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Diacylglycerol (DAG) is an important signaling phospholipid in
animals, specifically binding to the C1 domain of proteins such
as protein kinase C. In most plant species, however, DAG is
present at low abundance, and no interacting proteins have
yet been identified. As a result, it has been proposed that
the signaling function of DAG has been discarded by plants
during their evolution. In this mini-review, we summarize
the accumulating experimental evidence which supports that
notion that changes in DAG content in response to particular
cues are a feature of plant cells. This behavior suggests that
DAG does indeed act as a signaling molecule during plant
development and in response to certain environmental
stimuli.

Introduction

The cytoplasmic membrane comprises a phospholipid bilayer.
In addition to their role as major structural components of
the membrane, phospholipid molecules also act as secondary
messengers since the discovery of the phosphoinositide/phospho-
lipase C (PI/PLC) pathway.1 In this pathway, phosphoinositide
is metabolized to phosphatidylinositol 4,5-biphosphate (PIP2)
by two catalytic steps, and PIP2 is converted to inositol 1,4,5-
triphosphate (IP3) and diacylglycerol (DAG) by PLC. DAG can
also be formed from the hydrolysis of glycerophospholipid
(mainly phosphatidylcholine, PC), through the action of phos-
pholipase C (PC/PLC) (also known as non-specific PC, orNPC).
DAG is later phosphorylated by diacylglycerol kinase (DGK) to
form phosphatidic acid (PA), a molecule which can also be
produced by PLD via the hydrolysis of structural phospholipids
such as PC. PA can be converted to DAG by lipid phosphate
phosphatase (LPP), phosphatidic acid phosphatase (PAP) and PA
hydrolase (PAH), and specifically in plants to DAG pyrophos-
phate (DGPP) by PA kinase (PAK). DGPP can be converted to
PA by LPPs such as diacylglycerol pyrophosphate phosphatase.
The pathway involving these molecules is shown in Figure 1.

Certain phospholipids, in particular PA and IP3, play impor-
tant modulating roles in plants. PA is a key lipid signaling

molecule, and its involvement in the stress response, in
metabolism and in development has been recently reviewed.2

IP3 participates in the response to various abiotic stresses,
gravitropism, phototropism and auxin transport.3-5 Besides these
two ones, other phospholipids have been also increasingly
concerned about, and their roles are found to be fantastic.

DAG is Prevalently Believed to be Out
of Plant Phospholipid Signaling

The mechanics of phospholipids in signaling machinery in
animals are reasonably well understood. In animal cells, IP3
binds to its receptor ligand-gated calcium channel, which triggers
the release of Ca2+ from the intracellular Ca2+ reservoir to the
cytoplasm.3 However, no functional plant receptor of IP3 has yet
been identified, and no homologs of the animal receptor genes
are present in the genomes of either Arabidopsis thaliana, rice
or poplar, or in any of the publicly accessible plant EST libraries.6

As both the green alga Chlamydomonas sp and the ciliate
Paramecium sp do possess such a receptor, the indication is that
the IP3 receptor has been discarded during plant evolution.7

Nevertheless, IP3 accumulates in plant cells following their
exposure to environmental stimuli, and its accumulation has been
correlated with the mobilization of intracellular calcium.3,8,9

Perhaps, therefore, IP3 receptors differing from ligand-gated
calcium channels have evolved in plants.

DAG binds specifically to its target C1 domain, a small
(~50 residue) cysteine-rich structural unit originally described as a
protein kinase C (PKC) lipid-binding module.10 In animal cells,
DAG recruits the C1 domain-containing PKCs and PKDs onto
the cytoplasmic membrane, and activates PKC via its phos-
phorylation; phosphorylated PKC activates PKD and triggers
certain downstream signaling pathways.10 In an effort to isolate
plant PKC homologs, the PKC inhibitor 1-(5-isoquinolinylsulfonyl)-
2-methylpiperazine (H-7) was shown to inhibit light-stimulated
stomatal opening, as well as enhancing dark-induced stomatal
closure in Commelina communis; at the same time, treatment
with both DAG analogs and the synthetic diacylglycerols 1,2-
dihexanoylglycerol and 1,2-dioctanoylglycerol had the opposite
effect on stomatal closure, thereby providing some experimental
evidence for the existence of PKC in plants.11 When a Brassica
campestris enzyme exhibiting the properties of a conventional
mammalian PKC was activated by DAG or its analog phorbol
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ester and other cofactors, it was able to in vitro phosphorylate
the PKC-specific substrate a-peptide.12,13 Furthermore, a potato
kinase having properties similar to conventional PKC isoenzymes
was restricted by the presence of PKC inhibitors in its function
during pathogenesis, and the PKC activator 12-O-tetradecanoyl-
phorbol 13-acetate promoted this effect.13 Meanwhile the maize
protein ZmcPKC70 proved able to bind phorbol 12-myristate
13-acetate and to possess some of the properties of a conven-
tional PKC.14 However, subsequent studies have shown that the
genomes of plants, including lower plants, lack PKC encoding
gene, and the effect of these PKC-specific inhibitors is most
likely achieved through their interaction with protein kinases
such as calcium/calmodulin-dependent protein kinase, calci-
neurin B-like proteins and AGC kinases.15

As DAG is a precursor for glycolipids, storage lipids and the
major structural phospholipids, which together account for about
90% of all plant lipids, it is not considered to be a plausible
membrane-localized secondary messenger.15 The reason that the
DAG content of plant cells is relatively low is that PLC-generated
DAG is rapidly phosphorylated to PA by DGK. Thus PA (rather
than DAG) has typically been implicated as a major plant
secondary messenger.16-18 Thus, these findings bring about an
opinion that DAG is possibly not a signaling messenger in plants.

Increasing Evidence for DAG Acting as a Signaling
Molecule in Plants

The DAG content of the plant cell is low, but its presence is
necessary for certain developmental processes and the response to
particular environmental stimuli. DAG accumulates strongly in
the apical domain of the plasma membrane at the tip of elongat-
ing tobacco pollen tube. This accumulation is abolished by
treatment with U-73122, a specific inhibitor of PLC, with the
result that pollen tube elongation is inhibited. The inference
from this observation is that DAG probably acts as a signaling
molecule in the regulation of pollen tube tip growth.19 DAG
also accumulates via the PC/PLC (NPC) pathway under stressful
conditions. In A. thaliana plants subjected to salinity stress, the

activity of NPC was increased, promoting the production of DAG
by 4-fold.20 Phosphate starvation of A. thaliana upregulates
AtNPC4 and AtNPC5, which is for the accumulation of DAG
and the supply of inorganic phosphate;21,22 Later during phos-
phate starvation, the PC content is transiently increased, before
its rapid decrease which coincides with an increase in DAG
content, indicating most of the newly synthesized DAG is derived
via the PC/PLC pathway.23 In tobacco cell cultures, treatment
with brassinolide raises the DAG content within 15min through
the elevation of PC/PLC activity in a concentration-dependent
manner; at the same time the size of the PA pool is not signifi-
cantly increased.24 The DAG content of Dunaliella salina cells is
rather high in comparison with most animal tissues, particularly
in the chloroplast and plasma membrane. When confronted
with osmotic shock, the plasma membrane DAG content
increases markedly to a level sufficient to consider DAG to be a
genuine potential secondary messenger in PLC-mediated signal
transduction.25

DAG is rapidly converted to PA in plant cells, but some reports
have suggested that the decrease in DAG content is not accom-
panied by any increase in that of PA. In parsley and tobacco cell
suspensions elicited by fungal glycoprotein or Phytophthora
cryptogea cryptogein, the DAG pool declines within 15 min and
PC/PLC activity is also reduced, while the content of PA rises
slightly from a low background level.26,27 This observation has
been taken to indicate that the decrease in DAG content is largely
the result of the downregulation of the PC/PLC pathway rather
than to its conversion to PA. In AlCl3 treated tobacco BY-2 cells,
the activity of PC/PLC is restricted, with the result that their
DAG content is rapidly and greatly reduced, while at the same
time there is no observable effect on the activity of any of the
enzymes involved in the catalysis of DAG to PA and other
products, and the contents of these products are also not altered.28

Elongating tobacco pollen tubes incubated in vitro in the presence
of various concentrations of AlCl3 suffer a growth restriction, and
their DAG content is also significantly reduced in a concentra-
tion-dependent fashion. The exogenous supply of DAG can
relieve this growth restriction, but the supply of exogenous PA has

Figure 1. A simplified representation of phospholipid metabolism. PI, phosphoinositide; PI4P, phosphoinositide 4-phosphate; PI5P, phosphoinositide
5-phosphate; PIP2, phosphoinositide 4,5-biphosphate; DAG, diacylglycerol; IP3, inositide 1,4,5-triphosphate; PA, phosphatidic acid; DGPP, diacylglycerol
pyrophosphate; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine; PI4K, phosphoinositide 4-kinase; PI5K, phosphoinositide
5-kinase; PIP4K, phosphoinositide phosphate 4-kinase; PIP5K, phosphoinositide phosphate 5-kinase; PLC, phospholipase C; NPC, non-specific
phospholipase C; PLD, phospholipase D; DGK, diacylglycerol kinase; PAK, phosphatidic acid kinase; LPP, lipid phosphate phosphatase; PAP, phosphatidic
acid phosphatase; PAH, PA hydrolase.
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a much smaller effect.28 Along with the observations of Helling
et al.,19 this result demonstrates that DAG itself most likely serves
as a signaling molecule.

Environmental stress can induce the transcription of a number
of genes encoding enzymes involved in the catalysis from PA to
DAG in some plant species. The A. thaliana gene AtLPP1 encodes
a lipid phosphate phosphatase which catalyzes the conversion of
DGPP to PA, and then of PA to DAG. Its transcription can be
rapidly (though transiently) induced by c or UV-B irradiation,
and can also be elicited by the presence of harpin, a molecule
associated with oxidative stress.29 Transcript of the two Vigna
unguiculata phosphatidic acid phosphatase genes VuPAPa and
VuPAPβ accumulates in the leaf in response either to the pro-
gressive dehydration of the whole plant or the rapid desiccation
of detached tissue, and the expression of VuPAPβ can also be
induced by the supply of abscisic acid.30 Because the increases
in PA and DGPP levels in response to stress are transient, PAK
and PAP appear to be important attenuators for the regulation
of PA signaling events.16,31 For example, AtLPP2 functions as a
negative regulator of PA-mediated ABA signaling during germi-
nation.32 However, apart from the attenuating effect of PAP, there
is the intriguing possibility that DAG acts antagonistically to PA.

The role of DAG as a secondary messenger is achieved through
its binding to target proteins, except for DGK functioning in
conversion DAG to PA. Although higher plants lack genes
encoding PKCs, they do possess genes encoding a variety of
C1 domain containing proteins. The A. thaliana genome, for
example, includes 164 such genes (www.arabidopsis.org), while
22 are known in the rice genome genome (rice.plantbiology.msu.
edu). This indicates that although it has been assumed by default
that PKCs are the sole target of DAG, it is possible that other
proteins—possibly even some lacking kinase activity—could
represent the prime DAG targets in the plant cells. A number
of proteins unrelated to PKC are capable of high affinity binding
with the DAG analog phorbol ester, which suggests a measure
of complexity in the signaling pathways activated by DAG.33

The bread wheat gene TaCHP, for example, which confers an

enhanced level of both salinity and drought tolerance,34 encodes
a protein carrying three C1 domains. Its gene product has
transactivation activity but no PKC activity.35

A body of experimental evidence supports the idea that DAG
does indeed function as a signaling molecule in plants, although
convincing proof of this idea is not yet forthcoming. At the same
time, DAG represents a major component of the structure and
dynamics of plant membranes, and any excessive accumulation
can induce the formation of unstable and asymmetric regions,
which are required for membrane fusion and ðssion.36,37 Mem-
brane fusion is involved in a range of physiological processes, the
most notable of which is cell division. Thus the supply of
exogenous DAG or its endogenous PLC-induced production
promotes membrane fusion,38,39 and in this way regulates pollen
tube growth via the acceleration of cell division.19,28

Conclusions and Perspectives

The question as to whether or not DAG serves as a signaling
molecule in plants remains unresolved. The DAG content of
plant cells is typically low, and no target plant protein parti-
cipating in signal transduction has yet been identified. However,
DAG content is known to fluctuate in response to a variety of
developmental and environmental cues. Therefore, it would be
academically significant to decode its acting mechanisms, and a
critical requirement in establishing DAG’s role as a signaling
molecule is to identify its binding target(s). Besides, the plant/
animal kingdom divergence with respect to the DAG-mediated
phospholipids signaling pathway remains an intriguing puzzle.
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