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Abstract
A new algorithm for EPR imaging oximetry is described and tested with experimental data for the
case of one spatial and one spectral dimension. A single species with variable linewidth is
assumed. Instead of creating a 2D image, two one-dimensional profiles are reconstructed: the
concentration of the radical and the corresponding oxygen concentration, which reduces the
dimensionality of the problem. The algorithm (i) seeks to minimize the discrepancy between
experimental data and projections calculated from the profiles and (ii) uses Tikhonov
regularization to constrain the smoothness of the results. This approach controllably smoothes
profiles rather than the data, while preserving sharp features.

1. Introduction
Electron paramagnetic resonance imaging (EPRI) is under development for diverse
biomedical applications including cardiology [1], liposomal drug delivery [2], oxidative
stress and reperfusion injury [3], and cancer [4, 5]. Many applications of EPR imaging
involve oximetry [6], in which local oxygen concentration is detected via the broadening of
a narrow paramagnetic probe signal by collisions with paramagnetic oxygen. Imaging
information is encoded by recording spectra (projections) in the presence of magnetic field
gradients. Spectral-spatial or spectroscopic images are reconstructed in which the spectrum
is determined at each position in the sample. Since the concentrations of probes are low, and
there are time constraints on data acquisition for real-world applications, images must be
reconstructed from limited numbers of noisy projections. Image reconstruction in this
situation is known to be an ill-posed problem [7]. This means that from an infinitely large
number of solutions that match almost equally well with the experimental data, the one that
probably is the best must be selected.

Many reconstruction algorithms have been developed for various imaging modalities.
Filtered backprojection method (FBP), which was developed for X-ray tomography [8], is
the most commonly used method for EPR imaging. The advantages of FBP are: modest
computation time, simplicity in implementation, and robustness. Its well-known
disadvantages include characteristic distortions (“star effect”) that occur when there are too
few projections and the need for equally-spaced projections [9]. If there are no sharp
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features in the experimental projections, images reconstructed by FBP can be improved by
smoothing the data before the algorithm is applied. However for images of unknown objects
it is difficult to define the filtering parameters that can be used without distorting features in
noisy spectra. Iterative methods, such as maximum entropy, may give more accurate results
but are more computationally intensive [10, 11].

An alternate approach to finding solutions of ill-posed problems is Tikhonov regularization
[7, 12, 13], which when applied to image reconstruction seeks to minimize the function

(1)

where R̂ is the discrete Radon transform operator for projections at angles Θ⃗, I(ρ⃗) is the
image, D⃗ is the experimental projection data, λ is the regularization parameter, L ̂ is the
regularization operator, ρ⃗ is a vector of parameters to be regularized, and the notation ‖ ‖
indicates the Euclidean norm.

The term ‖L̂(ρ⃗)‖2 is the regularization term. The term ‖R̂I(ρ⃗)−D⃗‖ is the error or penalty term
(Σ) and reflects the discrepancy between projections from the reconstructed image and the
experimental data. The selection of the regularization operator can be used to impose
constraints, based on knowledge of the system. For example, L̂ = L0 (the identity matrix)
forces values of ρ⃗ toward zero, L̂ = L1 (the first derivative matrix) forces values toward a
constant, and L̂ = L2 (the second derivative matrix) forces the slope toward a constant. Thus
the selection of L̂ provides a way to smooth the image, instead of smoothing the
experimental projections as is used in filtered backprojection, while also keeping track of the
impact of the smoothing on the error function. The larger the regularization parameter λ, the
smoother the image. Especially when data are noisy, the value of λ must be large enough to
filter out noise, but small enough that it does not suppress significant features. Thus, wise
choice of regularization parameter is important to keep the proper balance between
minimizing the error term and smoothing the image. The quality of the outcome depends
upon the selection of λ. In the literature various ways have been used to select the
regularization parameter, including the discrepancy principle method [12–14], which takes
noise statistic into account, the L-curve method [15–19], and the generalized cross-
validation method [20, 21]. A recent review concludes that λ is usually selected empirically
[22].

Another disadvantage of FBP is that it is difficult to incorporate a priori information about
the object that is imaged. For EPRI oximetry the lineshape of the spin probe in the absence
of oxygen, including unresolved or resolved nuclear hyperfine structure, is known.
Collisions with oxygen decrease the T2 for the probe and cause broadening of the line. The
oxygen concentration is calculated from the broadening. The unknown parameters for each
position in the object are line width (or line broadening), and the integrated intensity of the
line, which is proportional to radical concentration at that point. One currently-used
approach is to fit each spectral profile in the spectral-spatial image to a spin probe lineshape
[23] and thereby find the oxygen and radical concentration in each voxel [24], which
requires two steps: reconstruction and fitting.

A new approach to spectral-spatial imaging has been suggested recently that reconstructs
profiles directly and does not require reconstruction of an intermediate image [25]. The goal
is to find a “lineshape constrained” image for which calculated projections match the
experimental projections as well as possible. The name “lineshape constrained” means that
the lineshape for each spectral slice of the image is broadened by a variable amount relative
to the lineshape for the probe in the absence of oxygen. In addition to probe lineshape, other
constraints can be applied. It has been demonstrated that, compared with standard FBP
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reconstruction, this method permits significant reduction of data acquisition time by
measurement of fewer projections with smaller sweep widths without loss of quality in the
final results. In this Bayesian approach the goal is the image with maximum a posteriori
probability, taking into account a priori information. It is assumed that experimental
projections are contaminated with random Gaussian noise and that spatial profiles of radical
concentration ρ⃗R and linewidth ρ⃗τ need to be smoothed. The vectors ρ⃗R and ρ⃗τ are found by
minimizing function (2) using non-linear optimization [25].

(2)

Eq. (2) is very similar to Tikhonov regularization (Eq. (1)). However, in Eq. (2) two
regularization terms are multiplied by a single regularization parameter, which implies that
the spatial variation in distributions of oxygen and radicals have similar smoothness. In real
systems the spatial variation may be quite different.

A new approach to finding a "lineshape constrained" image is suggested. It is based on
minimizing a function similar to (2), but with two regularization parameters. Instead of
nonlinear optimization, the Tikhonov regularization method is used. This approach allows
more flexibility in incorporating a priori information such as characteristics of oxygen and
radical distributions and excluding regions that are inaccessible to radical.

To test the utility of this approach, it is applied to oximetric imaging with one spatial
dimension and one spectral dimension. This information can be presented as a 2D spectral-
spatial image that displays the EPR spectrum as a function of position along an axis through
the sample. For the lineshape constrained case, the same information can be presented more
compactly in two 1-D arrays that summarize the information from spectral slices through the
spectral-spatial image. Each element in the spatial profile of the radical, ρ⃗R, is the integrated
intensity. Each element in the spatial profile of oxygen, ρ⃗O, is the full width at half height of
the absorption signal, which is proportional to oxygen concentration.

2. Regularized Optimization (RO) Algorithm
To account for differences in the spatial variation of radical and oxygen concentrations,
functions (1) and (2) were modified to have separate regularization parameters, λR and λO,
and regularization operators, L̂R and L ̂O, for the two profiles.

(3)

where I is the image matrix with dimension N × N, ρ⃗i is a vector of length N, and D⃗ is a
vector containing the experimental projections sequentially. It is proposed that the two
profiles can be calculated iteratively holding one constant, while optimizing the other. For a
lineshape constrained image, the error term in function (3) can be rearranged for two cases:
constant ρ⃗O or constant ρ⃗R and expressed in terms of matrices and vectors that are suitable
for the Tikhonov method.

For constant ρ⃗O

(4)
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where Sk is a matrix with the kth row equal to the intensity-normalized spectrum at point k

along the spectral axis, with  and other rows = 0. Radon transformation of
matrix Sk produces projections that can be combined into a matrix that is denoted as P as in
Eq. (5).

(5)

P can be calculated directly as the Radon transforms of spectral slices arranged as columns
in a matrix. Substitution of Eq. (5) into Eq. (3) with the constraint that ρ⃗O = constant, taking
the derivative with respect to ρ⃗R, and setting it equal to zero, gives Eq. (6) that can be used
to calculate ρ⃗R.

(6)

where PT and LT are the transpose of the corresponding matrices. The values of P and PT

depend on the current estimate of ρ⃗O.

A different approach is required to find ρ⃗O at constant ρ⃗R, because although the lineshape
depends linearly on radical concentration, it does not depend linearly on the linewidth values
in ρ⃗O. However, the error function in Eq. (3) can be re-written using an approximate
expression for the dependence of lineshape on linewidth in the range where changes are
small enough to be approximated by the linear term of a Taylor expansion.

For constant ρ⃗R

(7)

where  is an element of the vector of increments to the oxygen profile that needs to be
determined. Eq. (7) can be rewritten as

(8)

where Radon transformation of the derivatives of Sk produces projections that can be
combined into a matrix that is denoted as Q in Eq. (8) and Δ⃗ is a vector of discrepancies
between data and projections calculated from the current image. Substitution of Eq. (8) into
Eq. (3) and inclusion of the increment δρ⃗ in the regularization term gives the rewritten
function to be minimized:

(9)

With the constraint that ρ⃗R = constant, taking the derivative of function (9) with respect to
δρ⃗O, and setting it equal to zero, gives Eq. (10) that can be used to calculate the increment of
ρ⃗O from the prior estimate.

(10)

where QT and LT are the transpose of the corresponding matrices. The values of Q and QT

depend on the current estimates of ρ⃗O and ρ⃗R.
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It might happen that some values of  are large enough that the second and higher
derivatives of the Taylor series in Eq. (7) can not be neglected. In this case these elements
have to be limited to some reasonable level. A 10% threshold was imposed, such that

 for each value of k.

3. Strategy
Equations (6) and (10) provide ways to iteratively calculate changes in the oxygen and
radical profiles that are required to minimize the error function for particular values of λR
and λO. The regularization operators L ̂O and L ̂R are selected based on a priori knowledge of
the system. The following discussion concerns parameters for a simple phantom composed
of three tubes containing lithium phthalocyanine (LiPc) in equilibrium with different oxygen
concentrations. For this sample it is expected that oxygen concentration will be relatively
constant within a tube so L̂O = L̂1. The radical concentration is more dependent on position
so L̂R = L̂2. For a biological system other choices might be made.

Information about the system provides additional constraints. The linewidth in the absence
of oxygen and at the maximum oxygen concentration that could be present in the sample are
lower and upper limits for values in ρ⃗O. Values in ρ⃗R must be greater than zero. If there are
regions in the sample where there is no radical, the corresponding values of ρ⃗R can be set to
zero or excluded from the optimization procedure. Focusing on the area in profiles with non-
zero intensities of EPR lines, Ω, reduces memory allocation and computational time. For
biological samples regions could be selected based on anatomical or physiological
characteristics. For example, it is unlikely that the paramagnetic probe would penetrate deep
into bones. It would also be possible to reconstruct only within the known contours of an
animal instead of a complete cylinder.

The goal of the algorithm is to find profiles ρ⃗O and ρ⃗R that minimize discrepancy with the
data within the constraints of the regularization terms. Available a priori data can be used to

specify the expected smoothness and thereby define , where g indicates goal.
Experience with in vivo imaging is likely to produce reasonable estimates of these
parameters for particular types of tissues. Profiles can then be sought that are within the

limits: . To reach the goal a large-scale non-linear
optimization problem has to be solved. To find the global minimum is a complicated and
time-consuming task. It suffices to obtain a solution with an error function that is close
enough to the global minimum in a relatively short time. It was found empirically that more
robust results were obtained if the search strategy was divided into two steps. These steps
are described in the text below and shown in the flowchart representation of the algorithm
(Figure 1).

3.1 Intermediate profiles (Step 1 in Figure 1)
The first step is reconstruction of intermediate profiles. Because the oxygen profile is
gradually updated starting from a guess profile (Eq. (10)), it is reasonable to begin iterations
with ρ⃗O = const. This could be the linewidth of the non-gradient spectrum or an estimate of
the average value. If something is known about the O2 distribution, use of a more accurate
initial guess can reduce computational time significantly. In the limiting case where ρ⃗O is
known, only a single implementation of Eq. (6) would be required to reach the final goal.
Regularization parameters λi are adjusted iteratively to reduce the error function Σ(n), where
n is the number of the current iteration, until the next iteration brings no further

improvement, Σ(n+1) ~ Σ(n). The intermediate profiles are designated as  and the

corresponding intermediate values of the regularization terms are designated as .
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Two approaches can be taken to improve these intermediate profiles. (i) The values of λR
and λO can be varied and the impact on the error function monitored, analogous to the L-
curve implementation of the Tikhonov method. (ii) If a priori information is available to

define the expected smoothness of the profiles, values of  can be defined as goals,
within specified limits, and values of λR and λO can be adjusted iteratively to achieve these

goals with minimum impact on the error function. The values of  are upper limits

on . Option (ii) is examined in this report.

3.2 Searching for profiles with target values of  (step 2 in Figure 1)
In the second step the algorithm keeps track of the smoothness of the profiles as well as
changes in the error function. Reconstruction of ρ⃗O involves a series of iterations, so each

profile evolves from the previous one. If  is much larger than , it may take many
iterations of ρ⃗O to reach this goal because it is difficult to jump from a very noisy profile to a

smooth one. This process can be accelerated by smoothing  to get closer to  and using

the smoothed profile  as the new starting point. The following approach to smoothing
was used.

(11)

where  is the result of nth order polynomial fitting of . Parameter n is adjusted, so that

. To estimate α one can rewrite Eq. (11) in the form:

(12)

where (x ● x) is the dot product of two vectors. Solution of quadratic equation (12) gives

parameter α. Substitution of α into Eq. (11) gives profile , which when substituted into

Eq. (6) produces  with the desired ΓR. This process produces profiles with good, but not

necessarily the best, agreement with the data and with . Starting from these
profiles, the algorithm iteratively adjusts λO and λR (Eqn. (6) and (10)) to minimize the
error function, while keeping the regularization terms within the intervals

. When iteration fails to reduce error, the algorithm terminates.

4. Experimental
4.1 Sample preparation

Electrochemically-prepared x-LiPc was graciously provided by Prof. Harold M. Swartz
(Dartmouth Medical School) [26]. Multiple small crystals were placed in three quartz 3-mm
OD tubes with 0.5 mm wall thickness. The amounts of sample in the three tubes were
different. One tube was extensively evacuated and then flame sealed. The samples in the
other two tubes were equilibrated with a 2% O2 in nitrogen gas mixture then flame sealed.
The three tubes were arranged in a row with the evacuated sample in the middle. Thus the
center-to-center distances between samples in adjacent tubes were 3 mm.
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4.2 Spectroscopy
The EPR spectra of the LiPc in each of the 3 tubes that composed the phantom were
measured separately. The full widths at half height of the LiPc signals were 49 mG in the
absence of O2 and 148 or 169 mG for the two tubes with ~2% O2. For image reconstruction
dHmax was set at 250 mG and dHmin was set at 38 mG. Similar limits were used for fitting
of the spectral slices from the FBP image.

Projections were acquired by rapid triangular-scan EPR [27]. Since the LiPc lineshape has
mirror symmetry, the number of experimental projections could be reduced by a factor of
two, relative to what would be needed in a general case. Projections for a 2-D spectral-
spatial image were measured at 8 equally-spaced angles ranging from 5.63° to 84.38° in the
spectral-spatial plane [28], with no ‘missing’ projections. Magnetic field gradients varied
from 0.07 to 7.38 G/cm. The widths of the scans were adjusted to include regions of interest
in the gradient-broadened spectra and scan frequencies were set to give a constant scan rate
of 11 kG/s. For each projection 2048 data points were recorded that encompass both up-field
and down-field scans. Spectra were Fourier-deconvoluted to recover the slow-scan signals
[27]. After deconvolution the up-field and down-field scans were combined to increase
signal-to-noise by a factor of √2. After summation the number of points in each projection
was reduced to 287 by averaging and interpolation to permit FBP image reconstruction with
the standard iradon Matlab routine.

Data sets obtained by averaging each projection 9216 or 50 times are denoted as "lower-
noise" and "higher-noise", respectively.

4.3 Construction of Comparison Profiles and Image
For comparison with the reconstructed profiles, expected profiles were calculated. The
linewidth profile was calculated from the known dimensions of the tubes and linewidths
measured from the individual tubes: 148, 49, 169 mG, respectively. It was assumed that
within each tube the linewidths for all LiPc crystals were the same. To assist in the
calculation of the expected spatial profile, a spectrum at a gradient of 9.9 G/cm was
averaged 200,704 times. This gradient is large enough that the signals from the three tubes
were separated. Deconvolution of each signal individually, with a Lorentzian line of

appropriate width, gave an estimate of the experimentally determined radical profile, .
The spatial variation is not smooth because of the nonuniform distribution of small
crystallites in the tubes. Based on the linewidths for LiPc in the 3 tubes measured separately,
and the estimate of the radical distribution profile, an image was reconstructed for
comparison with the images obtained by the RO and FBP methods.

These profiles were used to produce a-priori information for the RO algorithm. Since the

oxygen concentration is constant within each tube,  is expected to consist of three flat

lines with  value calculated from the experimental profile, , was 0.06 cm−1.

4.4 FBP algorithm implementation
Images were reconstructed by FBP on grids of 201 · 201 pixels using 287 data points per
projection by means of the standard iradon Matlab routine with default Ran-Lak filter and
linear interpolation. Each spectral slice in the 2D spatial-spectral image was fitted to a
Lorentzian lineshape by means of the lsqnonlin Matlab routine for nonlinear least-squares
curve fitting. Fitting was done only in the spatial regions that correspond to the interior
volume of the tubes. Other regions of the spectral-spatial images were defined as zeros. Use
of this a priori information reduced the ‘star-effect’ distortion, which decreased the misfit
error between projections from the FBP image and the experimental data by a factor of two.
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The ridges that radiate out from the tube regions have noticeable intensity in spaces between
the tubes, so fitting in these parts of the image give rise to false values for radical

concentration. The array of best fit linewidths from the 201 spectral slices is  and the

integrated intensities for spectral slices are . Computations were done on a 3 GHz
Pentium PC. The time needed for FBP reconstruction was about 0.2 seconds and the time
required for non-linear least-squares fitting of the slices was about 7 seconds.

If the differences between projections at successive angles are not too large, images obtained
by FBP can be improved by interpolation [29–31]. Since these procedures can also introduce
artefacts, the comparison FBP images were reconstructed without interpolation.

4.5 RO algorithm implementation
The RO algorithm was implemented in Matlab. To speed up execution, matrix operations
were used wherever possible. However, the algorithm has not been optimized, and rewriting
some routines in C would make execution faster. The outputs of RO for this one-
dimensional spatial case are ρ⃗Oand ρ⃗R. There is no need for an intermediate spectral-spatial
image to be reconstructed. Values of ρ⃗O and ρ⃗R were calculated only in the regions where
radical concentration was not zero. Regularization parameters were varied in very broad
intervals λR=10−5–105 and λO=(10−8–102) to cover both lower and higher-noise datasets.
For routine measurements of images with similar signal-to-noise ratios, this range can be
narrowed to decrease computational time. For both datasets the algorithm worked to find
values of Γi with ±3% accuracy. The initial guess ρ⃗O for the first iteration was a constant
144 mG, which is the average of dHmin and dHmax. The average computational time, based
on reconstruction of 182 images for various Γi values, was 4.5± 0.2 seconds for the
projections with higher signal-to-noise ratio and 3.9±0.5 for the higher-noise dataset.

5. Results
The RO algorithm was tested with two sets of projections with higher and lower noise
levels, obtained by rapid-scan EPR at 250 MHz [27, 32]. Sample spectra obtained with
gradients of 0.07 and 7.38 G/cm, respectively are shown in Fig. 2. For the higher noise data
set the signal-to-noise (SNR) decreased from about 100 to 10 as the gradient was increased
from 0.07 to 7.38 G/cm. The SNR was calculated as the amplitude of the most intense peak
in the spectrum divided by the standard deviation of the noise in a baseline region. For the
lower-noise data set the SNR decreased from about 1000 to 100, for the same increase in
gradient. In both cases the impact of the gradient on signal-to-noise was much less than the
quadratic dependence that would have been observed if the traditional first-derivative
signals had been recorded [27].

The error functions, ΣRO, for profiles reconstructed by RO for various combinations of

 were compared with ΣFBP for images reconstructed by FBP. Sections of contour
plots of the improvement ratio

(13)

as a function  are shown in Fig. 3. For each data set ΣFBP is a constant, so the
largest value of χ corresponds to the minimum error for RO reconstruction. If the
experimental projections were exact Radon transforms of the spectral-spatial representation
of the sample, the best match between the experimental data and ρ⃗i would be found for ΓR =
0.06 and ΓO= 0, which was estimated from the phantom. In reality there is distortion by
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random noise and other hardware imperfections. For the low-noise data (Fig. 3a) the region
with minimum error corresponds to ΓR ~ 0.06, as expected from the phantom, but ΓO is
larger than for the phantom which is attributed to distortions in the data. For the higher-noise
data (Fig. 3b) the region with minimum error occurs for ΓR ~ 0.4 and ΓO ~ 3.5. The larger
values of ΓO and ΓR that minimize the error in Fig. 3b are attributed to the impact of noise in
the data, which decreases the smoothness of the profiles. When the error function is used as
the criterion for the "best" profiles, noise is incorporated into the profiles. Thus, the "best"
match with the data may not be the "best" representation of the object. Based on the
knowledge of the phantom it is possible to smooth the profiles from the noisy data to
approach the values of ΓR and ΓO that are known for the phantom, and thereby obtain more
accurate profiles, even though the error function is larger.

Additional insight concerning the algorithm can be obtained by comparing profiles

calculated by RO and FBP. The intermediate profiles  obtained by minimizing
the error function are compared with the profiles for the phantom and the slices from the
FBP image in Fig. 4. For the lower-noise data (Fig. 4a) the oxygen profiles obtained by RO
are smoother than those obtained by FBP, and both are in good agreement with the phantom.
For the higher-noise data (Fig. 4b and 4d) the profiles are all noisier, but the RO profiles are
smoother than those obtained by FBP. The improvement that can be obtained by imposing
known information about the profiles is shown in Fig. 5, where the regularization terms
were set equal to the known values for the phantom, ΓO = 0.0 and ΓR = 0.06. For
comparison the mean values of the oxygen profiles, within a given tube, were calculated
from the FBP profiles. For the lower-noise data (Fig. 5a and 5c) the average values from the
FBP profiles and RO profiles are very similar. However, for the higher-noise data (Fig. 5b
and 5d) the advantages of RO are evident, especially for the spatial profile. Even if the FBP
profiles were smoothed, it would be difficult to accurately define the distribution of radicals.

The intermediate profiles and profiles after use of the smoothing goals are compared
quantitatively in Table 1. Application of the goal constraints reduces the improvement factor
χ to a greater extent for the higher-noise data than for the lower-noise data. The decrease in
χ is attributed to smoothing that causes an increase in the RO error function. The
discrepancies between the phantom and profiles obtained by RO or FBP are calculated using
equation (14).

(14)

where in both numerator and denominator the discrepancies between the phantom and the
reconstructed profiles are calculated. For each of the cases examined, the profiles obtained
by RO are in better agreement with the phantom than ones obtained by FBP, especially for
the noisy data. The values in Table 1 show that application of regularization constraints to
the intermediate profiles increases discrepancy error with the data but, at the same time,
improves the resemblance of the calculated profiles with the phantom. The one exception is
that the constraints do not improve the spatial profile for the low-noise data. In that case the
spatial profile obtained for the intermediate profiles, before the smoothness constraints, may
be more precise than the estimate of the spatial profile for the phantom. That estimate was
obtained by deconvolution of a single high gradient projection with different lineshapes for
individual tubes. Uncertainties in the data and the deconvolution filter impact the calculation

of .

The changes in the profiles obtained from the higher-noise data that occur when the

regularization terms are varied are shown in Fig. 6. As  is decreased from 2.1 to 1.1 and
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0.11 the oxygen profile becomes smoother (Fig. 6a,c). Similarly as  is decreased from

0.41 to 0.06 and 0.005 the radical profile becomes smoother (Fig. 6b,d). If  is too large,

excess noise is retained in the profile, but if  is too small then the profile is excessively
smoothed. A-priori knowledge of appropriate values of regularization terms can be of great
importance to reveal accurate profiles calculated from noisy experimental projections.

The images that correspond to the profiles obtained by RO from the higher-noise data with

 are shown in Fig. 7, compared with that of the phantom and the image
reconstructed by FBP with fitting of spectral slices to a Lorentzian, and the constraint that
the oxygen profile is constant within each tube. The image obtained by RO is in much better
agreement with the phantom than the image obtained by FBP.

5. Outlook
Reconstruction of EPR images is an ill-posed problem. Infinite number of solutions can be
found that fit the experimental data almost equally well. Additional information about the
sample is needed to increase the accuracy of reconstruction. Smoothing of the data is one of
the commonly used methods to increase the robustness of the solution, often at the expense
of distortion of some sharp details in the image. One of the important features of the RO
algorithm is that smoothing is applied to the results, so some sharp features in the image can
be included if these are strongly supported by the data. Another advantage of the algorithm
is that it provides the experimenter with a tool to incorporate any a-priori knowledge into
reconstruction such as lineshape of radical, geometry of the sample, biological peculiarities
of different tissues with respect to accessibility of radical penetration and oxygen
distribution. For example, radicals may accumulate in the bladder of an imaged animal. It is
very likely that both O2 molecules and radicals are evenly distributed throughout the urine
due to diffusion. Instead of hundreds of unknowns for this region, only two are needed.
Incorporation of this information increases the accuracy of reconstruction and reduces
computational time. The phantom that was used to test the RO algorithm does not
demonstrate all the possibilities of the algorithm and we are looking forward to further
development of this approach to more dimensions and real biological systems.

6. Summary
An algorithm has been developed and tested that permits inclusion of a variety of a priori
information in a flexible way. The constraint of known lineshape is built into the algorithm.
Any lineshape could be used that can be described by a linewidth and an amplitude
parameter. The algorithm directly constructs spatial profiles of oxygen and radical
concentrations which reduces the dimensionality of the problem. Additional a priori
information can include constraints on minimum and maximum linewidths and constraints
on the average smoothness of the oxygen and radical profiles independently. Unlike FBP,
projections do not need to be equally spaced, which means that projections may be selected
that optimize information about the sample. Smoothing is achieved by applying average
constraints on the profiles, unlike the process in FBP that smooths experimental projections.
Reconstruction with the RO algorithm is about as fast as FBP with fitting of spectral slices.
The RO algorithm may be even more computationally efficient if radical-containing regions
are smaller than the whole reconstruction volume, because the regions with negligible spin
density can be efficiently excluded from the iterations. For data with poorer signal-to-noise,
the profiles obtained with the RO algorithm are in better agreement with experimental data
and at the same time the reconstructed profiles are smoother. Although the algorithm is
described and implemented here for 2D images, the same approach could be used for 3D
images. Implementation of the algorithm for 4D is challenging. It would require inverting a
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large N3×N3 matrix, where N is the number points in one dimension. Possible approaches
include reconstruction of the 4D image as 3D slices, iteratively solving Eq. (6,10) for sub-
regions, or using existing methods for large systems of algebraic equations [33].
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Figure 1.
Flowchart for the regularized optimization (RO) algorithm. Input parameters are:
experimental projections D⃗ ; angles Θ⃗ at which projections were measured; goals of

regularization terms:  with error limits: δR, δO; expected lower and upper limits for
linewidths dHmin and dHmax; positions in the sample with significant radical concentration,
Ω; and the lineshape description. The goal of RO is to find the profiles ρ⃗O and ρ⃗R that
minimize discrepancy with the data provided that

. The search strategy can be divided into two
steps. In the first step the discrepancy error ∑ is minimized without keeping track of changes
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in smoothness of the profiles. When the lowest error is reached, the algorithm searches (step

2) for solutions that are smooth enough to match the criteria . At this step the
discrepancy error may increase at the expense of smoothing of the profiles and improving
the accuracy of ρ⃗O and ρ⃗R.
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Figure 2.
Examples of deconvolved rapid scan spectra recorded with two magnetic field gradients:
0.07 (parts a and c) and 7.38 G/cm (parts b and d). Spectra in parts a and b were averaged
9216 times (lower-noise data) and the spectra in parts c and d were averaged 50 times
(higher-noise data).
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Figure 3.
Contour plots of the improvement in the error function for images reconstructed by RO
relative to that for images reconstructed by FBP, χ(ΓR, ΓO), as a function of the
regularization parameters ΓR and ΓO for the (a) lower-noise and (b) higher-noise data sets.
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Figure 4.
Comparison of (a,b) ρ⃗O (linewidths that reflect oxygen concentration) and ρ⃗R (c,d) radical
concentrations. Profiles obtained from lower-noise (a,c) and higher-noise (b, d) data sets by
FBP (green, dashed) and RO intermediate image (red, solid) are compared with the expected
profile (blue, dotted).
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Figure 5.
Comparison of (a,b) ρ⃗O (linewidths that reflect oxygen concentration) and ρ⃗R (c,d) radical
concentrations. Profiles obtained from lower-noise (a,c) and higher-noise (b, d) data sets by
FBP (green, dashed) and RO image (red, solid) calculated with ΓO= 0 , ΓR=0.06, are
compared with the expected profile (blue, dotted). The light-blue solid lines show the mean
linewidths in the three tubes obtained from FBP profile.
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Figure 6.
Impact of ΓR and ΓO on radical and linewidth profiles for the lower noise data set. (a,c)
varying ΓO = 0.11 (lower, blue traces), 1.1 (middle, red traces), and 2.1 G/cm (top, green
traces) with constant ΓR = 0.06 and (b,d) varying ΓR = 0.005 (lower, blue traces), 0.06
(middle, red traces), and 0.41 cm−1 (top, green traces) with constant ΓO = 1.1. Dashed black
traces are the profiles in the phantom.
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Figure 7.
Comparison of the images reconstructed by RO (ΓO=0 and ΓR=0.06) and FBP (with average
linewidths in each tube and fitting of each slice to a Lorentzian) from the lower-noise dataset
with the phantom image.
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Table 1

Comparison of intermediate profiles with images after application of target parameters

Data profiles χ ξR ξO

Higher-noise intermediate 2.2 1.8 2.11

Higher-noise 1.95 4.07 7.38 (2.3)a

Lower-noise intermediate 1.19 1.47 2.24

Lower-noise 1.16 1.34 5.86 (1.4)a

a
Values in parentheses are calculated from the FBP image in which the oxygen profiles were the averages of values for each tube (Fig. 5).
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