
© 2012 Landes Bioscience.

Do not distribute.

Acquired thermotolerance independent
of heat shock factor A1 (HsfA1),

the master regulator of the heat stress response
Hsiang-chin Liu1,2 and Yee-yung Charng2,*

1Institute of Plant Biology; National Taiwan University; Taipei, Taiwan; 2Agricultural Biotechnology Research Center; Academia Sinica; Taipei, Taiwan

Keywords: Arabidopis, heat shock factor, bZIP28, ER stress, acquired thermotolerance

The heat stress (HS) response in eukaryotes is mainly regulated by heat shock factors (HSFs). Genetic disruption of the
master HSF gene leads to dramatically reduced HS response and thermotolerance in several model organisms. However,
it is not clear whether organisms devoid of the master regulator can still acclimate to heat. Previously, we showed that
Arabidopsis HsfA1a, HsfA1b and HsfA1d act as master regulators in the HS response. In this study, we examined the heat
acclimation capacity of the Arabidopsis quadruple and triple T-DNA knockout mutants of HsfA1a, HsfA1b, HsfA1d and
HsfA1e. Our data showed that in the absence of the master regulators, a minimal but significant level of acquired
thermotolerance could be attained in the Arabidopsis mutants after acclimation. The optimum acclimation temperature
for the HsfA1 quadruple mutant was lower than that for the wild type plants, suggesting that plant cells have two HS-
sensing mechanisms that can be distinguished genetically. The acquired thermotolerance of the quadruple mutant was
likely due to the induction of a small number of HsfA1-independent HS response genes regulated by other transcription
factors. Here, we discuss the possible candidates and propose a working model of the transcription network of the HS
response by including the HsfA1-dependent and -independent pathways.

In response to elevated temperature, living cells immediately
switch on the transcription of a multitude of genes encoding
protective proteins or enzymes that enable it to minimize injury
or sustain a subsequent harsher heat challenge. This universal
phenomenon in all organisms studied to date is known as the heat
stress or heat shock response (HSR).1 In eukaryotic cells, the HSR
is mediated by structurally conserved transcription regulators,
named heat shock factors (HSFs), which form active trimeric
conformations that bind to the conserved cis-elements in the
promoters of many HSR genes.2,3 Genetic disruption or knock-
down of the master regulator gene(s) has been shown to
dramatically diminish the HSR and thermotolerance in chla-
mydomonas,4 drosophila,5 mammalian cells6,7 and plants.8-10

However, whether organisms lacking the master regulator can
still acclimate to heat is not clear. This question is of great interest
in plants as the sessile organisms frequently face the challenge of
HS in the natural environment, and the existence of an additional
HSR pathway independent of the master HSFs could be
advantageous for plants adapting to HS.

In higher plants, homologs of HSFs form a multigene family,
whose members can be classified into three major classes (class A,
B, andC) and several subclasses.11 Recently, genetic evidence has
revealed diverse functions for some of these HSF homologous
genes.8-10,12-21 The members of the HsfA1 subclass have been
shown to be the master regulators of the HSR. Transcriptional

knockdown of tomato HsfA1a expression dramatically reduced
basal and acquired thermotolerance of the transgenic plants,
suggesting that HsfA1a plays a major role in the HSR of
tomato.9 In Arabidopsis, there are four members belonging to
the HsfA1 subclass, HsfA1a, HsfA1b, HsfA1d and HsfA1e.
Disruption of Arabidopsis HsfA1a or both HsfA1a and HsfA1b
by T-DNA insertions does not cause significant defect in
thermotolerance, as is the case in tomato.22 Thus, it was
thought that the four HsfA1 genes are likely redundant in
function. To evaluate this possibility, we generated a quadruple
T-DNA knockout (QK) and four triple KO mutants, named aTK,
bTK, dTK and eTK, where the prefixed letters represent the
remaining intact HsfA1.8 These mutants are derived from single
mutants of Columbia (Col) or Wassilewskija (Ws) ecotype
backgrounds. We showed that the QK and eTK mutants are
extremely sensitive to various HS treatments from seed to adult
plant stages compared with either the Col or Ws wild types.
Moreover, the HSR was dramatically compromised in these
mutants, while in the aTK, bTK and dTK mutants the
thermotolerance and HSR were not or were only partially
affected. These results suggest that HsfA1a, HsfA1b and HsfA1d
share the role of master regulator of the HSR in Arabidopsis.8

In this study, we were interested to know whether acquired
thermotolerance can be attained in the absence of the master
transcription regulators.
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First, to determine whether there are differential temperature
optimums to induce acquired thermotolerance in the HsfA1
mutants, 7-d-old seedlings were first acclimated at different
temperatures from 31 to 39°C for 1 h, allowed to recover at 22°C
for 2 h, then challenged by severe HS at 44°C for 150 min.
Viability of the seedlings was then assessed after 7 d of recovery
from treatment. The results showed that 37°C was the most
effective temperature in inducing acquired thermotolerance in the
wild type, aTK, bTK and dTK plants (Fig. 1A and B). The
acclimation treatments at different temperatures could not confer

even slight tolerance to the severe HS treatment in the QK and
eTK mutants (data not shown), which was a more severe result
than that seen in the Hsp101 KO line. Hsp101 encodes a
molecular chaperone that has an important role in thermo-
tolerance.23,24 These results are consistent with our previous
findings: HsfA1a is slightly more effective than HsfA1d, while
HSFA1b is the least effective at conferring acquired thermo-
tolerance and the QK and eTK are unable to attain acquired
thermotolerance under the assay conditions.8 However, we
suspected that the challenge treatment at 44°C for 150 min
might have been too harsh to reveal the heat acclimation effect
in the QK and eTK, which could both be too weak. Thus, we
reduced the severity of our conditions to 43°C for 25 min for the
HS challenge. This condition is lethal to non-acclimated QK and
eTK seedlings, but not to the wild type or even the Hsp101 KO
plants. Figure 1C and D show that acclimation at 33°C to 37°C
could significantly enhance thermotolerance in eTK and QK, and
the optimum acclimation temperature was 35°C. Despite the fact
that the survival rate of the QK mutant was as high as that of the
wild type if acclimated first at 35°C, the mutant plants showed
retarded growth after the HS challenge (Fig. 1C), indicating a
delicate nature of the acquired thermotolerance without the
participation of HsfA1s. The viability of the eTK was slightly
lower than that of the QK at different acclimation temperatures
(Fig. 1C and D), which is consistent with our previous findings
that HsfA1e is not required for thermotolerance.8

Our data demonstrate that in Arabidopsis the ability to acquire
enhanced thermotolerance by acclimation is dramatically reduced
in the absence of HsfA1a/b/d, but is not completely abolished.
This is consistent with the transcriptional profiles that have
previously shown that the heat-induction of a relatively small
number of HS-upregulated genes is independent of the master
regulators.8 Moreover, some highly heat-induced genes remain
inducible by heat treatment in the QK mutant, although to a
lesser degree.8 These genes may contribute to the acquired
thermotolerance of the QK and eTK mutants. So far, it is not clear
what transcription factors are responsible for the heat-induction
of these genes. Other HSF genes, such as HsfA4a, HsfA4c or
HsfA7a, whose transcripts are relatively abundant under normal
condition,11 are possible candidates. These transcription factors
might play a minor role in acquired thermotolerance. It was
reported that disruption of HsfA7a due to T-DNA insertion
causes a defect in acquired thermotolerance.25 However, the
mechanism of how this may occur has not been reported. In our
work, we did not observe obvious and consistent thermotolerance
defects in the same HsfA7a KO line (SALK_080138) under
various HS conditions (ref. 13 and unpublished data). The role
and mechanism of this HSF in acquired thermotolerance remain
to be shown. Moreover, we could not exclude the possible parti-
cipation of HsfA2, Dreb2A and HsfB1/2b, which have been
implicated in acquired thermotolerance.13,14,18,26 Of note, HsfA2,
HsfA7a, Dreb2A and HsfB1/2b are HsfA1-dependent HSR genes.8,10

Alternatively, there might be other types of transcription
factors regulating the expression of the HsfA1-independent HSR
genes, such as BiP1 (At5g28540), BiP2 (At5g42020) and UTR3
(At1g14360).8 BiP1 and BiP2 are molecular chaperones localized

Figure 1. Arabidopsis seedlings attained low levels of acquired
thermotolerance in the absence of the HsfA1s. Seedlings of the wild type
(Col and Ws), aTK, bTK, dTK, eTK, QK and Hsp101 KO mutant (hsp101
or 101) lines were subjected to HS treatments with HS regimes
schematically shown inside (B). The 7-d-old seedlings were first
acclimated at 31–39°C as indicated, allowed to recover at 22°C for 2 h,
and then challenged at 44°C for 150 min (A and B) or 43°C for 25 min
(C and D). The plants were allowed to grow for 7 d after the HS
treatments before being photographed. The effect of acclimation
temperatures on acquired thermotolerance was measured by growth
performance (A and C) and survival rate (B and D). The survival rates are
presented as mean values of three replicates ± SD (n $ 50 each).
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in the endoplasmic reticulum (ER), while UTR3 is a UDP-
galactose transporter localized both at the ER and Golgi.27

Recently, these genes were shown to be regulated by an ER
membrane-tethered basic domain/leucine zipper (bZIP) transcrip-
tion factor, bZIP28, during ER and heat stresses.28,29 Upon
exposure to stress conditions, the transcription factor domain of
bZIP28 is released from the ER membrane by proteolysis and
redistributed to the nucleus.28,29 The Arabidopsis T-DNA KO
mutant of bZIP28 (At3g10800) exhibits increased sensitivity to
HS and is unable to trigger the heat-inducible expression of BiP1/
BiP2 and UTR3.28 In contrast, the expression of Hsp17.4-CIII
(At1g54050), a target gene of HsfA1, is not affected in the
bZIP28 mutant.28 Although it remains to be seen to what extent
bZIP28 is involved in acquired thermotolerance, this membrane-
tethered transcription factor may act as a sensor of HS in a
pathway parallel to that mediated by HsfA1. Interestingly,
bZIP28 itself is heat-inducible.28 Our microarray data showed
that the heat-induced but not the basal expression of bZIP28 was
substantially reduced in the absence of the HsfA1s (Fig. 2),
suggesting that at least one of the HsfA1s positively regulates
bZIP28 under HS conditions. The basal expression of bZIP28
apparently was sufficient to upregulate its target genes. Actually,

the expression of BiP1/BiP2 and UTR3 were even higher in the
QK mutant than in the wild type under HS conditions (Fig. 2),
suggesting that HsfA1s act as negative regulators of these genes
under HS conditions. More experiments are needed to confirm
these relationships.

Taken together, our results suggest that acquired thermotoler-
ance can be conferred in part by the transcription pathways
independent of the HsfA1s in Arabidopsis. A simplified working
model is proposed to summarize the current knowledge and the
points discussed above (Fig. 3). In this model, the HSR is
triggered by post-translational modifications of the transcription
factors, HsfA1, bZIP28 and possibly others, which then regulate
the transcription of HSR genes. It has been well-documented that
HSF activity is associated with post-translational modifications in
eukaryotes.30-35 In Arabidopsis, phosphorylation36 and sumoyla-
tion37,38 of HsfA1a and HsfA2, respectively, have been reported.
Activation of bZIP28 by proteolysis has been nicely demon-
strated.28,29 The pathways mediated by HsfA1 and bZIP28 can be
independently induced at an early stage of the HSR, but may get
cross-wired due to the effect of HsfA1 on the expression of bZIP28
and its downstream genes. So far, we do not know whether this is a
direct or indirect effect and how this effect could physiologically
influence the HSR and thermotolerance in the long run. Further
studies are anticipated to address these questions.

Materials and Methods

The plant materials, growth conditions, and thermotolerance
assay were described previously.8 The expression data shown in
Figure 2 were obtained from the microarray data published
previously, which can be accessed in the Gene Expression

Figure 2. The expression levels of bZIP28, BiP1/BiP2 and UTR3 in the wild
type and QK mutant. The data were derived from the microarray results
published previously.8 Statistical significance of these data passed
the scrutiny of the false discovery rate (FDR) at the stringent level of 0.05.

Figure 3. Simplified workingmodel of the transcription network of the HSR
in Arabidopsis. HsfA1 represents HsfA1a/b/d. The arrows with dashed lines
indicate activation of the transcription factors by posttranslational
modifications. The black arrows and a bar-head with solid lines indicate
positive and negative transcription regulation, respectively. The question
marks denote links to be confirmed. The proteins shown in gray boxes are
a sample list of target genes of the transcription factors. The gray arrows
of different thicknesses indicate speculative degrees of acquired thermo-
tolerance conferred by different HSR pathways.
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