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Catalytic mechanism and kinase interactions
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Abscisic acid (ABA) is an essential hormone that controls plant growth, development and responses to abiotic
stresses. ABA signaling is mediated by type 2C protein phosphatases (PP2Cs), including HAB1 and ABI2, which inhibit
stress-activated SnRK2 kinases and whose activity is regulated by ABA and ABA receptors. Based on biochemical data
and our previously determined crystal structures of ABI2 and the SnRK2.6-HAB1 complex, we present the catalytic
mechanism of PP2C and provide new insight into PP2C-SnRK2 interactions and possible roles of other SnRK2 kinases
in ABA signaling.

Abscisic acid (ABA) is a vital plant hormone that regulates many
important physiological processes, including seed germination and
bud dormancy, and mediates plant protective responses against
abiotic stresses such as drought, cold and salinity. The ABA signal
is transmitted through a conserved core pathway that includes
soluble PYR/PYL/RCAR receptors, type 2C protein phosphatases
(PP2Cs) and subclass 2 of Snf1-related kinases (SnRK2s).1,2

Biochemical and structural analyses have illustrated how ABA at
high concentrations binds the PYR/PYL/RCAR receptors to
induce a conformational change in the “gate” and “latch” loops at
the entrance of the ABA binding pocket.3-7 These changes allow
the receptors to bind the PP2Cs and inhibit their catalytic activity
by the receptor gate loop, which inserts its serine residue into the
PP2C catalytic cleft.3,4,7 In addition, an exposed tryptophan
residue of the PP2C flap domain inserts into the receptors to
make a water mediated contact with ABA in the pocket and serves
as a molecular lock that stabilizes both the gate and latch of the
receptor in the ABA-bound, PP2C-docked conformation.3,4,7

PP2C inhibition allows autoactivation of SnRK2s by autopho-
sphorylation of a central serine residue in their activation loops
whose phosphorylation is required for full stabilization of the
active kinase conformation and presumably for moving the
activation loop out of the substrate binding cleft.8-13 The activated
kinases can then transmit the ABA signal by phosphorylating
downstream effectors, which include transcription factors, ion
channels and ROS-generating NADPH oxidase.2

In the absence of ABA, PP2Cs are active to inhibit the SnRK2
kinases by a two-step mechanism.14 At low concentrations, PP2Cs
catalytically reduce SnRK2 activity to a basal level by dephos-
phorylating their activation loop phosphoserine residues. At high
levels, PP2Cs completely inhibit SnRK2 kinases by forming stable
complexes with SnRK2s, in which the catalytic sites of both
enzymes directly interact with each other. The kinase activation
loop inserts into the PP2C catalytic cleft with the phosphate-
acceptor serine residue at the active site while the PP2C flap
tryptophan inserts into the kinase substrate binding cleft, thus
mimicking the binding surfaces in the PP2C-receptor complexes.
In this conformation, the kinase active cleft is blocked by PP2C
and is kept in an inactive, wide open conformation that
completely abrogates kinase activity.14 In addition to the catalytic
site interactions, SnRK2s have a highly negatively charged
C-terminus, the so-called ABA box8 or Domain II,12 that binds
a positively charged surface on the back site of the PP2C to
stabilize the catalytic site interactions.11,14 The high resolution
structures of representatives of all three core signaling proteins in
isolation and as complexes have provided a comprehensive
understanding of their intricate interactions. Here we discuss
aspects of our structural analysis and present additional
biochemical data that provide new insights into substrate
specificity and catalytic mechanism of PP2Cs as well as PP2C
activity in the kinase-phosphatase complex and PP2C interactions
with the acidic C-termini of other members of SnRK2 family.
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Results and Discussion

HAB1 substrate specificity. PP2Cs have minimal sequence
specificity toward short phosphopeptides.15 In contrast, we and
others have shown that HAB1 displays remarkable specificity
toward the specific phosphorylated residues in the activation loop
of SnRK2 kinases within the context of the full-length
kinases.10,11,14 Figure 1 extends this analysis to overall SnRK2.6
phosphorylation sites. To monitor autophosphorylation that is
resistant to dephosphorylation, we incubated SnRK2.6 with
radio-labeled ATP and phosphatase, either calf intestinal
phosphatase (CIP) or HAB1. CIP can non-specifically remove
most of the phosphorylation of SnRK2.6. In contrast, HAB1,
which is less specific toward small substrates than CIP,15 cannot
remove the bulk of SnRK2.6 autophosphorylation sites, consist-
ent with HAB1 being unable to remove the majority of
phosphorylation sites outside of the activation loop of SnRK2.6.

The inability of HAB1 to remove phosphorylation outside of
the SnRK2.6 action loop is consistent with our structural observa-
tions. We have determined the PP2C structures in three different
states: as isolated proteins,14 in complex with ABA receptors,3,16

and in complex with SnRK2.6 kinase.14 Comparison of these

PP2C structures revealed that there is little conformational change
(including the catalytic active site) among the different states,14

suggesting that the PP2C structure is relatively rigid. The rigid
nature of PP2C would prevent the access of large protein
substrates to the active site of PP2C while allowing the access of
small and flexible peptide substrates. SnRK2.6 overcomes this
rigidity problem of the PP2C by forming a complementary
interface with HAB1, where the activation loop of SnRK2.6
inserts deeply into the HAB1 active cleft. In this configuration,
the side chain of S175 of SnRK2.6 is directly positioned against
the catalytic site (Fig. 1C).14 The SnRK2.6-HAB1 complex struc-
ture thus explains why HAB1 efficiently removes the phosphate
group from S175 but not from other phosphorylated residues in
SnRK2.6 (Fig. 1).

HAB1 catalytic mechanism. The SnRK2.6-HAB1 interface of
the crystal structure14 contains a dominant density for a sulfate
group, coordinated by the two Mg2+ ions, resembling the leaving
phosphate product of PP2C (Fig. 2A). The SnRK2.6-HAB1
structure mimics the post-reaction state of PP2C, and provides a
rare opportunity to revisit the catalytic PP2C mechanism (as
proposed for mammalian PP2Ca17 and commented on by
Dupeux et al.18) in the presence of enzymatic products

Figure 1. HAB1 fails to efficiently dephosphorylate the bulk of SnRK2.6 auto-phosphorylation sites. Ten micromolars SnRK2.6 were incubated with
[32P]-c-ATP and either 10 mM HAB1 (A) or 0.3 units calf intestine phosphatase (CIP) (B) for the indicated amount of time. The SnRK2.6 phosphorylation
can be efficiently removed by CIP but not by HAB1. Reactions were terminated by boiling in SDS sample buffer, separated by SDS PAGE, and subjected
to autoradiography. (C). Cartoon presentation of the selective SnRK2.6 activation loop dephosphorylation in the HAB1 catalytic cleft. S, Ser/Thr
phosphate acceptor residues; P, phosphate.
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(Fig. 2B). The two Mg2+ ions, which are coordinated by con-
served aspartic acids, bind to the phosphate group oxygens of
pS175 and thus further increase the partial positive charge of the
phosphorus atom. This facilitates the nucleophilic attack of the
phosphate by a nearby water molecule, which is deprotonized by
the conserved glutamate E203. The reaction is further facilitated
by the conserved arginine R199, which binds to the leaving
phosphate group by charge interaction and promotes the release
of this group from the substrate molecule (SnRK2.6). The
importance of each of these residues is supported by mutagenesis
(Fig. 2C), especially for the four Mg2+ ion-chelating aspartic
residues. Conversion of these aspartates to alanines completely
inactivated the enzyme (Fig. 2C), further supporting the proposed
catalytic mechanism above.

SnRK2.6 does not inhibit HAB1. We have demonstrated that
the packing of the HAB1 catalytic site against the SnRK2.6
catalytic site completely inhibits SnRK2.6 activity.14 This raises

the question whether HAB1 activity is also blocked by SnRK2.6
in the SnRK2.6-HAB1 complex. To test a potential inhibition,
we titrated increasing amounts of SnRK2.6 into a phosphatase
reaction containing constant amounts of HAB1 and an 11-amino
acid phosphopeptide substrate corresponding to the central
SnRK2.6 activation loop.19 As shown in Figure 3A, even at
16 mM SnRK2.6 (40-fold molar excess over HAB1), HAB1
activity is unaffected, demonstrating that HAB1 remains catalyti-
cally active in the SnRK2.6-HAB1 complex. Figure 3B is a con-
trol experiment for Figure 3A, showing both SnRK2.6 and HAB1
are active. Note that this control experiment differs from the
dephosphorylation assay (Fig. 1A) in that SnRK2.6 was pre-
incubated with HAB1 to allow SnRK2.6 inhibition prior to the
kinase reaction. In the absence of HAB1, SnRK2.6 is active
toward itself and its physiological substrate ABF2. Co-incubation
of SnRK2.6 with HAB1, which is present at high concentra-
tions, completely inhibits SnRK2.6 activity. Together, these data

Figure 2. PP2C catalytic mechanism. (A) SnRK2.6-HAB1 crystal structure interaction map, in which the sulfate group mimics the phosphate group cleaved
from SnRK2.6 S175. This represents the functional correlate of the post-reaction status, at which the phosphate group has been transferred to HAB1
R199. Pink, HAB1; green, SnRK2.6. The sulfate ion is shown in ball presentation, the Mg2+-ions as solid gray balls. (B) Schematic presentation of the
reaction mechanism. Mg2+ binds to the phosphate group of the phosphorylated serine, thereby increasing the partial positive charge of the phosphorus
atom and facilitating a SN2 nucleophilic attack by the water molecule. E203 partly deprotonizes the water molecule and increases its nucleophilicity for
attacking the phosphorus atom. R199 from the PP2C then binds the leaving phosphate group by charge interaction, and removes it from the substrate
(SnRK2) molecule. (C) Phosphatase activity of wildtype (WT) HAB1 and HAB1 proteins in which key catalytic residues were altered to alanines. Activities
are shown in the absence and presence of 10mM of the PP2C inhibitor NaF. Error bars indicate SD (n = 3).
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demonstrate that HAB1 can completely inhibit SnRK2.6, but
SnRK2.6 does not inhibit HAB1, whose inhibition is mediated by
ABA receptors.

Figure 4 illustrates why binding of the PYL2 gate loop, but not
the SnRK2.6 activation loop, in the HAB1 catalytic cleft inhibits
HAB1’s phosphatase activity. The gate loop both physically
blocks access to the catalytic site (Fig. 4A) and its S89 hydroxyl
group hydrogen-bonds with the catalytic carboxyl group of HAB1
E203 (Fig. 4B), so that E203 can no longer deprotonize the
catalytic water molecule (see Fig. 2B). The SnRK2.6 activation
loop, whose position in the cleft is shifted relative to that of the
gate loop (Fig. 4C), does not block peptide substrate access to the
active site, and the position of its S175 residue is too far from
E203 to interfere with the catalytic mechanism. This dual
mechanism of PP2C inhibition by ABA-bound PYL2 also
explains a seeming discrepancy on the mechanism of HAB1
inhibition. Melcher et al.3 have used a peptide substrate to show
that PYL2/ABA can competitively inhibit HAB1. While the
isolated peptide in an unfolded linear conformation could enter
the catalytic cleft through the channel occupied by the SnRK2.6

activation loop in Figure 4A (see also ref. 18), the positions of the
activation loop and gate loop peptides clash, consistent with
their binding being mutually exclusive. In contrast, Grill and
coworkers20,21 demonstrated that PP2Cs are non-competitively
inhibited when using the small molecule methyl-umbelliferyl-
phosphate (MUP) as substrate. We propose that MUP is small
enough to allow binding to the PP2C active site even in the
presence of the gate loop, but cannot be dephosphorylated
because the gate loop S89 binds the catalytic E203.

SnRK2-PP2C interaction is not limited to ABA signaling.
Ten members of the SnRK2 family are found in Arabidopsis. The
catalytic residues of SnRK2.6 that are involved in HAB1 binding
are conserved across this entire family. Although a functional ABA
box is only identified in SnRK2.2, 2.3 and 2.6, a high density of
negative charge is found at the kinase C-termini of all SnRK2s
(Fig. 5A). We thus cloned and purified the ABA boxes of all ten
SnRK2s to test their interaction with the three PP2Cs ABI1,
ABI2, and HAB1. With the exception of SnRK2.1 and 2.8, we
clearly detected interaction of all SnRK2 ABA boxes with at least
one member of the PP2Cs (Fig. 5B). For SnRK2.6-HAB1 it has

been shown that both the ABA box and the kinase domain
contribute to the full interaction.14 The SnRK2.6 kinase
domain residues that directly interact with HAB1 are highly
conserved in all SnRK2s (Fig. 5A), suggesting that the
interactions between PP2Cs and the ABA boxes also occur
in the context of full length SnRK2s. While only SnRK2.2,
2.3 and 2.6 are strongly activated by ABA and are clearly
positive regulators of ABA signaling,22-24 SnRK2.7 and 2.8 are
weakly activated by ABA.25,26 Moreover, a quintuple mutation
of the remaining five SnRK2s (2.1/2.4/2.5/2.9/2.10) increased
ABA sensitivity in ABA-induced proline accumulation27 and
overexpression of a rice homolog of these SnRK2s reduced
ABA sensitivity,28 suggesting that some SnRK2s may be
negative regulators of ABA signaling.27 In addition to SnRK2s,
Ohta et al. demonstrated stable interactions between the PP2C
ABI2 and several members of another family of AMPK-related
kinases, the PKS/SnRK3s.29 Thus, the observed interactions
between multiple SnRKs and PP2Cs suggest their wide-spread
co-evolution and co-regulation by mechanisms similar to what
has been first observed for SnRK2.6-HAB1. Furthermore, the
previously not observed direct interactions of PP2Cs with the
C-termini of SnRK2.4, 2.5, 2.7, 2.9 and 2.10 suggest that
these kinases may also be involved in ABA signaling.

Comparison of the SnRK2.6-HAB1 complex to CDK2-
KAP. We recently became aware of another example of a
kinase–phosphatase complex, CDK2–kinase-associated phos-
phatase (KAP),30 in which the catalytic sites of both enzymes
are packed against each other in an arrangement very similar to
that of SnRK2.6-HAB1 (Fig. 6). In both complexes, the
kinase activation loop inserts deeply into the respective
phosphatase catalytic cleft. The activation loop residues whose
phosphorylation is required for full kinase activity, Ser175 in
SnRK2.6 and Thr160 in CDK2, both pack directly against the
active phosphatase sites to allow their highly selective depho-
sphorylation (see above and Poon and Hunter31). In addition
to their activation loops, the SnRK2.6 and CDK2 kinase

Figure 3. SnRK2.6 does not inhibit HAB1 activity in the SnRK2.6-HAB1
complex. (A) 0.4mMHAB1 were preincubated with increasing amounts
of SnRK2.6 and then subjected to a phosphatase reaction with 100mM
of a SnRK2.6 activation loop phosphopeptide substrate. Error bars indicate
SD (n = 6). (B) Control kinase reaction demonstrating that both SnRK2.6 and
HAB1 preparations were active and formed functional complexes. 0.4mM
SnRK2.6 were preincubated with increasing amounts of HAB1 for 30min and
then subjected to a [32P]-c-ATP kinase reaction.
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domains both also use their aG helices as phosphatase-binding
sites. In addition, HAB1 inserts its flap domain (ABA receptor-
interaction region) into the catalytic cleft of SnRK2.6 and KAP
Lys54 binds CDK2 Tyr15. While the structures of the SnRK2.6
and CDK2 kinase domains are highly similar,13 HAB1 and KAP
belong to different classes of phosphatases (PP2Cs and dual
specificity phosphatases, respectively) and adopt different posi-
tions in their respective complexes relative to the kinase domains
(Fig. 5C; Fig. S1A).

The two complex structures differ in two important points.
First, Thr160 is not dephosphorylated in the CDK2-KAP
complex, suggesting that KAP may have not been fully active.
Second, SnRK2.6 adopted an inactive, wide-open conformation
with a blocked catalytic site in its complex with HAB1, consistent
with HAB1’s ability to non-catalytically inhibit SnRK2.6.14 In
contrast, interaction with KAP induced an active conformation in
CDK230 with the aC helix in the closed conformation and with
Mg2+ and the non-cleavable ATP analog AMP-PNP bound in the
catalytic cleft (Fig. S1D).

Together, these structures further suggest a possible wide-
spread use of kinase-phosphatase complexes with their catalytic

sites packed against each other to selectively dephosphorylate
activation loop residues. In addition, these interactions may
stabilize both active and inactive kinase conformations.

Materials and Methods

Protein expression and purification. SnRK2.6 and wildtype and
mutant HAB1 were expressed as recombinant H6Sumo and
H6GST fusion proteins in E. coli and were purified by successive
Ni-chromatography, proteolytic tag release, Ni-chromatography,
and size-exclusion chromatography as described.14 Recombinant
biotinylated HAB1, ABI1 and ABI2 were purified following our
published protocol.3 H6GST-ABA box proteins were purified by
standard glutathione sepharose chromatography.

SnRK2.6 de-phosphorylation assay. Ten micromolars
SnRK2.6 were incubated with [32P]-cATP and either 10 mM
HAB1 or with 0.3UCIP for the indicated amount of time in
25 mM Tris/Cl, pH 7.3, 5 mMMgCl2, 100 mM EGTA (HAB1
reaction) or 50mMTris/Cl, pH 7.5, 1mMMgCl2 (CIP) at
room temperature. Reactions were terminated by boiling in
SDS sample buffer and separated by 10% Tricine SDS PAGE.

Figure 4. Structural mechanism for HAB1 inhibition. (A) Surface presentation of the HAB1 catalytic cleft overlaid with a cartoon presentation of the PYL2
gate loop (blue) and the SnRK2.6 activation loop (green). The gate loop S89 and activation loop S175 are shown as stick presentation. The catalytic Mg2+

ions are indicated as white spheres. (B and C) PYL2 gate loop with S89 in stick presentation (B) and SnRK2.6 activation loop with S175 in stick
presentation (C) in the HAB1 catalytic center. (C) is the same as (A) in Figure 2 and shown for direct comparison.
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Gels were dried and subjected to autoradiography using a FLA-
5000 phosphor imager (Fuji).

Alphascreen interaction assays. Interactions between PP2Cs
and ABA box proteins were determined by Alphascreen lumines-
cence proximity assays as described.14 Reactions contained
100 nM recombinant H6GST-ABA box proteins bound to Ni-
acceptor beads and 100 nM recombinant biotinylated PP2Cs
bound to streptavidin donor beads.

Phosphatase assays. Phosphatase assays were performed by
colorimetric determination of phosphate release from phospho-
S175 of a SnRK2.6 activation loop phosphopeptide as described
previously.3 Reactions contained 200 nM (Fig. 2C) or 400 nM
(Fig. 3A) recombinant HAB1 protein and 100 mM SnRK2.6
phosphopeptide (HSQPK(pS)TVGTP).

Kinase assays. 0.4 mM SnRK2.6 were pre-incubated with the
indicated amounts of HAB1 in 25mMTris/Cl, pH 7.4, 12mM
MgCl2 and 2mM DTT for 30min at room temperature,
followed by a 25min incubation with 0.2mM unlabeled ATP,
2.5 mCi [32P]-cATP, and 0.2 mM GST-ABF2(73-120) in a total
volume of 15 ml. Reactions were terminated by addition of SDS
sample buffer and subjected to Tricine SDS-PAGE. Gels were
stained with Coomassie and subjected to autoradiography using a
FLA-5000 phosphor imager (Fuji).

In vitro mutagenesis. Site-directed mutagenesis was performed
using the QuikChange method (Agilent). Mutations and all
plasmid constructs were confirmed by sequencing.
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Figure 5. Both ABA-signaling and non-ABA-signaling SnRK2s interact with PP2Cs. (A) Sequence alignment of the A. thaliana SnRK2 proteins. The residues
corresponding to the HAB1-interaction residues of SnRK2.6, including the whole ABA box, are boxed. Negatively charged residues are shown in red,
positively charged residues in blue. (B) AlphaScreen interaction between the ABA box regions of the ten A. thaliana SnRK2 proteins fused to H6GST and
biotin-MBP-tagged HAB1. Error bars indicate SD (n = 3).
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