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Abstract
Cytokines are critical for normal cell growth and immunoregulation but also contribute to growth
of malignant cells and drive immune-mediated disease. A major subset of immunoregulatory
cytokines, roughly 60, use the type I and type II cytokine receptors and pharmacological targeting
of these cytokines/cytokines receptors has proven to be efficacious in treating immune and
inflammatory diseases. These receptors rely on Janus family of kinases (Jaks) for signal
transduction and recently the first Jak inhibitor has been approved by the FDA. Many other
Jakinibs are likely to follow and in this brief review, we will discuss the state-of-the art of this new
class of pharmacological agents.

Introduction
Enabled by advances in molecular biology, it is now clear that an array of cytokines controls
the growth and differentiation of hematopoietic cells and orchestrate all aspects of immune
response. [1] From the differentiation of stem cells to the inciting events precipitated by
activation of innate immune cells and the fine-tuning of helper T cell responses, cytokines
play pivotal roles. However, cytokines are also fundamentally important for immune-
mediated disease. A large segment of the population of industrialized countries suffers from
asthma and allergy and a range of autoimmune diseases. In addition though, it is
increasingly recognized that inflammation and dysregulation of cytokine production are
directly involved in the pathophysiology of many other diseases including atherosclerosis
and metabolic syndrome, degenerative neurologic disease and cancer. For these reasons,
therapeutic targeting of cytokines has immense potential.

The advent of monoclonal antibody technology and the ability to create therapeutically
useful recombinant cytokine receptors has dramatically changed the therapeutic landscape of
a wide variety of diseases. Thanks to “biologics” debilitating diseases like rheumatoid
arthritis which were previously associated with inexorable joint destruction, can be
effectively treated. The question then arises: can the actions of cytokines be blocked by
targeting intracellular signal transduction? In other words, might a pill be as efficacious as a
parenteral biologic?
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Janus kinases and signaling by Type I/II cytokine receptors
The family of cytokines that bind type I and type II cytokine receptors includes interleukins,
interferons, and colony stimulating factor, as well as classic hormones such erythropoietin,
prolactin and growth hormone. [2] Signaling via these receptors is dependent upon a small
family of structurally distinct kinases with apparently circumscribed function. (Figure 1)
Janus family of kinases (Jaks) comprises four members Tyk2, Jak1, Jak2 and Jak3 [3],
which selectively associate with membrane proximal domains of type I and II receptors in
different combinations. Upon ligand binding, Jaks phosphorylate cytokine receptors. In this
way, they induce recruitment of various signaling intermediates including the Stat family of
transcription factors, which directly modulate gene transcription. [4, 5] (Figure 2)

The importance of Jaks in cytokine signaling was initially recognized in a series of mutant
cell lines. [1, 4, 6], but the first evidence of the non-redundant, essential function of the Jaks
in vivo came from patients with primary immunodeficiency.

Leonard and colleagues had recognized that absence of the receptor subunit denoted the
common gamma chain, γc (encoded by IL2RG), results in the disorder X-linked severe
combined immunodeficiency (X-SCID). [7] Jak3 was found to be uniquely associated with
this receptor subunit and it was quickly recognized that mutations of JAK3 cause autosomal
recessive SCID. [8–10]Shortly after this initial discovery, mouse knockout models were
generated for the various JAKS and STATs, establishing their essential, non-redundant
functions. [11] Because of this essential, but discrete functionality, it was predicted at this
time that Jak antagonists would represent a new class of immunomodulatory drugs. [8]

Feasibility of kinases as therapeutic targets
At that time though, it was by no means a given that kinases were good therapeutic targets.
Recall that this work preceded our present understanding of the human kinome. Of course,
we now know that there are 518 kinases that can be divided into eight distinct families. Jaks
belong to the tyrosine protein kinase family of which there are 90 other members. Because
of the conserved kinase domain structure, it might be assumed that attaining the needed
specificity to inhibit a certain kinase would be an insurmountable task. Moreover, most of
the commonly used kinase inhibitors are competitive ATP inhibitors and for these reasons,
the prospect of developing specific kinase inhibitors as therapeutic targets seemed tenuous.
Remarkably though, kinases have turned out to be excellent targets and there are now 13
FDA-approved kinase inhibitors.

Once kinase inhibitors entered the clinic, it became apparent that the drugs did not target a
single kinase; in fact, none of the currently approved kinase inhibitor fit this profile. [12, 13]
Imatininib, which inhibits BCR-Abl in chronic myelogenous leukemia (CML) induces
remission more than 90% of patients in the early stages of the disease. [14, 15] However,
imatinib also inhibits the PDGFR kinase and KIT receptor tyrosine kinase. [12, 13] This is
beneficial as it expands imatinib’s therapeutic utility to gastrointestinal stromal tumors
(GISTs) [16] and idiopathic hypereosinophilic syndrome. [17] An issue with the use of
kinase inhibitors in cancer was the emergence of resistance. This led to generation of
“multikinase” inhibitors such as sunitinib, dasatinib [18] and nilotinib [19]. This established
the principle that kinase inhibitors need not be absolutely specific to be clinically useful.

Targeting Janus kinases in autoimmune diseases and transplant rejection
The first selective Jak inhibitor to be tested in humans was tofacitinib (formerly designated
CP-690,550). Tofacitinib potently inhibits Jak3 (IC 50, 2.2nM) and Jak1 and to a lesser
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extent Jak2 (IC 50, 5.0nM). It has little effect on Tyk2 (IC 50 260nM). [20] Remarkably,
tofacitinib has potent activity against Jaks with little effect on other kinases. [21]

The utility of tofacitinib as an immunomodulatory drug was established in a variety of
transplant models (murine and nonhuman primates) [22, 23] as well as in rheumatoid
arthritis models. [24] The efficacy and safety of tofacitinib has been studied in multiple
Phase II and Phase III trials in rheumatoid arthritis (RA), inflammatory bowel disease,
psoriasis and transplant rejection. [25–28] Phase III trials in RA assessing efficacy of
tofacitinib both as monotherapy [29] and combined with methotrexate in patients who failed
DMARDs [30] met their primary endpoint, confirming results from the respective phase II
trials. [27, 31] Importantly, structural damage was also prevented. [32] Of note, tofacitinib
was found to be non-inferior to adalimumab, a TNF inhibitor, in the background of
methotrexate [26] and was also efficacious in patients who had failed multiple biologics.
[33]

With respect to tofacitinib’s mechanism of action, as a potent Jak3 inhibitor, it efficiently
blocks common γc cytokines including IL-2, IL-4, IL-15 and IL-21. Consequently, Th2
differentiation is blocked and the drug is efficacious in models of allergic disease. [34]
Tofacitinib’s ability to block Jak1 and Jak2 inhibits signaling by IFN-γ, IL-6 and to a lesser
extent IL-12 and IL-23. [20] Th1 differentiation is therefore blocked, as is the generation of
pathogenic Th17 cells [20, 35] Tofacitinib also abrogates innate responses limiting the
production of tumor necrosis factor and other proinflammatory cytokines in an LPS model.
[20] Tofacitinib also blocks the effects IL-6 and Type I interferons on synovial fibroblasts,
inhibiting chemokine expression. [36]

Tofacitinib’s side effects appear to be directly related to its mode of action. (Table 1) Upper
respiratory and other infections are among the common adverse effects, but opportunistic
infections are uncommon. Anemia and neutropenia, presumably related to Jak 2 inhibition
and interference with signaling by erythropoietin and other colony-stimulating factors. High
LDL was also noted, as has been seen with tocilizumab that blocks IL-6. In nonhuman
primates treated with tofacitinib, numbers of CD4+ T cells do not change, but NK cells and
CD8+ T cells can decline. [37, 38] It remains to be determined whether this will be
problematic in humans treated with doses of tofacitinib that control autoimmune disease.
Although IL-2 is thought to be important for regulatory T cell homeostasis, a decline in
functional T reg cells has not been noted. [39]

Additional Jak inhibitors are rapidly moving ahead in clinical trials of RA and other
autoimmune diseases. Ruxolitinib, which inhibits Jak1 and Jak2, has been beneficial in a
highly active RA patient group in a double-blind, placebo controlled Phase IIa trial with
superior results in higher doses up to 50 mg twice daily. [40] A topical formulation of
ruxolitinib, has also been used in psoriasis with promising results. [41] The Jak1 and Jak2
inhibitor, LY3009104 (formerly INCB028050) demonstrated dose dependent efficacy in
active RA patients refractory to disease modifying drugs and biologics. [42] VX-509 is a
reportedly specific JAK3 inhibitor, which has shown efficacy in a Phase IIa study in RA.
Interestingly though, a selective Jak1 inhibitor, GLPG0634, also showed efficacy in a Phase
IIa RA trial. CEP-33779, a selective Jak2 inhibitor demonstrated efficacy in two preclinical
models of RA [43]. It also improved SLE nephritis in mice by depleting auto-reactive
plasma cells further expanding the therapeutic spectrum. [44] Thus, the relative merits of
inhibiting one Jak versus another remains to be determined. At present, there are no
selective Tyk2 inhibitors in clinical trials.
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Targeting JAKs in myelofibrosis and polycythemia vera
A breakthrough in understanding the pathogenesis of the myeloproliferative diseases,
polycythemia vera (PV), essential thrombocythemia (ET) and myelofibrosis (MF) was the
discovery of gain-of-function JAK2 mutations. [45] All of these mutations reside in the
regulatory kinase-like domain, which has recently been found to have enzymatic activity.
[46] In view of the success of imatinib in the treatment of CML, it was logical to consider
that the development of a Jak2 inhibitor would be similarly successful.

A Jak1/2 blocker, ruxolitinib, is now the first FDA approved Jak inhibitor [47]. In MF,
ruxolitinib reduces splenomegaly and effectively treats systemic disease. Leukemic
transformation is an important cause of mortality in MF. It remains to be determined
whether ruxolitinib, analogously to imatinib, will reduce this outcome. In addition to anemia
and thrombocytopenia a withdrawal syndrome can occur, manifested by exacerbated
splenomegaly, cytopenias and occasional hemodynamic decompensation. [48] Interestingly,
ruxolitinib and CYT 387 are efficacious even in MF patients with no JAK2 mutations,
presumably indicating that these inhibitors act on kinases besides Jak2, re-emphasizing the
potential of multikinase inhibitors.

Other Jakinibs that target Jak2 are in development for myeloproliferative disorders. (Table
2) In addition, potential importance of the JAK-STAT pathway in a wide variety of cancers
beyond myelofibrosis has long been recognized. [49] Various types of mutations and fusion
proteins affecting JAKs have been noted in a range of different leukemias. [50–52].
Furthermore, there is evidence of activation of the Jak/STAT pathway in a variety of solid
tumors including head and neck, breast and prostate cancer. [53–55]Constitutive activation
of Jaks and Stats can also be due to autocrine cytokine production. [56–59] These findings
argue for the testing of Jak inhibitors in these various settings. [49, 60]

Conclusions
Despite potential challenges, kinase inhibitors have emerged as an exciting new class of
drugs. Given the key role of cytokines in many disorders ranging from malignancy to
autoimmunity, Jak inhibitors or Jakinibs have the potential for wide utility in a range of
diseases. They have demonstrated efficacy in PV/MF and an array of common autoimmune
disorders. The extent to which JAK inhibitors will be used as steroid-sparing agents or even
supplant the use of steroids in diseases like the vasculitides or systemic lupus erythematosus
remains to be determined. Given the range of tumors that exhibit constitutive Jak/Stat
activation, it seems like that Jakinibs will have utility in these disorders too. A surprise in
the field is that targeting multiple kinases may not be detrimental, especially in
circumstances where multiple cytokines drive pathogenesis. Multi-kinase inhibitors appear
to be especially useful in the treatment of cancer. Conversely though, it is conceivable that
more selective Jak inhibitors (e.g. selective Jak1, Jak3 and TYK2 inhibitors) might be
efficacious with reduced adverse effects related to Jak2 inhibition. It is likely that we will
soon see if this is the case given the intense interest in Jakinibs.
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Figure 1.
Jakinibs block multiple aspects of cytokine signaling. Cytokine binding to its cognate
receptor leads to phosphorylation of the intracellular domain of the tyrosine kinase receptor
by specific Jaks. STATs are then recruited, bind to the receptor and become phosphorylated
by Jaks. This results in STAT dimerization, translocation, and regulation of gene
transcription. Cytokines also activate the PKB (Akt) and mTOR. Though not carefully
studied, it is highly likely that blocking proximal cytokine signals will disrupt all
downstream pathways. ** Also referred to as AKT.
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Figure 2.
Impact of inhibiting various Jaks on signaling by different cytokines
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Table 1

Expected impact of Jak inhibition on cytokine signaling based on their functional role

Jaks Cytokines affected upon
inhibition

Knock-out
phenotype

Impaired
functionality

Predicted side
effects

Jak1 • γc family-IL-2, IL-4,
IL-7, IL-9, IL-15

• gp130 family-IL-6,
IL-11, OSM, LIF

• Class II cytokine
receptor family-
IFNα/β, IFNγ, IL-10

Perinatal lethality due to neurologic
defects
Severe combined immunodeficiency

• Severely impaired lymphoid
development

• Defective signaling by a wide range
of cytokines

• Infections

• Hyperlipidemia

Jak2 • EPO, TPO, IFNγ

• βc family-IL-3, IL-5,
GM-CSF

In utero lethality due to absence of
erythropoiesis

• Impaired erythropoiesis/Myelopoiesis • Anemia

• Neutropenia

Jak3 • γc family-IL-2, IL-4,
IL-7, IL-9, IL-15

Severe combined immunodeficiency • Impaired responses to γc cytokines • NK cell

lymphopenia*

• Diminished
function of
CD8 T cells

• Infections,
possibly
opportunistic
infections

Tyk2 • IFNα/β, IFNγ, IL-12 Normal development but increased
viral and bacterial susceptibility

• Impaired Th1 responses

• Reduction in pathogenic Th17 cells

• Blockade of IFN actions

• Infections

*
Not shown in clinical trials with Jak 3 inhibitors such as tofacitinib
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Table 2

Jakinibs in development and testing for autoimmunity and cancer

Agent Targeted
Jak

Indication Stage of
Development

Tofacitinib 3, 1, 2 RA
Psoriasis
IBD

III
III
III

VX-509 3 RA II

R-348 3 RA I

Ruxolitinib 1, 2 MF
Polycythemia vera
Essential thrombocythemia

FDA approved
III
II

INCB18424
(topical
formulation)

1,2 Psoriasis II

LY3009104
(formerly
INCB-28050)

1, 2 RA
Psoriasis

II
IIb

CYT387 1, 2 MF I/II

GLPG-0634 1, 2, Tyk2 RA II

SAR302503
(TG101348)

1, 2 MF I/II

Pacritinib
(SB1518)

2 MF II

AC-430 2 RA/Lymphoma Pre-clinical

R723 2 Myeloproliferative
neoplasias

Pre-clinical

BMS911543 2 MF Pre-clinical

AZD1480 1, 2 Glioblastoma Pre-clinical

CEP-33779 2 RA
SLE

Pre-clinical
Pre-clinical

Bold characters indicate primary target

Abbreviations: RA: rheumatoid arthritis; IBD: inflammatory bowel disease; MF: myelofibrosis; SLE: systemic lupus erythematosus
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