differentiation, synthetic function, and con-
traction was examined. 
  Results:    TSLP expression was increased in the ASM bundle in mild-moderate disease. TSLP and 
TSLPR were expressed by mast cells and ASM and were functional. Mast cell activation by TSLP 
increased the production of a broad range of chemokines and cytokines, but did not affect mast 
cell or ASM proliferation, survival, or contraction. 
  Conclusions:    TSLP expression by the bronchial epithelium and ASM was upregulated in asthma. 
TSLP promoted mast cell synthetic function, but did not contribute to other functional consequences 
of mast cell-ASM crosstalk.    CHEST 2012; 142(1):76–85   

  Abbreviations:  ASM  5  airway smooth muscle; CFSE  5  carboxyfl uorescein succinimidyl ester; DAPI  5  4 9 ,6-diamidino-2-
phenylindole; DMSO  5  dimethyl sulfoxide; FBS  5  fetal bovine serum; GINA  5  Global Initiative for Asthma; GMFI  5  geo-
metric mean fluorescence intensity; HLMC  5  human lung mast cell; HMC-1  5  human mastocytoma cell line; 
IQR  5  interquartile range  ; ITS  5  insulin transferrin sodium selenite; mRNA  5  messenger RNA; MTS  5  3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium; rh-TSLP  5  recombinant human 
thymic stromal lymphopoietin; Th2  5  T-helper cell type 2; TNF  5  tumor necrosis factor; TSLP  5  thymic stromal lym-
phopoietin; TSLPR  5  thymic stromal lymphopoietin receptor 
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respectively. The number of positively stained nucleated cells 
was enumerated per mm 2  of the lamina propria by a blinded 
observer. TSLP expression by the ASM or epithelium was also 
assessed using (1) a semiquantitative intensity score of no staining  5  0, 
low  5  1, moderate  5  2, and high  5  3 and (2) thresholding of red 
hue using Image J software (ImageJ 1.40g/java 1.6.0_05; NIH 
Image). The red/green/blue image was converted to hue/satura-
tion/brightness stack. Hue image was thresholded to include 
pixels with non-red hue 30-210 (scale of 0-255) for all images, and 
the percentage area covered by red hue pixels was calculated 
by deducting non-red pixels from the total.  21   Tryptase was colo-
calized with TSLP within the ASM using sequentially cut sections 
and a minimum area of 0.1 mm 2  was considered assessable as 
described previously.  19   

 TSLP and TSLPR expression was assessed in ASM, HLMC, 
and HMC-1 cells by fl ow cytometry and immunofl uorescence. 
Isotype control subjects were used where appropriate (Dako). 
TSLP protein release was measured in ASM, HLMC, HMC-1, 
and sputum by enzyme-linked immunosorbent assay (R&D Sys-
tems Inc). Recombinant TSLP recovery was unaffected by the 
mucolytic dithiothreitol. TSLP and TSLPR mRNA levels were 
examined in ASM cells using the Human Genome U133A probe 
array (GeneChip; Affymetrix).  22   

 Functional Assays 

 Changes in intracellular calcium [Ca 21 ] i  concentrations in ASM 
cells in response to recombinant human TSLP (rh-TSLP) were   
measured by fl uo-3/Fura Red acetoxymethyl ester ratios (Invit-
rogen) using fl ow cytometry. ASM cells were primed with rh-TSLP 
and collagen gel contraction assessed. Gel surface area was mea-
sured using ImageJ by a blinded observer. The concentration of 
a panel of cytokines and chemokines were measured in ASM and 
HMC-1 cells stimulated with TSLP by electrochemilumines-
cence detection and pattern arrays (Mesoscale Discovery). 

 Proliferation and Apoptosis 

 ASM proliferation was assessed by cell counts and the CellTiter 
96 Aqueous One Solution with the tetrazolium compound 3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H (MTS) (Promega) according to the manufacturer’s instructions. 
Morphologic features of apoptosis (nuclear condensation and frag-
mentation) were assessed by DAPI (4 9 ,6-diamidino-2-phenylindole) 
staining. 

 Coculture ASM and HLMC 

 HLMC proliferation was assessed by carboxyfl uorescein suc-
cinimidyl ester (CFSE) (CellTrace Proliferation Kit; Invitrogen) in 
HLMC cocultured with ASM cells. Changes in ASM phenotype 
were studied in the presence of HLMC lysate and stained with 
 a -smooth muscle actin (Sigma-Aldrich). 

 Statistical Analysis 

 Statistical analysis was performed using PRISM, version 4 
(GraphPad Software). Parametric data were presented as mean 
(SEM) and nonparametric data as median (interquartile range 
[IQR]). Parametric data were analyzed with paired and unpaired 
 t  tests or one-way analysis of variance and the Tukey posthoc test 
for intergroup comparison as appropriate. Nonparametric data 
were analyzed using Mann-Whitney or Kruskal-Wallis tests and 
the Dunn test for posthoc comparison as appropriate. Corre-
lations between parametric data were assessed by Pearson cor-
relation and nonparametric data by Spearman rank correlation. 
A  P  value  ,  .05 was considered signifi cant. 

cells  12,13   and ASM  14,15   supporting the view that TSLP 
may have a role beyond Th2 polarization and may be 
important in mast cell-ASM interactions. 

 We hypothesized that expression of TSLP and TSLP 
receptor (TSLPR) is increased in asthma and that 
this axis plays a role in mast cell-ASM crosstalk. To 
test our hypothesis, we investigated TSLP expression 
in bronchial tissue across the spectrum of asthma 
severity compared with healthy control subjects, and 
defi ned TSLP and TSLPR expression and function 
by ASM and mast cells. 

 Materials and Methods 

 Subjects 

 Subjects were recruited from Leicester, England. Asthmatic sub-
jects had a consistent history and objective evidence of asthma.  16   
Asthma severity was defi ned by Global Initiative for Asthma (GINA) 
treatment steps (mild-moderate GINA 1-3, severe GINA 4-5).  17   
Subjects underwent clinical characterization including sputum 
induction  18   and video-assisted fi ber-optic bronchoscopic examina-
tion.  19   The study was approved by the Leicestershire Ethics Com-
mittee, approval number 4977, and all patients gave their written 
informed consent. 

 Cell Isolation and Culture 

 Pure ASM bundles were isolated from bronchoscopic samples 
(n  5  14 asthma, n  5  8 nonasthma) and from lung resection (n  5  1). 
ASM was cultured and characterized as previously described.  16,20   
The human lung mast cells (HLMCs) were isolated and cultured  16,20   
from nonasthmatic lung (n  5  10). The human mastocytoma cell 
line (HMC-1) was a generous gift from J. Butterfi eld, MD, (Mayo 
Clinic). 

 TSLP/TSLPR Expression 

 Sequential 2- m m sections were cut from glycomethacrylate-
embedded bronchial biopsies and stained using a sheep polyclonal 
antihuman TSLP antibody (R&D Systems), monoclonal antibody   
mast cell tryptase (clone no. AA1; Dako), and appropriate iso-
type control sheep IgG (R&D Systems) and mouse IgG1 (Dako), 
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relations with other sputum cell counts or with lung 
function. The median (IQR) proportion of TSLP 1  
cells in the lamina propria that were mast cells was 
40% (77  ). All the infl ammatory cells in the ASM that 
colocalized to TSLP were mast cells. Sputum TSLP 
was measured in 12 patients with asthma and four 
healthy control subjects and was below limit of detec-
tion in all except for two asthmatics. 

 TSLP Expression by Primary Cells 

 There was no difference in expression between 
ASM cells derived from patients with asthma and 
from normal control subjects in all studies (data not 
shown). Therefore, normal and asthmatic ASM data 
were combined throughout. TSLP expression was 
identifi ed in ASM and human mast cells by immu-
nofl uorescence ( Figs 2A, 2B  ) and fl ow cytometry 
( Figs 2C-F ). The expression of TSLP in unstimulated 
ASM cells compared with isotype control was geo-
metric mean fl uorescence intensity (mean  D GMFI) 
fold (95% CI) 2 (1.6-2.6);  P   ,  .001, n  5  8, which was 
not affected by stimulation with IL-1 b , tumor necrosis 

 Results 

 TSLP Expression in the ASM Bundle in Asthma 

 The clinical characteristics of the subjects assessed 
by immunohistochemistry are shown in  Table 1  . TSLP 
staining was apparent in the epithelium, ASM, and 
cells within the lamina propria ( Fig 1A  ). 

 TSLP expression was signifi cantly increased in the 
ASM and lamina propria in mild to moderate asthma 
and in the epithelium across all severities ( Figs 1B-D , 
 Table 1 ). There was a good correlation between TSLP 
expression assessed by the semiquantitative score 
and by the percentage of hue thresholding ( r   5  0.94, 
 P   ,  .001). The intensity of TSLP expression (per-
centage of red hue) in the ASM and epithelium were 
correlated ( r   5  0.77,  P   ,  .0001) and both were related 
to the number of epithelial cells in the sputum 
( r   5  0.58,  P   ,  .01 and  r   5  0.64,  P   ,  .001, respectively). 
TSLP 1  cells/mm 2  in the lamina propria was also 
correlated with TSLP intensity (percentage of red 
hue) in the ASM, epithelium ( r   5  0.49,  P   5  .002 and 
 r   5  0.46,  P   5  .003, respectively) and sputum epithe-
lial cell counts ( r   5  0.55,  P   ,  .01). There were no cor-

 Table 1— Clinical Characteristics of Asthmatic and     Healthy Control Subjects  

Normal

Mild-Moderate Asthma
GINA 1-3 

(1  5  11, 2  5  1, 3  5  6)
Severe Asthma

GINA 4-5 (4  5  7, 5  5  5)

No. 9 18 12
Age, y a 45 (27) 53 (29) 51 (14)
Male (female) sex 5 (4) 7 (11) 4 (8)
Never/current/ex-smokers 8/1/0 14/4/0 10/0/2
Atopy, % 44 67 75
Inhaled corticosteroids, a   m g/d 

 beclomethasone equivalent
0 0 (0-500) 1,800 (1,600-2,000)

Oral corticosteroid, a  mg/d 0 0 0 (0-10)
PC 20  FEV 1 , b  mg/mL  .  16 0.5 (0.2-1.3) d 0.8 (0.3-2.3) d 
FEV 1 % predicted  c  94 (3) 82 (7) 77 (7) d 
Pre-BD FEV 1 /FVC, c  % 82 (2) 72 (2) d 67 (5) d 
BD, c  % 0 (0) 11 (4) d 9 (2) d 
Sputum cell counts
 TCC  c  0.9 (0.1) 2.4 (0.5) 5.9 (1.4) d 
 Eosinophil, a  % 0.4 (0.8) 1.0 (5.2) 4.6 (18.0) d 
 Neutrophil, c  % 56 (12) 48 (7) 65 (7)
 Macrophage, c  % 37 (12) 39 (7) 18 (6) d 
 Lymphocyte, a  % 1 (5) 1 (2) 0.3 (3.1)
 Epithelial cells, a  % 1 (12) 4 (11) 1 (2)
TSLP expression in bronchial biopsy
 Epithelium, a  SQS 0 (0.3) 0.75 (1.9) d 0.75 (1.3) d 
 Epithelium, a  % red hue 0 (4) 11 (19) d 11 (12) d 
 Lamina propria, a  cells/mm 2 2.2 (4.1) 16.3 (59.5) d 15.8 (17.7)
 Airway smooth muscle, a  SQS 0.25 (0.4) 0.88 (0.7) e 0.75 (0.9)
 Airway smooth muscle, a  % red hue 2 (4) 10 (10) d 9 (9)

BD  5  bronchodilator; GINA  5  Global Initiative for   Asthma; IQR  5  interquartile range; PC  5  provocation concentration; SQS  5  semiquantitative 
score; TCC  5  total cell count.
 a Median (IQR).
 b Geometric mean (95% CI).
 c Mean (SE).
 d  P   ,  .05 compared with control subjects.
 e  P   ,  .001 compared with control subjects.
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 TSLPR Expression by Primary Cells 

 TSLPR expression was expressed in ASM and mast 
cells both by immunofl uorescence ( Figs 3A, 3B  ) and 
fl ow cytometry ( Figs 3C, 3D ). The expression of sur-
face TSLPR in unstimulated ASM cells compared with 
isotype control was mean  D GMFI fold (95% CI) 
1.5 (1.1-1.8),  P   5  .01, n  5  7, which was not affected by 
stimulation with IL-1 b , TNF- a , or IL-4 ( Fig 3C ), for 
unstimulated HMC-1 cells 1.4 (0.1-2),  P   5  .03, n  5  7, 
and for HLMC 1.8 (0.9-1.4); n  5  4. TSLPR intra-
cellular expression was detected in ASM and HMC-1 
cells and was unaffected by stimulation ( Fig 3D ). 
Functional responses of TSLPR were studied; cells 
were loaded with fl uo-3 and Fura Red and stimulated 
with rh-TSLP at 100-200 ng/mL to trigger Ca 21  fl ux 
through the membrane linked receptor (TSLPR) or 

factor- a  (TNF- a ), or IL-4 ( Fig 2E ). TSLP expression 
was also increased in unstimulated HMC-1 cells 
 D GMFI fold (95% CI) 1.3 (1.07-1.5),  P   5  .01, n  5  5 
and HLMC 2.8 (0.6-5),  P   5  .03, n  5  3, compared with 
isotype control ( Fig 2F ). TSLP was measurable in 
unstimulated ASM cells (305  �  63 pg/10 6  cells, n  5  11), 
HMC-1 cell supernatants (19  �  1 pg/10 6  cells, n  5  4), 
HLMC supernatants (82  �  14 pg/10 6  cells, n  5  3), and 
HLMC cell lysates (334.8  �  54 pg/10 6  cells, n  5  3), 
but was not affected by stimulation ( Fig 2G ). Rest ing 
HLMC released signifi cantly more TSLP in cell super-
natant compared with the resting HMC-1 cell mean 
difference ([95% CI] 59 [23-153] pg/10 6  cells,  P   5  .004) 
( Fig 2G ). Quantifi ed by gene array analysis, TSLP 
mRNA was present in all ASM donors (1.47%  �  0.32%) 
of   GAPDH mRNA (n  5  11). 

  Figure  1. Mast cells in the ASM bundle express TSLP. A, Representative photomicrographs of a bron-
chial biopsy specimen from asthmatic subjects (original magnifi cation,  3 100) showing negative isotype 
control (i), TSLP staining in ASM bundles (ii), and epithelium (magnifi cation  3 400, iii). Sequential 
sections of the ASM bundle highlighting the same cells across sections showing mast cell tryptase-
positive staining (iv) and TSLP (v). The short arrows illustrate the cells that are both tryptase 1  and 
TSLP 1  within the ASM bundle. B, Dot plot showing ASM TSLP expression determined by % red hue. 
C, TSLP-positive cells per square millimeter of lamina propria in subjects with and without asthma. 
D, TSLP expression in the epithelium by % red hue. Horizontal bar represents median. ASM  5  airway 
smooth muscle; TSLP  5  thymic stromal lymphopoietin.   
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calcium ionophore which induces a rapid release of 
Ca 21  from intracellular stores ( Fig 3E ). The response 
of HMC-1 cells and ASM cells stimulated with rh-TSLP 
showed a similar pattern with an increase in GMFI 
(fl uo 3/Fura Red ratio,  Fig 3E ) for ASM cells stimu-
lated with 100 ng/mL ( P   5  .03, n  5  5) and 200 ng/mL 
( P   5  .04, n  5  8) rh-TSLP ( Fig 3E ) compared with 
baseline. 

 Neutralization of TSLP in Primary Cells 

 ASM assessed by the MTS assay demonstrated a sig-
nifi cant increase in cell proliferation/metabolic activity 
after 96 h for cells cultured in either 10% fetal bovine 
serum (FBS) ( P   5  .004) or   ITS media compared with 
ASM at 0 h ( P   5  .04) ( Figs 4A, 4B  ). Recombinant 
TSLP (12.5-100 ng/mL) had no effect on the MTS 
assay in the presence of FBS and ITS media (data 
not shown). Neutralizing TSLP also had no effect on 
ASM metabolic activity both in FBS and ITS media 
( Figs 4A, 4B ), and in contrast to the staurosporine posi-
tive control in FBS and ITS media ( P   ,  .0001, n  5  6). 

 The percentage of ASM nuclei showing nuclear 
con densation and fragmentation characteristic of apo-
ptosis, detected by DAPI staining, was unaffected by 
incubation with 100 ng/mL TSLP for 96 h (untreated, 
6.3%  �  1.4% vs 100 ng/mL TSLP 9.6  �  2.7, n  5  6, 
 P   5  .2). In the presence of staurosporine (1  m M, 96 h), 
a positive control ASM cells showed nuclear mor-
phology characteristic of cells undergoing apoptosis 
compared with dimethyl sulfoxide (DMSO  ) control 
( P   ,  .0001, n  5  6) ( Fig 4C ). ASM cells primed for 
48 h with rh-TSLP (10 ng/mL) embedded within col-
lagen gels did not result in altered gel contraction 
compared with unprimed ASM over 7 days (n  5  4) 
( Fig 4D ). 

 ASM-Mast Cell Coculture 

 To track mast cells cocultured with ASM over 7 days, 
mast cells were labeled with fl uorescent marker CFSE, 
a stable dye that is not passed between cells upon 
adhesion. Using fl ow cytometry, CFSE-labeled mast 
cells were gated ( Fig 5A  ) and CFSE GMFI analyzed 
compared with cells cocultured with isotype and anti-
TSLP ( Fig 5B ). Cocultured HLMC survived and 
proliferated with ASM cells alone and in the pres-
ence of anti-TSLP determined by CFSE ( Fig 5B ) and 
cell counts ( Fig 5C ). 

HLMC IgE sensitized (2.4  m g/mL) and then activated with anti-IgE 
(1:500) for 1 h. All data presented as mean  �  SEM. Statistical 
differences were assessed using the  t  tests, and  P  values are 
as shown FITC  5  fl uorescein isothiocyanate; GMFI  5  geomet-
ric mean fl uorescence intensity; HLMC  5  human lung mast cell; 
HMC-1  5  human mastocytoma cell line; PMA  5  phorbol myristate 
acetate; TNF  5  tumor necrosis factor; Unstim  5  unstimulated. See 
Figure 1 legend for expansion of other abbreviations.   

 

  Figure  2. TSLP expressed by ex vivo ASM and mast cells. 
A, B, TSLP expression was confi rmed in (A) ASM and (B) HMC-1 
cells by immunofl uorescence (nuclei stained blue, TSLP stained 
green, isotype shown as insert, magnifi cation  3  400, n  5  3). C, D, The 
example fl uorescent histograms for (C) ASM and (D) HLMC 
cells represent populations of TSLP (black line) plotted with the 
corresponding isotype control (gray line). E, The expression of 
intracellular TSLP was investigated by fl ow cytometry on unstim-
ulated and stimulated ASM cells with 10 ng/mL proinfl amma-
tory cytokines IL-1 b , TNF a , and IL-4 over 20 h (n  5  8; * P   ,  .05 
compared with isotype control). F, Expression was also seen in 
unstimulated mast cells (n  5  3-5; * P   ,  .05 compared with isotype 
control). G, TSLP protein release was measured by enzyme-
linked immunosorbent assay (ELISA) in ASM (n  5  8-11, unstim-
ulated and stimulated for 20 h), HMC-1 (n  5  4), and HLMC 
(n  5  3-5) supernatants (and lysate for HLMC). HMC-1 cell protein 
release was studied in cell supernatants following PMA   stimu-
lation with 1  m g/mL or calcium ionophore 1  m g/mL over 24 h and 
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muscle actin GMFI compared with ASM cells, but 
was also unaffected by anti-TSLP ( Figs 5E, 5F ). 

 Chemokine and Cytokine Release 
in Human Cultured Cells 

 HMC-1 cell release of most chemokines and cytokines 
was signifi cantly upregulated following TSLP (1 ng/mL) 
activation for 24 h ( Table 2  ). ASM release of cyto-
kines and chemokines was not upregulated by TSLP 
activation over 24 h (1-10 ng/mL, data not shown). 

 Discussion 

 We report for the fi rst time, to our knowledge, that 
TSLP expression by ASM is increased in mild to 
moderate asthma, and that mast cells within the ASM 
bundle express TSLP. We confi rm that the bronchial 
epithelium is an important source of TSLP. Primary 
ASM and mast cells also express TSLP and TSLPR 
constitutively. We confi rmed that mast cells cocul-
tured with ASM cells survive and proliferate, but that 
this was not affected by TSLP. Additionally, ASM 
contraction and synthetic capacity was not modu-
lated by TSLP. In contrast, TSLP potently activated 
mast cells to release an array of cytokines and chemok-
ines, suggesting that ASM-derived TSLP may play a 
role in mast cell activation. 

 TSLP is both necessary and suffi cient for the devel-
opment of Th2 cytokine-associated infl ammation 
of the airways in rodents. Mice expressing a TSLP 
transgene in the airway epithelium develop a spon-
taneous, progressive infl ammatory disease with all 
the characteristics of human asthma,  23   whereas direct 
intranasal delivery of TSLP (in the presence of 
antigen) leads to rapid onset of severe disease.  24   In 
human disease, genetic analysis has shown an associ-
ation of polymorphisms in  TSLP  with asthma and air-
way hyperresponsiveness, IgE concentrations, and 
eosinophilia.  25-27   In addition, asthmatics have higher 
concentrations of TSLP in their lungs.  13   TSLP is 
expressed mainly by epithelial cells at barrier sur-
faces.  28   Factors known to   be involved in either the 
development of asthma or the exacerbation of existing 
disease can induce TSLP expression in airway epithe-
lial cells such as infl ammatory cytokines and respira-
tory viruses.  28,29   We confi rm here that TSLP expression 
was upregulated by the bronchial epithelium in 
asthma, independent of disease severity. Interest-
ingly, the intensity of TSLP expression was related to 
the number of epithelial cells in the sputum superna-
tant, suggesting that TSLP expression was associated 
with epithelial damage. Other cells express TSLP 
including mast cells  12,13   and ASM.  14,15   TSLP expres-
sion was upregulated in the ASM bundle in chronic 
obstructive pulmonary disease  14   and increases with 

 ASM cells cocultured with HLMC lysate (1:4 ratio 
of mast cells:ASM) showed a signifi cant increase in 
metabolic activity compared with ASM alone over 
7 days compared with baseline (n  5  4) ( Fig 5D ). TSLP 
neutralization had no effect on ASM metabolic activity 
mediated by HLMC lysates ( Fig 5D ). ASM cells cul-
tured with HLMC lysate showed increased  a -smooth 

  Figure  3. TSLPR expressed by ex vivo ASM and mast cells. 
A, B, TSLPR expression was confi rmed in (A) ASM and (B) HMC-1 
cells by immunofl uorescence (nuclei stained blue, TSLPR 
stained green, isotype shown as insert, magnifi cation  3  400, n  5  3). 
C, D, The expression of (C) surface and (D) intracellular TSLPR 
was investigated by fl ow cytometry on unstimulated ASM, mast 
cells, and stimulated ASM cells with 10 ng/mL proinfl ammatory 
cytokines IL-1 b , TNF a , and IL-4 over 20 h (n  5  3-7, * P   ,  .05 
compared with isotype control). TSLPR activation was studied by 
calcium fl ux assays in human ASM and HMC-1 cells. Cells were 
loaded with fl uo-3 and Fura Red and baseline calcium levels were 
recorded for 60 s followed by the addition of either 100-200 ng/mL 
recombinant human TSLP (rh-TSLP) or 1.5  m g/mL calcium 
ionophore, (positive control) over a further 180 s (n  5  5-8). E, The 
 D GMFI was determined by the difference between the total stim-
ulated GMFI minus the matched baseline GMFI for each cell 
type (* P   ,  .05, ** P   ,  .01, *** P   ,  .001 compared with baseline 
GMFI). All data presented as mean  �  SEM. Statistical differences 
were assessed using the  t  tests. TSLPR  5  thymic stromal lym-
phopoietin receptor. See Figure 1 and 2 legends for expansion 
of other abbreviations.   
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ASM promotes mast cell activation,  31   differentiation,  32   
survival and proliferation,  31,32   and ASM contractility.  33   
We considered here whether the TSLP/TSLPR axis 
plays a role in these interactions. We confi rmed that 
mast cells and ASM express both TSLPR and its ligand 
and that the receptor is functional using calcium 
imaging. Interestingly, activation of ASM TSLPR did 
not affect the function of these cells in terms of pro-
liferation, survival, contraction, or synthetic response. 
Similarly, TSLP did not affect mast cell survival or 
proliferation. In contrast TSLP had a marked effect 
upon mast cell synthesis of chemokines and cyto-
kines. This is consistent with previous work using 
cord 11  or peripheral blood-derived differentiated mast 

exposure to cigarette smoke.  30   Here, we extend these 
observations to demonstrate for the fi rst time that 
the number of cells in the lamina propria and the 
intensity of TSLP staining in the ASM bundle are 
also upregulated in mild to moderate, but not severe, 
asthma. Whether the relatively attenuated TSLP 
expression in severe disease represents the response 
to high-dose corticosteroid therapy or a feature of 
disease severity warrants further investigation. 

 Mast cell-ASM crosstalk has been implicated in 
the development of disordered airway physiology in 
asthma. Indeed, the number of mast cells within the 
ASM bundle is related to the degree of airway hyper-
responsiveness.  19   Coculture of primary mast cells with 

  Figure  4. Neutralization of TSLP in ex vivo human cells. A, B, ASM cell metabolic activity or prolifer-
ation in the presence of (A) 10% FBS media and (B) serum-free ITS media was assessed over 96 h in the 
presence of isotype control,  a -TSLP 1  m g/mL, DMSO, and 1 m M staurosporine (positive control, n  5  6). 
C, Representative micrographs of ASM cells showing DAPI (4 9 ,6-diamidino-2-phenylindole) staining of 
cells in the presence of ITS media alone,100 ng/mL rh-TSLP, and 1 m M staurosporine over 96 h. The 
percentage of apoptotic nuclei of ASM cells identifi ed by nuclear morphology over 96 h of ASM cells 
alone in ITS, presence of rh-TSLP 100 ng/mL,  a -TSLP, isotype, 1 m M staurosporine, and DMSO control 
(n  5  6). Comparisons were made between DMSO control vs staurosporin treated cells, *** P   ,  .001. 
ASM cells were primed with TSLP (10 ng/mL) over 48 h and impregnated in the collagen gel and left in 
the gel without stimulation for 7 days (n  5  4) to assess collagen gel contraction (D). All data presented 
as mean  �  SEM. Statistical differences were assessed using the  t  tests and  P  values are as shown. 
DMSO  5  dimethyl sulfoxide; FBS  5  fetal bovine serum; ITS  5  insulin transferrin sodium selenite. See   
Figure 1-3 legends for expansion of other abbreviations.   
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  Figure  5. Mast cell coculture and lysate. A, Representative dot plot for ASM and HLMC (prelabeled 
with CFSE-FITC) cocultured for 7 days. After 7 days  , coculture-labeled CFSE HLMC were gated and 
analyzed for CFSE GMFI intensity compared with HLMC baseline. Flow cytometric histogram illus-
trating CFSE fl uorescence at baseline for HLMC alone and then cocultured for 7 days in the presence 
of ASM cells. B, HLMC CFSE proliferation was assessed over 7 days for HLMC cocultured with ASM 
with and without isotype control and  a -TSLP (1  m g/mL) n  5  6). Comparisons were made between 
HLMC GMFI at baseline compared with HLMC cocultured over 7 days. C, The number of HLMC 
present over 7 days in coculture  �  isotype,  a -TSLP 1  m g/mL was assessed and comparisons were made 
between baseline HLMC counts vs cocultured HLMC. D, ASM cell metabolic activity/proliferation 
was assessed over 7 days in the presence of ASM1HLMC lysate,  �  isotype,  a -TSLP 1  m g/mL (n  5  4). 
E, Example fl uorescent histogram of ASM cells stained with  a -smooth muscle actin with ASM cells 
alone (gray) or ASM coculture with HLMC lysate (ratio-1 HLMC lysate:4 ASM, black line). F, The 
 D GMFI of  a -smooth muscle actin in ASM cells with and without neutralizing TSLP over 7 days (n  5  4). 
All data presented as mean  �  SEM. Statistical differences were assessed using the  t  tests and  P  values 
are as shown * P   ,  .05, ** P   ,  .01. CFSE  5  carboxyfl uorescein succinimidyl ester. See Figure 1-4 legends 
for expansion of other abbreviations.   
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crosstalk. The mechanisms leading to mast cell activa-
tion within the ASM bundle and the consequences of 
this activation are likely to be manifold and, thus, the 
relative importance of the TSLP axis in these inter-
actions requires further investigation. The results from 
specifi c TSLP therapy in humans are eagerly awaited. 
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cell progenitors.  34   Interestingly, we have previously 
reported that mast cells within the ASM-bundle are 
activated with increased expression of important Th2 
cytokines including IL-13.  35   One possible explanation 
for this upregulated IL-13 expression by mast cells is 
that ASM-derived TSLP in the asthmatic airway may 
promote mast cell activation. Indeed, we confi rmed 
that TSLP modulated mast cell production of IL-13 
and in coculture, this is in part dependent upon ASM-
derived TSLP.  15   Therefore, TSLP may present a novel 
target for asthma that may exert effects beyond epi-
thelial repair and Th2 polarization to include the 
potential to modulate mast cell-ASM cell interactions. 

 Possible criticisms of this study are that the in vivo 
fi ndings are cross-sectional and the mechanistic studies 
are ex vivo. We are, therefore, unable to determine 
whether modulating TSLP expression by mast cells 
or ASM within the asthmatic airway would lead to 
important clinical outcomes. We were unable to dem-
onstrate a relationship between airfl ow obstruction 
and TSLP expression questioning the role of this axis 
in airway dysfunction. Interestingly, we did not fi nd 
differences in TSLP expression in vitro in primary 
cells from health and disease, suggesting that in vivo 
either upregulation of TSLP in asthma or downreg-
ulation in health is a consequence of differences in 
the microenvironment. 

 In conclusion, we report here that both mast cells 
and ASM express TSLP and TSLPR. Mast cell-ASM 
interactions are important in the pathogenesis of 
asthma and coculture of these cells leads to reciprocal 
activation and differentiation. We found that TSLP 
potently activates mast cells, but we were unable to 
demonstrate further roles for TSLP in mast cell-ASM 

 Table 2— Mean (SEM) Chemokine and Cytokine Release by HMC-1 (pg/10 6  Cells) With and Without TSLP 
Stimulation (1 ng/mL) Over 24 h  

Chemokine/Cytokine Unstimulated Stimulated  P  Value

CCL11 585 (110) 2,994 (60)  ,  .001
CCL4 374 (9) 11,362 (267)  ,  .001
CCL26 411 (121) 2,618 (256) .003
CCL17 966 (52) 2,146 (123) .003
CXCL10 798 (30) 2,380 (112)  ,  .001
CXCL8 63 (15) 4,970 (128)  ,  .001
CCL2 5,616 (173) 16,308 (242)  ,  .001
CCL22 922 (97) 2,074 (66)  ,  .001
CCL13 419 (143) 1,553 (9) .004
CCL5 4.5 (6) 219 (14)  ,  .001
IFN- g 125 (52) 105 (9) .74
IL-1 b 0 4.8 (2) .121
IL-2 102 (2) 292 (39) .016
IL-4 36 (18) 25 (14) .662
IL-5 0 132 (8)  ,  .001
IL-10 80 (4) 354 (6)  ,  .001
IL-12p70 84 (22.84) 96 (35) .79
IL-13 36 (36) 325 (19) .005
TNF- a 81 (4) 236 (34) .0138

HMC-1  5  human mastocytoma cell line; IFN  5  interferon; TNF  5  tumor necrosis factor; TSLP  5  thymic stromal lymphopoietin.
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