Skip to main content
. 2012 Jun 25;9:54. doi: 10.1186/1742-4690-9-54

Table 2.

Logistic Regression for predicting transmission based on number of glycosites in the variable loops

  Univariate Odds Ratio (95% confidence interval) p-value   Odds Ratio with subtype interaction (95% confidence interval) p-value Test for Homogeneity between subtype, p-value Wilcoxon Rank Sum p-value
PNGs in V1 loop
 
 
PNGs in V1 loop
 
 
 
 
1 to 2
 
 
Subtype B 1 to 2
 
 
 
0.109
3
1.11 (0.59, 2.06)
0.751
3
1.42 (0.55, 3.62)
0.466
 
 
≥ 4
1.62 (0.83, 3.14)
0.155
≥ 4
2.29 (0.83, 6.36)
0.111
 
 
 
 
 
Subtype C 1 to 2
 
 
 
0.931
 
 
 
3
0.66 (0.18, 2.48)
0.541
 
 
 
 
 
≥ 4
0.54 (0.14, 2.10)
0.371
0.347
 
PNGs in V2 loop
 
 
PNGs in V2 loop
 
 
 
 
0 to 1
 
 
Subtype B 0 to 1
 
 
 
0.533
2 to 3
0.75 (0.44, 1.27)
0.282
2 to 3
0.84 (0.44, 1.63)
0.615
 
 
 
 
 
Subtype C 0 to 1
 
 
 
0.323
 
 
 
2 to 3
0.67 (0.22, 2.13)
0.506
0.509
 
PNGs in V3 loop
 
 
PNGs in V3 loop
*
 
 
 
0
 
 
Subtype B 0
 
 
 
0.024
1
2.56 (0.49, 13.43)
0.267
1
 
 
 
 
 
 
 
Subtype C 0
 
 
 
0.155
 
 
 
1
 
 
0.008
 
PNGs in V4 loop
 
 
PNGs in V4 loop
 
 
 
 
0 to 1
 
 
Subtype B 0 to 1
 
 
 
0.572
2
0.51 (0.23, 1.14)
0.102
2
0.36 (0.10, 1.31)
0.122
 
 
≥ 3
0.54 (0.25, 1.20)
0.133
≥ 3
0.46 (0.13, 1.60)
0.219
 
 
 
 
 
Subtype C 0 to 1
 
 
 
0.329
 
 
 
2
1.83 (0.35, 9.60)
0.473
 
 
      ≥ 3 1.19 (0.22, 6.28) 0.842 0.001  

Note: In groups where no sequences have 0 glycosites, logistic regression cannot be performed.