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The multifunctionality of plant
annexins and their importance for

coordinating development and responses
to biotic and abiotic environment have
been largely reviewed. We recently
described a tobacco annexin, named
Ntann12, which is mainly localized in
the nucleus of root cells when the plant is
grown under light conditions. We also
found that auxin and polar auxin trans-
port are essential for Ntann12 accumula-
tion in root cells. Under dark condition,
Ntann12 is no longer detected in the root
system. In the present addendum, light,
regulating auxin signaling, is evidenced
as an essential determinant for the syn-
chronization of growth and development
between the shoot and the root during
light/dark cycle. A speculative model for
Ntann12 is described and discussed with
regards to relevant literature data.

Introduction

Annexins are soluble proteins capable of
Ca2+-dependent or independent asso-
ciation with membrane phospholipids.
Annexins are thought to be generally
involved in the organization of mem-
brane-associated protein networks and
in interaction with components of signal-
ing pathways and therefore they are
linked to wide range of cellular and
developmental processes (for a review see
ref. 1). Plant annexins are phylogenetically
distinct and differ structurally from their
animal counterparts. Essentially, animal
annexins consist of usually four times
repeated annexin domains and a variable
N-terminal region. The annexin domain,

of about 70 amino acids, contains the
conserved endonexin fold (K-G-X-G-T-
{38}-D/E) and is able to bind Ca2+. For
plant annexins, typically only the first and
fourth repeated annexin domains have the
characteristic endonexin sequence (for a
review see ref. 2).

Plant annexins, which comprise a
multiple family with several members
(e.g., eight in Arabidopsis thaliana),3 are
expressed throughout the life cycle and
are under developmental and environ-
mental controls.4 The functions of these
proteins remain poorly understood,
and most of what is described on plant
annexin activities comes from in vitro
studies, including exocytosis, actin bind-
ing, peroxydase activity, callose synthase
regulation and ion transport (for a review
see ref. 5). Plant annexins have also
been found to be stimulated by abiotic
stress including salinity, cold, oxidative
and mechanic stress (for a review see
refs 4 and 5). Besides, light has been
reported to affect expression of a number
of Arabidopsis and tobacco annexins.3,6

Finally, annexin expression has been
shown to be upregulated during pathogen
attack or symbiotic interaction.7-9 The
majority of plant annexins has been
localized in the cytosol and this localiza-
tion appear to be dependent on the tissue/
cell type and on the stimulus. However,
they have also been found to be associated,
or inserted, to both plasma membranes
and endomembranes or to be localized to
the plant vacuole, the Golgi and Golgi-
derived vesicles and the chloroplast (for
a review see ref. 10). Although none of
reported plant annexins contain known
nuclear targeting sequences, a nuclear
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localization has been reported for
some plant annexins including pea,11

Medicago7,12 and tobacco,6 but the mecha-
nism of their nuclear import has not been
elucidated yet. The dynamic property of
plant annexins, as Ca2+-dependent pro-
teins that bind to membrane phospho-
lipids, together with their expression
patterns, i.e. in various organs and induced
by several stress, put forward that these
proteins are involved in cell signaling
processes and therefore in resulting plant
developmental adaptation to environ-
mental changes.

The present addendum focuses on the
possible role/function of the tobacco
annexin Ntann12 in shoot to root signal-
ing. Ntann12 was identified as a gene
induced in tobacco BY-2 cells following
infection with the phytopathogenic bac-
terium Rhodococcus fascians.9 Recently, the
biochemical properties of Ntann12 were
investigated and the data evidenced
the capacity of this protein to bind
negatively charged phospholipids in a
Ca2+-dependent manner as well as the
modulation by Ca2+ concentration of
the distribution of the native Ntann12
between cytosol and cell membrane frac-
tion.6 Spatio-temporal analysis revealed
that Ntann12 transcript and the corres-
ponding protein are localized within the
root system. Besides, pNtann12-GUS
transgenic plants indicated that Ntann12
is mainly expressed within the root

maturation zone but not in the root cap
or in the root elongation zone. At the
cellular level, Ntann12 is present in the
nucleus (Fig. 1) but also in the cytoplasm
of root cells.6

In silico analysis of the 542 bp
pNtann12 using PlantPAN13 indicated
the occurrence of nine cis-element
sequences possibly implicated in light
responses, three GT1 consensus sequences
and six GATABOX sequences. To clarify
the possible role of Ntann12 in light
signaling, we designed experiments at the
whole plant level and assessed the effect of
light and dark conditions on Ntann12
accumulation in tobacco root system.
When plants are grown in light condi-
tions, Ntann12 was found to be principally
expressed in roots and the corresponding
protein was mainly immuno-localized in
the nucleus of root cells. In contrast,
following plant transfer to darkness for
48 h, Ntann12 expression was inhibited as
well as in plants lacking the aerial part and
the corresponding protein was no more
detectable.6 Altogether, these data suggest
that light perceived at the leaves surface is
the initial signal activating the expression
of Ntann12 in the root system of tobacco
plantlets. Since auxin has been associated
with several light-regulated processes (for
a review see ref. 14), the possibility that
auxin could be linked to the signal coming
from aerial parts exposed to light was
considered and further experiments

showed that indole-3-acetic acid (IAA)
treatment restored the expression of
Ntann12 in the root system in dark
condition. Besides, polar auxin transport
(PAT) inhibitors such as 1-naphthyl-
phthalamic acid (NPA) or 2,3,5-triiodo-
benzoic acid (TIBA) inhibited Ntann12
expression in light condition. These results
indicate that the expression of Ntann12
and the accumulation of the correspond-
ing polypeptide in the root cells are linked
to the perception of light/auxin signaling
in the aerial part of the plant that is
transmitted to the root via PAT.

Plant Annexin
and Light/Auxin Signaling

Plants have evolved light receptors and
signaling networks that detect and respond
to changes in light intensity and duration
and allow plants to adapt and to shape
their development according the environ-
mental conditions. Much of this develop-
mental plasticity is achieved by light
modulation of auxin levels and auxin
signaling systems (for a review see
ref. 15). As mentioned above, light has
been previously shown to affect the expres-
sion of several annexins in Arabidopsis. In
hypocotyls, Annat5 expression is increased
by red light and this is reversible by
application of far red light; in cotyledons,
Annat6 has a similar red/far red response.3

These authors suggested that these

Figure 1. Ntann12 immunolocalization in a tobacco longitudinal root section visualized by fluorescence microscopy. 2D maximum projection
of a 32-confocal image stack, corresponding to a root volume of 238.1 mm � 238.1 mm � 57.88 mm. Analysis was done on a Leica SP2 confocal
microscope with a 63X objective (n.a. = 1.4); bar = 30 mm. (A) Phase contrast; (B) immunostaining with affinity-purified antiserum against Ntann12;
(C) superposition of (A and B) (for Materials and Methods, see ref. 6).
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annexin functions are downstream of
phytochrome A. In Mimosa pulvinus,
during the nyctinastic movement, the
amount of annexin increased at night
and the protein was largely cytosolic, while
in the morning, when the leaf is held up, it
was redistributed to the outermost peri-
phery of the motor cells.16

Auxin plays an important role in
controlling root length, lateral root
development and root gravitropism (for a
review see ref. 17). Auxin is transported
through the plant by both passive and
active mechanisms and elicits responses
in tissues distant from those where it was
synthesized. Auxin is actively moved from
cell to cell by PAT, a process that is highly
regulated by influx and efflux carrier
proteins localized on the plasma mem-
brane (for a review see ref. 18). PAT plays
crucial roles in the regulation of many

aspects of plant growth and development
and the inhibition of auxin transport by
local application of the PAT inhibitor
NPA to the shoot has been shown to
inhibit lateral root development.19 The
coupling of light and auxin signaling
appears to be essential in the regulation
of plant development but the precise
network in which they are involved has
still to be deciphered.

Annexins and Ca2+-Dependent
MAPK Signaling

Several phosphorylation sites have been
found and experimentally verified for
Arabidopsis annexins (for a review see
ref. 20) and similarly some putative phos-
phorylation sites are present in the deduced
polypeptide sequence of Ntann12. The
occurrence of these phosphorylation sites

may regulate binding to other proteins.
Accordingly, by using a tandem-affinity
purification approach, Rohila et al.21 iden-
tified a rice annexin, Os05 g31750, homo-
log to AnnAt4, that was associated with
several complexes involving various pro-
tein kinases. The first complex contains a
MAPKKKK sterile-20 (Ste20)-like kinase
(Os10 g37480), and a putative MAPKKK
WNK1 (Os07 g38530). The second
complex contains a casein kinase (Os01
g38950), a putative methyltransferase
(Os01 g49250) and a MAPK (Os08
g06060). The third complex contains
a calcium/calmodulin-dependent protein
kinase (Os01 g64970), a RNA recognition
motif containing protein (Os02 g12850)
and a putative nucleic acid binding
protein (Os03 g52490). The fourth
complex contains 13 proteins including
a receptor-like kinase (Os01 g02580)

Figure 2. Ntann12 function in tobacco root: a speculative model. (1) Light induces auxin synthesis in young tissues of the aerial part. (2) Auxin moves
from shoot to root system via the PAT. (3) Auxin accumulation in root cells induces Ntann12 expression. (4) The increase of the level of cytosolic Ca2+

induced by auxin accumulation triggers recruitment of Ntann12 to negatively charged phospholipids. (5) Ntann12 interacts with other proteins (X1–X3)
possibly via a phosphorylation-dependent regulation. (6) The protein complex reaches the cell nucleus. (7) The nuclear Ntann12 protein-complex may
acts as a transcription factor to induce the expression of target genes that are required for the functioning of root system in daylight condition.
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and two 14-3-3 proteins.21 The association
of annexin and MAPKKK indicates that
these proteins may be involved in mem-
brane-associated, Ca2+-dependent MAPK
signaling.21

Possible Function of Ntann12
in Shoot to Root Signaling

A speculative model for Ntann12 func-
tion, modulated by auxin accumulation in
root, is suggested in Figure 2. Upon light
perception in the plant aerial part, auxin
synthesis is induced in young leaves. As a
mobile morphogen, auxin can travel from
shoot to root system thanks to PAT. This
mechanism is essential for synchronization
of growth and development between the
shoot and the root.22 Auxin accumulation
in root cells induces Ntann12 expression;
this is supported by the induction of
Ntann12 expression in root system follow-
ing auxin treatment and by the occurrence
of an ARF binding motif in the Ntann12
promoter.6 Auxin accumulation was
shown to induce an increase in the level
of cytosolic Ca2+ in various corn and
parsley tissues within minutes after its
application.23 Therefore it can be assumed
that intracellular Ca2+ mobilization
induced by accumulation of auxins in root
cells triggers recruitment of Ntann12
to negatively charged phospholipids in a
Ca2+-dependent manner.

Ntann12 contains several putative
phosphorylation sites and similarly to
what it was described for the rice annexin
Os05 g31750, possible interaction of
Ntann12 with other proteins, subject
to phosphorylation-dependent regulation,
might be suspected. Alternatively,
Ntann12 may promote other proteins to
bind tightly to a membrane, forming a

‘multidomain cooperation’.5 Since in root
cells, Ntann12 is mainly localized in the
nucleus, it is tempting to speculate that at
least one of the Ntann12-protein partner’s
possess a nuclear localization signal that
help the complex to reach the cell nucleus.
Another possibility is that Ntann12 could
be modified by ubiquitination and/or
sumoylation, which are involved in
nucleo-cytoplasmic trafficking (for a
review see ref. 24); in accordance, the
bovine annexin A1 present in the nuclei
was mostly modified with sumo or
ubiquitin.25 Finally, the nuclear Ntann12
protein-complex as a whole, or partially,
may act as a transcription factor to induce
the transcription of target genes necessary
for the root system to perform required
biochemical, physiological as well as
developmental processes during plant
exposure to daylight. Such hypothesis is
supported by several reports on light-
regulated developmental processes in root
system. For instance, root secretion of
some phytochemicals in Arabidopsis is
affected by light/dark cycles.26 Besides,
annexins of Arabidopsis seedlings grown in
continuous light have been immunoloca-
lized in secretory cells in roots including
outer root cap cells and root hairs.27 In
addition, in maize roots, the xylem water
flux sustained by root pressure occurs
during the day and is less important at
night.28 More generally, gene profiling of
the red light signaling pathways in
Arabidopsis roots performed by Molas
et al.29 allowed the identification of several
factors acting downstream of phyto-
chromes in red-light signaling among
which genes involved in lateral root and
root hair formation, root plastid develop-
ment, hormone signaling and phenyl-
propanoid metabolism.

Concluding Remarks
and Prospects

The structural, functional and biochemical
properties of annexins and their impor-
tance for coordinating development and
responses to biotic and abiotic stress have
been largely reviewed. To the best of our
knowledge, Ntann12 is the first described
plant annexin specifically induced in root
cells when the plant is exposed to light.
Because of the occurrence of light boxes in
the Ntann12 promoter, light was initially
suspected as the triggering signal for
Ntann12 expression. However according
to our presented data, it is obvious that
light modulation of auxin level via PAT is
the effective direct mediator of Ntann12
expression in root cells. This is in
agreement with the induction of this gene
expression in tobacco leaves incubated in
auxin solution6 or infected by R. fascians,9

a bacterium known to produce and secrete
auxin upon interaction with plant cells.30

The hypothesis described in this adden-
dum is that Ntann12 would be involved
in the sensing in the root of the day/night
switch and in the activation of the
expression of genes essential for root
function. The identification of the pro-
teins or proteins complexes that are
possibly associated to Ntann12, and/or
the possible modification of this protein
by ubiquitination and/or sumoylation will
permit to further decipher the suggested
role of Ntann12 in the shoot to root
signaling.
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