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Ethylene plays a key role in promoting fruit ripening, so altering
its biosynthesis/signaling could be an important means to
delay this process. Nitric oxide (NO)-generated signals are now
being shown to regulate ethylene pathways. NO signals have
been shown to transcriptionally repress the expression of
genes involved in ethylene biosynthesis enzymes and post-
translationally modify methionine adenosyl transferase (MAT)
activity through S-nitrosylation to reduce the availably of methyl
groups required to produce ethylene. Additionally, NO cross-
talks with plant hormones and other signal molecules and act to
orchestrate the suppression of ethylene effects by modulating
enzymes/proteins that are generally triggered by ethylene
signaling at post-climacteric stage. Thus, medication of
endogenous NO production is suggested as a strategy to
postpone the climacteric stage of many tropical fruits.

Nitric Oxide and Ethylene

Fruit ripening is a complex developmental phenomenon of
genetically programmed biochemical and physiological processes
culminating in desirable changes in the fruit’s texture and
sensorial attributes. Ethylene, a gaseous plant hormone is the key
signal compound involved directly in the regulation of the
ripening process in fruits at all its stages.1 Ethylene, both internal
and external to the fruit, acts with environmental cues, coordinate
the modulation of biochemical events in mature fruits culmin-
ating in ripening,2 the latter being an essential process of
ecological and evolutionary significance. The ethylene biosyn-
thesis pathway involves the participation of various proteins
such as trans-membrane receptors, protein kinases, a membrane
transporter-like regulator, and nuclear transcription factors
(Fig. 1).3 Yang’s discovery of the components of the ethylene
cycle in plants was a significant landmark in our understanding of
plant growth regulation, senescence mechanisms and ripening.
The immediate precursor of ethylene, 1-aminocyclopropane

carboxylic acid (ACC), is derived from S-adenosyl methionine
through the action of the enzyme 1-aminocyclopropane carb-
oxylic acid synthase (ACS) and ACC is oxidized to liberate
ethylene by 1-aminocyclopropane carboxylic acid oxidase (ACO).4

Ethylene biosynthesis in plants is regulated in two phases: the first
phase operates during normal vegetative growth of plants while the
second phase operates by a positive feedback mechanism, which is
generally responsible for the rapid stimulation of ethylene
production during ripening of climacteric fruits.5,6

Genomics and proteomics studies have been central to
revealing the components of ethylene signaling. Examples of
such studies are elucidation of the ethylene receptors,7 constitutive
triple response-kinases (ctr genes),8,9 transcriptional factors,10

ethylene response factors11 and the components of ethylene
downstream cascade (Fig. 1).

There are many signals that regulate ethylene production
and its perception in different organs of plants. Among the
various signaling molecules, the participation of NO signal is of
particular interest as this is now being shown to interfere
with ethylene effects to directly and significantly influence fruit
ripening.12 NO is a bio-active molecule which can regulate
ethylene production via at least two mechanisms; through
direct stoichiometric inhibition or suppressing the ethylene
biosynthetic enzymes (see below). Several decades ago it was
shown in various chemical reactions that NO inhibits the
hydrogenation process during conversion of ethane (C2H2) to
ethylene (C2H4) under a particular set of kinetic parameters.13 In
a landmark study, Leshem et al.,14 delayed plant maturation and
senescence with NO were related to stoichiometric reduction of
ethylene.

Plants generate NO by various pathways. These are divided
into oxidative and reductive categories.15 The most intensively
studied enzyme is the cytosolic nitrate reductase (cNR) which uses
nitrate as substrate and produce nitrite, which is further reduced
to NO. In Arabidopsis, cNR is encoded by two genes which are
NIA1 and NIA2. Antisense expression of nitrate reductase 2
(NIA2) leads to accumulation of nitrite and excess NO
production in tobacco.16 In plants mitochondrial electron
transport also produces NO at low oxygen conditions and during
interaction with pathogens.17-19 Apart from these two pathways,
the plasma membranes of roots produce NO via Nitrite-NO
reductase activity. The second category of NO producing enzymes
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is operative via oxidative reaction. Most well-studied is nitric
oxide synthase-like enzyme (NOS-like) which uses L-arginine as
the substrate and produces NO. However, the existence of NOS-
like enzyme in higher plants is still uncertain. The only evidence
for NOS was based on an increase in NO production in the
presence of L-arginine under specific physiological and develop-
mental conditions and inhibition of NOS activity by arginine
analogs.

Other pathways are based on the oxidation of polyamines (PA)
or hydroxylamines20 and ROS induced NO production has been
shown to act via hydroxylamine.21 Equally, plants can modify NO
production through specific NO scavenging pathways. For
instance, plant non symbiotic hemoglobins (Class 1) scavenge
NO, S-nitrosoglutathione reductase (GSNOR), and mitochondria
actively scavenge NO.22

NO Effects on Post/harvest Quality

In many tropical fruits, climacteric upsurge of ethylene induces
senescence affecting their post-climacteric storage. This drastically
reduces quality attributes such as color, texture, nutritional
composition and flavor. Senescence also predisposes fruits to
invasion by saprophytic microbes. As explained above, knowledge
of the direct relationship between NO and ethylene cycle has only
recently come to light and so has relatively rarely been assessed
within the context of fruit ripening. However, the loss of peach
firmness was significantly retarded by NO treatment,23 which was
attributed to the maintenance of cell membrane integrity and
a reduced electrolyte leakage through delaying initiation of the
senescence.24 NO also reduced the levels of diacylglycerol and
triacylglycerol.25 NO inhibited the browning in apples26 and

Figure 1. A schematic model of ethylene biosynthesis showing a few of its components as affected by NO during fruit ripening. (Straight arrows indicate
established phenomena; dotted arrows indicate phenomena of unidentified mechanisms). Ethylene is perceived by a family of five membrane bound
receptors (ETR1, ETR2, ERS1, ERS2 and EIN4) which are characterized having a sensor and a response regulator domain. In the absence of ethylene,
the receptors activate the kinase activity of CTR1 (constitutive triple response 1) a negative regulator that suppresses downstream progression of
signaling. CTR1 then actively suppresses the downstream responses, such that EIN2 and the EIN3/EIL family of transcription factors remain inactive. Upon
perception of ethylene, the receptors no longer activate CTR1, thus activating the EIN3/EIL family of transcription factors. Ethylene insensitive 3 (EIN3)
target is thought to be the ethylene response factor 1 (ERF1) gene. ERF1 encodes an ethylene response element binding protein (EREBP) that binds
the GCC-box, a cis-element of many ethylene response genes, thus activating the ethylene-signaling pathway. In the ethylene cascade, autocatalytic
activity of ethylene is reported to form SAM (S-adenosyl methionine) from methionine (MT) which is catalyzed by SAM synthetase, whereas SAM is
catalyzed into Aminocyclopropane carboxylic acid (ACC) by ACC synthase and further oxidized into ethylene by ACC oxidase. Ethylene biosynthesis in
this route was found affected by NO mainly through inhibition of SAM turnover via S-nitrosylation of transcriptionally produced methionine adenosyl
transferase (MAT). Further, genes coding for ACCS and ACCO were downregulated (┴) by NO accounting for the reduction of ethylene. Stoichiometric
reduction of ACC to 1-melonyl aminocyclopropane 1-carboxylic acid (MACC) and formation of a stable ternary ACC-ACCO-NO complex can also
antagonize ethylene formation. Alternatively, reciprocal interaction of NO and hydrogen peroxide (H2O2) were also presumed affecting MAP kinase-
mediated downstream components of ethylene biosynthesis. Growth regulators (GRs) and NO may also influence redox status and other signal
generation. As a consequence, NO affects the yield of ethylene, thus delaying expressions of enzymes responsible for cell wall degradation, lignification
and pigmentation of fruits conferring shelf life extension.
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delayed the pericarp browning of Longan fruit (Dimocarpus longa)
by minimizing pulp degradation and enhancing the total of
soluble solids and ascorbic acid.27 NO treatment also improved
the shelf life and desirable attributes of banana,28 tomato29 and
Kiwifruit30,31 and in some climacteric and non-climacteric fruits
(Table 1).

The mechanisms of NO and ethylene cross talk. NO has now
emerged as a novel signal molecule due to its distinct functions in
the growth and development of the plants,32 flowering,33 fruit
ripening and senescence,14,30 biotic stresses with a particular
relevance to disease resistance34,35 and balancing cellular redox
status.36,37 Of most relevance to this review, exogenous NO
treatment affects fruit ripening and senescence14,30 and negatively
impacts on ethylene emission from intact and fresh cut tomato
fruits.29 NO is required in order to define the silhouette of fruits
by competitively inhibiting ethylene-responsive components to
delay senescence and extending shelf life.31,38 These observation
clearly offer the prospect of managing post-harvest handling
and storage of behaviors of horticultural produce by applying
exogenous NO.14,39,40

As mentioned earlier, NO negates the autocatalytic biosyn-
thesis of ethylene by binding to ACC oxidase, resulting in the
formation of ACC oxidase-NO complex, which then forms a
ternary stable complex, ACC-ACC oxidase-NO which biochemi-
cally reduces the ethylene production. Exponential reduction in
ethylene formation in vivo was achieved by linear generation of
NO through donors and infusion of gas in apple fruits where the
level of reduction correlated with stoichiometric reduction.41 In
addition, the produced 1-malonyl aminocyclopropane-1-carb-
oxylic acid (MACC) is also reported to cause inhibition of the
turnover of ethylene.23 NO and ROS reaction within the cell
produces peroxynitrites, which affect the co-factors required for
catalysis of ACC by ACS and ACO. That apart, the simultaneous
treatment with NO and ethylene generating compounds
competitively reduced in vivo ethylene levels in peach fruits,42

suggesting that NO could decrease ethylene output through
inhibiting ACC synthase activity which concomitantly reduce
ACC content.43 Differential expressions of homologs of ACS and
ACO, in response to external and internal stimuli are controlled
by NO both at transcriptional and post-transcriptional levels. NO

delayed the expression of homologs of ACO but not ACS in
tomatos44 and bananas.28 Transcript accumulation of the ethylene
biosynthesis gene ACS2 in tobacco could be related to the
concentration of applied NO45 suggesting that NO effect is
mainly on ACO rather than ACS. Another important aspect of
NO’s mode of ethylene regulation is through the regulation of the
effect of hydrogen peroxide, the latter being an effective inducer of
ethylene biosynthetic gene transcription.46 NO is a highly reactive
molecule that can directly trigger ROS-linked redox changes by
targeting transition metals (e.g., Fe, Cu and Zn) of signaling
proteins, receptors, enzymes, transcription factors, DNA and
proteins containing thiol groups via various modifications such as
tyrosine nitration, S-nitrosylation and metal nitrosylation. Given
the importance of H2O2 in many physiological contexts which
have economic relevance, the modulation of ethylene via H2O2 as
well as NO needs further elucidation.

Another level of ethylene regulation is through post-trans-
lational modification via S-nitrosylation. A good example of this is
the inhibition of Adenosyl transferase-1 through S-nitrosylation
process. This results in reduced turnover of S-adenosyl methio-
nine (SAM), thus regulating the chief precursor molecule for ACC
production.47 The fruit-specific (localized) mitogen-activated
protein kinase in tomatos inhibited ethylene levels acting as nega-
tive regulator of ethylene48; the action is being similar to CTR
response of downregulation of ethylene in Arabidopsis thaliana.49

Interplay of NO with Phytohormones

In addition to the events discussed above which center on direct
impacts of NO on ethylene production or signaling, indirect
mechanisms exist where NO influences other phytohormones and
signaling molecules which are intricately connected to ethylene
biosynthesis (Fig. 2).50 NO interacts with various stress responsive
signal networks, chiefly salicylic acid (SA), jasmonic acid (JA),
ethylene and the coordination of secondary signal molecules such
as cADP ribose, cGMP and Ca2+.51-55

SA, a phenolic molecule was found involved in ethylene
biosynthesis, and hence fruit ripening.58 Both SA and NO are
induced in plant cells during alleviation of various stresses,51,59 as
well as their mutual interactions triggering effects. This

Table 1. Effect of nitric oxide on quality parameters of fruits

Fruit Quality Parameters Reference

Strawberry Extended post-harvest life 14

Peaches Enhanced firmness; higher integrity of cell membrane; prevention of early softening and rotting; decreased contents
of diacylglycerol and triacylglycerol. Increased ascorbic acid and di-hydro ascorbic acid; delay in the initiation of

the senescence of fruits

23–25,42

Longan Delayed pericarp browning and pulp breakdown and higher total soluble solids and ascorbic acid 27

Kiwifruit Extended post- harvest life, lower malondialdehyde and delay in loss of firmness and respiration,
lower contents of soluble solids and malondialdehyde; higher contents of vitamin C and E.

14,31,70,88

Strawberry Extended postharvest life by reducing ethylene production and respiration rate 101

Banana Inhibited de-greening of peel and delayed softening of the pulp 28

Apple Delayed ethylene production and color development, inhibited early browning of fruits 26,99

Jujube Increased red index; higher total phenol content; delayed the increase of soluble solids and decrease of vitamin C. 95
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interaction has been linked to ripening process, particularly when
the transcription of ripening-specific genes are involved,56 and
since ripening is also a process of senescence, one can expect
reversal of senescence by NO signals functioning through
alterations in phytohormones. Anthocyanins, the major secondary
metabolites involved in fruit ripening imparting disease resistance
and ecological role was found to be regulated by NO through
cGMP activated chalcone synthase and ferredoxin NADP+-
oxidoreductase. There is also evidence that SA, acting with NO,
influenced a variety of patho-physiological responses involving
calcium signals and casein kinase2 (CK2).60 Treatment with SA
delayed the ripening in kiwifruit61 and suppressed the ethylene in
banana62 by modulating the ethylene biosynthesis catalytic
enzymes ACS in tomato63 and apple by ACO.64 The role of
NO was also associated with SA action, and the latter disrupts the
transcription of ethylene biosynthesis genes. The reciprocal
control of NO and SA over each other was found to affect the
ethylene metabolism in turn, which influenced the pattern of
defense responses in tobacco, revealing the reciprocal antagonistic
interplay of NO and ethylene.65 In addition, NO and ROS
redox signaling networks were affected by SA during biotic
stress.66 SA accumulation triggered by NO was found to suppress
superoxide free radical and other ROS production67 and thereby
aiding in the maintenance of cell membrane integrity and tissue
senescence.

Jasmonic acid is another important stress signaling molecule,
which is derived following lipoxygenase (LOX) mediated phos-
pholipid metabolism and is also influenced by NO. Inhibition of
wound induced H2O2 production and synthesis of proteinase
inhibitor in tomato leaves were found to be mediated by both NO
and JA.68 NO influences the JA-regulated induction of hypericin
production in cell cultures of Hypericum perforatum following the
addition of a fungal elicitor69 and JA caused a burst of NO during
wound healing in Arabidopsis.59 Thus, both NO and JA were
found to act synergistically in cellular stress responses as well as
wound healing. Interestingly, NO-induced downregulation of
LOX activity during post-climacteric period of fruit ripening70

suggesting an anti-ripening role for JA, as also suggested from the
effects of exogenous application of JA on peach fruit.71

Application of strobulirin inhibited JA synthesis and with a
concomitant decrease in ethylene production which in turn was
linked with reduced lipid peroxidation. Crucially, co-application
of NO and SA potentiated this effect.72 Since NO-JA-SA
-ethylene interplay is clearly important, further studies are
required to define which genes are up- or downregulated
following co-treatment. This would allow the better application
of these biochemical modulations in the efficient control of fruit
ripening.

Fruit ripening is also modulated by growth regulators such as
cytokinins, abscisic acid (ABA), indole-3-acetic acid (IAA) and

Figure 2. The overlapping interactions of polyamines (PA), jasmonic acid (JA), salicylic acid (SA), auxin (Aux), cytokinins (Cyt), abscisic acid (ABA) and
gibberellic acid (GA) that are responsive to ethylene stimuli and their plausible relations with NO during ripening. Although NO's relation with
phytohormones (Aux and GA) and signal molecule (JA) are yet to be established, the possible link between the ethylene biosynthesis inhibition (┴)
by former and enhancement (→) by the latter can be hypothesized. The reciprocal interactions (↔) of NO with Cyt and SA affect the ethylene turnover
during fruit ripening. NO's direct interaction with PA and ABA is known to negatively modulate ethylene biosynthesis. (Straight arrows indicate
established phenomena; dotted arrows indicate phenomena of unidentified mechanisms).
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gibberellins. Some literature has indicated that the action of these
growth regulators could be influenced by NO and so would have
wider developmental effects. Supporting this view, there are a few
pharmacological studies in cell culture systems indicating NO
influences involved in developmental function as well as actions
during biotic and abiotic stress linked to these growth regulators,73

albeit via poorly elucidated mechanisms. In Japanese plums, auxin
is an important signal which initiates and determines the date and
rate of ripening in concert with ethylene, affecting ethylene-
responsive transcriptional factors (ERF’S). Given the influence of
NO on ethylene, it can be assumed that auxin effects were also
modulated by NO.74

Although cytokinins are involved in senescence programming,
their relationship with NO via the ethylene signal transduction
pathway in ripening research has not been documented. However,
NO and cytokinin were found synergistically involved in betalaine
accumulation75 while cytokinins induced NO synthesis in cell
cultures of parsley, tobacco and Arabidopsis.76 Involvement of
NO also has also been recorded in apoptosis (programmed cell
death), induced by cytokinins during biotic stress77,73 (Fig. 2).
Gibberellic acid (GA), a plant hormone has been widely used for
delaying the ripening in several fruits; but any possible interaction
with NO has yet to be recorded. This last point notwithstanding,
preliminary indications from the literature would suggested that a
comprehensive characterization of the cross talk of NO with
hormones such as auxins, cytokinin, gibberellins and ABA linked
to regulation of the ethylene level, is urgently required.

PAs are important plant secondary metabolites produced that
readily interact with nucleic acids, protein and phospholipids due
to their ionic nature.78,79 PAs have been widely considered as anti-
senescence metabolites as the addition can delay leaf senescence
and the aging progress of plants.80 As fruit ripening is also a
programmed senescence process, this role of PA is of relevance to
fruit ripening. PAs were found to inhibit the transcript
accumulation of wound inducible ACS and thus ethylene63 and
enhanced the shelf life of pomegranate with improved quality
attributes.81 This was perhaps to be expected as both ethylene and
PA biosynthetic pathways share a common precursor molecule
SAM, so that biochemical feedback mechanisms are to be
expected. Putrescine application reduced the ethylene biosynthesis
and delayed the softening of plum fruit.82 Similarly, spermidine
and spermine reduced the ethylene synthesis by downregulating
ACC synthase.83 Transgenics of tomatos engineered for higher
levels of spermine and spermidine were observed to express
changed ethylene production, and the biosynthesis of amino
acids, isoprenoids and flavonoids as well as the accumulation of
chaperones and other, stress proteins.84 Although one may expect
NO involvement in these cases, it has not been demonstrated.
One study has demonstrated that PA treatment induces a NO
burst in Arabidopsis plants,85 which could also influence ethylene
biosynthesis and, in other species, fruit ripening. Apart from a
reduction of SAM, downstream responses to PA might also be
mediated by NO, as suggested during stress phenomena86 possibly
modifying the transcriptional regulation of ethylene biosynthetic
genes rather than the feedback inhibition of enzymes of ethylene
biosynthesis.

Role of NO in Post-Climacteric Biochemical Events

A series of changes in texture and color occur at post-climacteric
phase of ripening that are directly linked to ethylene biosynthesis in
fruits of both climacteric and non-climacteric types. Softening was
significantly slowed down in post-climacteric period after the
application of specific levels of NO in peaches,23 Japanese plums87

and bananas28 which can be correlated with the suppression of
ethylene formation.43 Mechanistically, NO was shown to reduce the
activities of cell wall softening enzymes-pectin methylesterase (PME)
and β-1-4-endoglucanse in kiwifruit.88 However, more studies are
required particularly to test any link with ripening-associated color
and flavor development which are known to play ecological roles and
offer protection against pathogen attack. It is well-known that
phenolic compounds produced by the phenylpropanoid pathway and
carotenoids contribute toward pigmentation are also associated with
offering resistance to pathogens and scavenge free radicals within the
fruit and also to the consumers. Equally, the excessive oxidative burst
causes stress in plants mainly because of altered redox homeostasis,
abnormal cell signaling resulting in massive disturbances of otherwise
well-orchestrated cellular functions.89 Thus it is important to pursue
research in the area of post-climacteric biochemical events regulated
by ROS and modulated by NO, since this interaction has direct
effects on cellular ethylene levels and other antioxidant actions during
ripening. ROS also act as the senescence triggering factors, causing
loss of cell-membrane integrity and functionality and NO has been
shown to reduce ROS toxicity. NO prevented ROS mediated
browning of harvested fruits, and also delayed senescence of
ornamentals.90,91 NO may do this through the suppression of ROS
generating enzymes or linked signaling cascades92 as demonstrated
during biotic93 and abiotic68 stresses. Equally, NO upregulates the
expression of major enzymes involved in quenching ROS such as
catalase (CAT), peroxidases (POD) and superoxide dismutase (SOD)
in peaches24 and kiwifruit.70 In kiwifruit, the ROS effects were
significantly reversed by NO via genetic upregulation of SOD and
CAT, and suppression of LOX resulting in the maintenance of
vitamins C and E.70 Further, NO’s role as an antioxidant has been
ascribed for its property of preventing the Fenton’s reaction, making
the meager formation of hydroxyl radical.97 Likewise, NO affects the
functioning of plant POD involved in cell wall lignification since it
easily forms an iron-nitrosyl complex with haem iron.98 Free radical
scavenging ability of NO has been demonstrated to preferentially
quench o-quinone radicals, causing interruption of normal browning
reactions occurring at the cut surfaces of fruit.99 On the other hand,
the protection offered by NO to organic acids, particularly of
ascorbic acid and vice versa may complement each other, converging
in the prevention of browning. Phenylalanine ammonia lyase (PAL),
the first key enzyme in the biosynthetic pathway of phenolic
compounds that are known to cause browning in fruit is also
triggered by various stress conditions,100 and probably these events
are also reversed by NO in preventing browning. Longan, Lychee
(Litchi chinensis) and the Indian date “jujube” (Ziziphus zizyphus)
fruit treated with NO inhibited the activities of PAL, polyphenol
oxidase (PPO) and POD.27,94,95 However, in plums although NO
caused a delay in total phenol formation, it failed to suppress activities
of PPO, POD and PAL.96
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Lignification, which offers protection during biotic and abiotic
stresses in higher plants is the other mechanism associated with
oxidative burst, and the role of NO for enhanced lignification has
been studied in several horticultural commodities for enhanced
shelf life. Similarly, inhibition of LOX activity by NO was demon-
strated in kiwifruit by binding its active site and inactivating
the catalytic activity of the enzyme. Since, LOX catalyzes the
formation of jasmonic acid (JA), and the latter being a growth
regulator/signal molecule physiologically implied with ethylene,23

indicating LOX involvement in ripening being of great relevance.
Given these observations, the attractiveness of NO application

to improve quality attributes of fruits could appear overwhelming.
However, given the nature of NO and ROS toxicity at certain
concentrations, precise monitoring of both NO and ROS
thresholds is essential for maintaining the levels needed for
desirable modulation of fruit ripening.

Conclusions and Perspectives

Ethylene-signaling in fruits is a tightly coordinated activity under the
influence of several signals and phytohormones. Emerging informa-
tion indicates that NO alters endogenous ethylene levels at various
levels by modifying many pathways causing post-climacteric
biochemical changes which are linked to fruit quality. Although
NO controls ethylene stoichiometrically, its specific effects on
different receptors and downstream signaling cascade is a subject for
further verification. Understanding exactly how NO influences
ethylene signaling will provide novel and economically important
information which could allow the improvement of quality
attributes of fruits for more extended periods. It may be that the
initiation of NO production or supplementation of fruit packages
with NO would be the relatively novel approaches to postpone the
climacteric ethylene burst and thereby extend shelf-life.
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