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Abstract
Many common human diseases are complex and are expected to be highly heterogeneous, with
multiple causative loci and multiple rare and common variants at some of the causative loci
contributing to the risk of these diseases. Data from the genome-wide association studies (GWAS)
and metadata such as known gene functions and pathways provide the possibility of identifying
genetic variants, genes and pathways that are associated with complex phenotypes. Single-marker
based tests have been very successful in identifying thousands of genetic variants for hundreds of
complex phenotypes. However, these variants only explain very small percentages of the
heritabilities. To account for the locus- and allelic-heterogeneity, gene-based and pathway-based
tests can be very useful in the next stage of the analysis of GWAS data. U-statistics, which
summarize the genomic similarity between pair of individuals and link the genomic similarity to
phenotype similarity, have proved to be very useful for testing the associations between a set of
single nucleotide polymorphisms (SNPs) and the phenotypes. Compared to single marker analysis,
the advantages afforded by the U-statistics-based methods is large when the number of markers
involved is large. We review several formulations of U-statistics in genetic association studies and
point out the links of these statistics with other similarity-based tests of genetic association.
Finally, potential application of U-statistics in analysis of the next generation sequencing data and
rare variants association studies are discussed.

1 Introduction
Analysis of common genetic variants through genome-wide association studies (GWAS) has
enjoyed much success over the last few years. More than a thousand genetic loci associated
with more than 200 complex traits have been identified (Hindorff et al., 2011). However,
these variants typically explain only a small fraction of the inheritable variability for
common diseases (Maher, 2008; Manolio et al., 2009). It should be pointed out that almost
all these genetic variants were identified by simple single-marker test of association.
However, the genetic basis of many common human diseases is expected to be highly
heterogeneous, with multiple causative loci and multiple alleles, both rare and common, at
some of the causative loci contributing to the risk of these diseases. Analyzing the
association of disease with one genetic marker at a time can have weak power due to
relatively small genetic effects and the need to correct for multiple testing.

Since multiple-allele within a single gene can be associated with disease phenotype, gene-
based tests can potentially provide an important alternative to the simple single SNP test.
This has been demonstrated in Huang et al. (2011) and Ngyuen et al. (2010). With the
availability of databases of gene functions such as gene ontology (GO) (The Gene Ontology
Consortium, 2000) and genetic pathways and networks, it is now possible to test for genetic
association between a set of genes with similar functions or a set of genes in the same
biological pathways and the phenotypes. This can potentially provide a powerful approach
for dealing with genetic heterogeneity (Wang et al., 2007). Both gene-based and pathway-
based analyses of GWAS data require tests that can simultaneously take into account
multiple SNP markers in a set.

NIH Public Access
Author Manuscript
Hum Genet. Author manuscript; available in PMC 2013 September 01.

Published in final edited form as:
Hum Genet. 2012 September ; 131(9): 1395–1401. doi:10.1007/s00439-012-1178-y.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Although testing the simultaneous effects of multiple markers by multivariate statistics
might improve power, they will not be very powerful when there are many markers because
of the many degrees of freedom. U-statistics (Hoeffding, 1948), which summarize the
genomic similarity between pair of individuals and link the genomic similarity to phenotype
similarity, have proved to be very useful for testing the associations between a set of SNPs
and the phenotype. In general, the U-statistic is defined as the average (across all
combinatorial selections of the given size from the full set of observations) of the basic
estimator applied to the sub-samples (Lee, 1990). Compared to single marker analysis, the
advantages afforded by the U-statistics based methods can potentially be large when the
number of markers involved is large. In this paper, we review several formulations of the U-
statistics in genetic association studies and point out the links of these statistics with other
similarity-based tests of genetic associations, including the distance-based regression
(Wessel and Schork, 2006) and kernel machine regression methods (Kwee et al., 2008; Wu
et al. 2010).

The advent of next generation sequencing technologies allows one to discover nearly all rare
variants in the genome. Testing the aggregated effect of rare variants in a gene on disease
susceptibility has become a powerful tool of rare variants association analysis. The idea
behind aggregated tests is that if a certain gene is involved in a disease, many rare variants
within the gene may disrupt the function of the gene and are therefore associated with the
disease. The ideas of the U-statistics can be extended to analysis of rare variants association
analysis. We briefly comment on this at the end of this review.

2 Gene- and Pathway-based Tests of Genetic Association - Forming SNP-
sets

The motivation behind forming SNP-sets is two-fold. Firstly, it allows us to capture the joint
effects of multiple SNPs and harness the linkage disequilibrium (LD) between the SNPs in
the SNP-set to increase test power. Secondly, it allows us to incorporate biological
information on how SNPs may collectively affect the phenotype of interest, so the results
have better biological interpretation. There are various ways to form SNP-sets (see Wu et al.
(2010) for an overview). For example, one could form SNP-sets by including all the SNPs
that are located near a gene. This could be done by taking all SNPs from the transcription
start to end, and possibly including all the SNPs that are upstream and downstream of a
gene. A gene-based approach is useful in helping to identify genes that are associated with
the disease. Alternatively, for large genes with many SNPs, one can also define the SNP-set
based on the LD-block structure of the markers, including the SNPs within a LD-block as
the SNP set.

Besides gene-based approach for testing genetic association, pathway- and gene set
approaches provide another important alternative. Such approaches aim to test whether the
genetic variants in a set of genes with certain biological functions as a whole are associated
with disease risk. Such SNP-sets are usually larger than the gene-based SNP-sets.

3 General U-Statistics Formulation for Genetic Association Tests for Case-
control Data

Let Y be a random variable that represents the phenotype of interest and g be a vector of
measured genotypes at K markers. Our goal is to test for association between g and Y. We
assume that we have a sample of n individuals with phenotype Yi for the ith individual,
where Yi takes value 0 or 1 in a case-control study and a continuous value in a quantitative
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trait study. Let gi denote a vector of measured genotypes at K markers for subject i, with
element gi, k being the kth genotype.

For any two individuals i and j, we can define a score of all genotypes over these K markers
using a symmetric kernel hij = h(gi, gj). This score or the kernel is usually defined to reflect
the similarity in genotypes between these two individuals. A general U-statistic that
measures the average score across all pairs of subjects is

Let h1(gi) = E(h(gi, Gj)) = ΣGj h(gi, Gj)P (Gj), where lower case g is fixed and uppercase G
is random. Then based on the standard results on the U-statistics, the variance of Un can be
expressed as

(1)

(see Schaid et al., 2005). Since Var (h1(Gi)) and Var(h(Gi, Gj)) only involve summation
over the joint genotype Gi or (Gi, Gj), the variance of Var(Un) can be easily calculated.

To compare the vector of within-group scores for cases with that for controls, one can use
the contrast score

(2)

where the subscripts d and c denote the diseased cases and controls, respectively. Under the
null hypothesis of no differences between cases and controls, standard results for U-statistics
imply that δn, m has an asymptotic standard normal distribution, i.e., δn, m →d N (0, 1).

3.1 The additive kernel function h(gi, gj)
The key of using the case-control contrast U-statistics (2) for testing association between a
set of markers and the disease status is to define an appropriate kernel function h(gi, gj).
Schaid et al. (2005) considers a simple kernel function that assumes additivity across all K

markers so that  , where wk is the weight associated with the kth
marker. Using this additive kernel, the U-statistic Un can be simplified to

where w = (w1, · · ·, wK)T is the weight vector, U = (U1, · · ·, Uk)T is the vector of marker-
specific U-statistic, and Uk is the U-statistic defined for the kth marker. Using this additive
kernel, the test statistic contrasting the cases and controls can be written as
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where Ud and Uc are the vector of the U-statistics for the cases and controls respectively, V0
= Var(Ud − Uc) is the variance-covariance matrix of Ud − Uc. Schaid et al (2005) chose the
weight vector w based on the principal of the best linear unbiased estimator (BLUE), where

wk is proportional to the kth row total of .

Schaid et al (2005) provided several possible choices of the kernel function h(gi, k, gj, k) for
individuals i and j at the maker k, including the allele-match or identify-by-state score, the
linear dosage score counting the number of a particular allele. Schaid et al. (2005) conducted
simulations and showed that the benefit of using the U-statistic Un, m seemed to occur when
there were > 3 high-risk markers among the set of 10 markers in their simulations. In
contrast, when there were only one or two high-risk markers, the max-single and multi-
marker statistics had greater power. However, it should noted that these results were based
on the simulations that assume that the high-risk alleles of the relevant markers were always
the minor alleles, i.e., all the minor alleles are risk-alleles.

One problem with using the Un, m statistic with the additive kernel is that when the relevant
markers have different effects on disease risk, i.e., some are risk-alleles and some are
protective alleles, simply adding the scores across all these markers can potentially lead to
elimination of a signal. This has been discussed for the allele-matching kernel. However,
this elimination of a signal can also happens for other kernels. This was conformed in Wei et
al. (2008). One possible solution to this problem is to first determine the sign of the minor
allele effects on disease risk and to take a singed sum of the U-statistic scores across all the
markers. However, the null distribution of this modified statistic is not known. One has to
use permutation to assess the statistical significance.

3.2 Other possible kernel functions
The contrast statistic (2) is quite general and can be applied to any kernel score functions.
Beside the simple allele-matching kernel or IBS-kernel, one can also use the weighted IBS
kernel to account for different allele frequencies of the minor alleles of the markers, denoted
by qk for the kth SNP. Then the weighted IBS kernel can be defined as

where wk = 1/qk or  . The intuition behind the accommodation of allele frequency
is that individuals who share rare alleles may have more similar genomes than do
individuals who share common alleles. This kernel provides a possible way of analyzing
both common and rare variants together. Beside, the IBS sharing kernel, another promising
kernel is the kernel that capture the sharing of identify-by-decent (IBD).

Wessel and Schork (2006) provides several other genomic similarity measures that can be
used to define the kernel function and to test for genetic associations, including the IBS
allele sharing with weighting for functionality of variations and similarity based on
weighting by nucleotide conservation across species. By phasing individuals (i.e., assigning
them haplotypes that reflect variations they inherited on their maternally and paternally
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derived chromosomes), one can assess the similarity of two individuals chromosome pairs
by defining unweighted and weighted haplotype-pair similarity.

3.3 An alternative U-statistics based test for case-control data
Following the general idea of Sen (2006), Wei et al (2008) provided another test for
association between a set of markers and disease risk. Consider a set of K SNPs. At each
SNP, there are three genotypes, coded as G = 00, 10, 11. We consider a qualitative trait,
taking C different possible categorical values. For example, for case-control studies, there
are two trait groups with C = 2. Let nc be the number of individuals in the cth phenotype
group. Let gci = (gci, 1, · · ·, gci, K) be the observation vector over the K SNPs for the ith
individual in the cth group, for i = 1, · · ·, nc, where gci, k is the genotype of the ith individual
in the cth group at the kth SNP that takes one of the three possible genotype values in G.
The probability law of gic is denoted by πc = {πc(g): g ∈ G × · · · × G}, where πc(g) is the
probability of observing genotype g in phenotype group c. We are interested in testing the
null hypothesis of homogeneity of the πc, c = 1, 2, · · ·, C.

Since the space of the alternative hypotheses is very large, the standard multi-way
contingency table analysis to test for global association suffers loss of power. Instead,
following Sen (2006), Wei et al. (2008) considered defining a test statistic based on the U-
statistics (Hoeffding, 1948). They first define a symmetric kernel between a pair (i, j) of
observations gi = (gi, 1, · · ·, gi, K) and gj = (gj, 1, · · ·, gj, K) as

where wk is a SNP-specific weight. This kernel function can be regarded as a weighted
Hamming distance between individuals i and j over the K SNPs. The definition of this
kernel does not depend on particular specifications of the high- or low-risk alleles. Note that
here the kernel function h(gi, gj) measures the differences of the overall genotypes between i
and j individuals across K markers, which is different from the kernel scores used in Schaid
et al. (2005) that measure the genotype similarity.

Let n = n1 + n2 + · · · + nC be the total number of individuals across all the C phenotype
groups and let U0 be the pooled group U-statistic corresponding to the same kernel h, which
can be written as

(3)

(4)

(5)

where
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is the within-group U-statistics and

is the between-group U-statistics. Under the null hypothesis that the genotype distributions
over the K makers in the C phenotype groups are the same,

has zero expectation and it is positive under the alternative.

Wei et al. (2008) proposed to use B/W as a test statistic. However, the distribution of this
test statistic is unknown and its significance has to be evaluated through permutations of the
phenotypes. They showed that when the minor alleles of the relevant markers are all high-
risk alleles, the power of this test is very similar to that of δn, m. However, the relevant
minor alleles include both high-risk and protective alleles, the statistic B/W is much more
powerful than the test based on δn, m.

Alternatively, one can define the following test statistic

where Var(B) can be calculated using the general theory on U-statistics. Under the null
hypothesis, δb →d N (0, 1). We would expect similar power of this statistic to that of B/W
statistic.

4 U-statistics for Quantitative Traits
Several U-statistics-based tests have also be developed for testing association between a set
of SNP markers and the quantitative trait phenotypes. Let Yi be the observed trait value for
the ith individual for i = 1, · · ·, n. Let gi = (gi, 1, · · ·, gi, K) be the observation genotype
vector over the K SNPs for the ith individual for i = 1, · · ·, n, where gi, k is the genotype of
the ith individual at the kth SNP that takes one of the three possible genotype values G =
{00, 10, 11}, where we assume that allele 1 is the minor allele. The hypothesis that we wish
to test is H0: F (Y|g) = H(Y), where F(Y|g) is the conditional distribution function of Y
given g, and H(Y) is the marginal distribution function of Y.
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4.1 U-statistics based on single marker genotypes
To define the U-statistics, for marker k, Wei et al (2008) defined the set Sgk = {i: gi, k = g, i
= 1, · · ·, n} the individuals with genotype g at the kth marker for g ∈ G and k = 1, · · ·, K and
let mgk = |Sgk| be the number of such individuals. Consider a kernel function between two
trait values Yi and Yj as

We define the following U-statistics for SNP k,

(6)

which compare the quantitative trait values between every two genotype groups at the SNP
k. In order to combine these three U-statistics, if one assumes that the quantitative trait value
is a monotone function of the number of the minor allele at the trait-associated SNPs, one
further defines

as the U-statistic for the kthe marker. Let U = (U1 · · ·, Uk)T be the vector of the U-statistics
over the K markers. The final test statistics over all K markers can be defined as

(7)

where Cov(U) is the variance-covariance matrix of U-statistics vector that can be calculated
using the standard technique for U-statistics. Following Schaid et al. (2005), the weight
vector w can be chosen using the BLUP.

4.2 U-statistics based on joint marker genotypes
Instead of defining the U-statistics for each marker separately as in Wei et al. (2005), Li et
al. (2010) defined a similar U-statistics based on the joint genotypes over the K markers.
Suppose the K SNPs comprise L multi-SNP genotypes, denoted by G1, G2, · · ·, GL, where a
multi-SNP genotype, Gl, is defined as a vector of K single-SNP genotypes that an individual
carries. Let’s denote by Sl = {i: gi = Gl} the group of subjects carrying multi-SNP genotype
Gl, l = 1, 2, · · ·, L and ml = |Sl| the number of subjects in group Sl. Li et al. (2010) defined
the following global U-statistic that measures the overall trait differences among a total of L
multi-SNP genotype groups,
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where

is the U-statistic defined for the genotype groups l and l′, and  is
used to account for the number of subjects in each genotype group. In order to gain power,
Li et al (2010) assumes that the expected quantitative trait value of the L multi-SNP
genotypes decreases with l (i.e., E(YS1) ≥ E(YS2 ≥ · · · ≥ E(YSL). They suggest to sort the
multi-SNP genotypes according to their average trait values. Like the case-control contrast
U-statistic δn, m with the allele matching kernel, when this order of the genotype-effects is
misspecified, there is a potential of elimination of signals and dramatically reduced power.
In addition, when the data are used to rank these genotypes, the significance of the statistic
U has to be evaluated through permutations.

One advantage of such a joint-genotype based U-statistic test is that it can potentially detect
epistasis interactions among the set of K SNP markers. One weakness of using the joint
genotype is that when K is large, there are a total of 3K possible genotype combinations,
which can be quite large and therefore some sets Sl can be very small. Li et al (2010)
proposed to use forward selection and cross-validation for choosing a smaller set of SNPs
using the U-statistics as the scores. This can potentially reduce the number of total
genotypes in defining the overall global U-statistic.

5 Connection with Genomic Similarity-based Approaches
U-statistics based tests of genetic association are closely related to other similarity-based
methods for gene-trait associations. Wessel and Schork (2006) discussed the generalized
genomic distance-based regression methods for multilocus association analysis using the
distance-based regression methods and psuedo-F statistics of McArdle and Anderson (2001).
This approach uses phenotype permutations to assess the statistical significance, which can
be time-consuming in genome-wide association analysis.

Tzeng et al (2009) and Tzeng et al (2001) developed gene-trait similarity regression for
multi-marker-based association analysis and gene-environment interactions. The key of the
gene-trait similarity regression is to regression the pair-wise trait similarity Zij measure on
genomic similarity measure h(gi, gj):

(8)

where εij’s are some mean-zero error terms, and the trait similarity is defined as

(9)

which is the weighted cross product of the trait residuals with some weight wi. The residual

is defined with respect to the covariate-adjusted mean for each subject,  under
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the null hypothesis of no association, where Xi is a covariate vector. The weight wi may be
used to account for the fact that Yi is not necessarily homogeneous. h(gi, gj) can be defined
by any genomic similarity kernel defined above.

The null hypothesis of no association between the K SNP markers and the phenotype is H0:

b = 0. Assume that  under the condition of association, where mi is a
known prior weight, such as the binomial denominator, φ is the dispersion parameter, and

 is the variance function. This variance function is well-defined for the generalized
linear model. Tzeng et al (2009) derive a score statistic for b in model (8),

(10)

This score statistics is also a U-statistic. Tzeng et al. (2009) further showed the close
connection between the score statistics Ub and the score statistic for testing the zero variance
(τ = 0) of the random effects in a generalized linear mixed effect model when the covariance
matrix of the random effects is specified by τR where R is the genomic similarity matrix.

It is also worth pointing out that if , the score statistic (10) is equivalent to a U-
statistic discussed in Zhong and Chen (2011) for testing high-dimensional linear regression

coefficients, which uses  as the kernel in the U-statistics. In fact, Zhong
and Chen (2011) considered tests for high-dimensional linear regression coefficients for the
“large p, small n” situations where the conventional F-test is no longer applicable. They
defined a U-statistic

where the summation is over the set {i1 ≠ i2 ≠ i3 ≠ i4, for i1, i2, i3, i4 ∈ {1, ···, n}} and
, and

A test of no association between K SNPs and the quantitative phenotype Y can be
constructed based on this U-statistic and its asymptotic distribution given in Zhong and
Chen (2011).

Another approach for multi-marker association test is the kernel machine regression (KMR)
(Kwee et al., 2008; Wu et al. 2010). Since the kernel machine can also be formulated as a
generalized linear mixed-effects models, Pan (2010) showed that, when there is no other
covariates, if a common positive semi-definite matrix is used as the (centered) similarity
matrix in genomic distance regression and as the kernel matrix in KMR, then there is a
striking correspondence between the two methods: their test statistics are equal up to some
ignorable constants. However, the gene-trait regression and also the kernel regression
provide a natural way of incorporating other environmental covariates and possible gene-
environment interactions in testing genetic associations.
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One advantage of these genomic similarity-based approaches is that they provide a unified
framework for testing genetic association for both binary and quantitative traits. It is
however not clear how to unify the statistics reviewed in Sections 3 and 4 for binary and
quantitative traits.

6 Discussion
We have reviewed some U-statistics that were developed recently for testing the association
between a set of SNP markers and the phenotypes, including both the categorial and the
quantitative phenotypes. These methods can be applied to gene-based and pathway-based
analysis of multi-locus genetic associations and provide useful alternatives to single-SNP
based tests for GWAS data. The U-statistics based tests are also closely related to distance-
based regression and kernel machine regression methods; all these methods focus on relating
pair-wise genomic similarity to the phenotype similarity. A comprehensive simulation
comparison of statistical powers of these related methods is needed to entangle the subtle
differences of the methods.

6.1 Limitations
The expected power gain from testing the association between a set of SNPs or genes and
the phenotypes assumes that the SNP set is enriched by phenotype-associated variants.
Indeed, if only one genetic variant in a large SNP-set is associated with the phenotype, one
should not expect any gain in power when the SNP-set is tested using the U-statistics
reviewed above. Including irrelevant SNPs in the SNP-set can certainly lead to loss of power
in such set-based tests of genetic association. One possible approach to solve this problem is
to assign an important score to each of the SNPs in the set based on their functional
relevance or based on the data and then to incorporate such scores into the U-statistics as
weights. An interesting approach to obtain such scores is based on the tuned Recursive
Elimination of Features (Relief-F) (Moore and White, 2007) or Evaporate Cooling Relief-F
(McKinney et al. 2009), an heuristic machine learning methods for estimating the weight of
variants. When data-derived scores are used, the test statistics have to be evaluated based on
permutations.

6.2 Future Directions
As exon and whole genome sequencing studies are increasingly being conducted to identify
rare variants associated with complex traits, methods for analysis of single nucleotide
variants from sequencing data are greatly needed (Bansal et al., 2010). Kernel regression
method has been developed to test for association between genetic variants (common and
rare) in a region and a continuous or dichotomous trait while easily adjusting for covariates
(Wu et al., 2011). As reviewed previously, such kernel regression methods are closely
related to U-statistics. The kernel method converts genomic information for a pair of
individuals to a kernel score representing either similarity or dissimilarity, with the
requirement that it must create a positive semidefinite matrix when applied to all pairs of the
individuals (Schaid, 2010) and then relates such a genomic similarity to phenotype
similarity. Schaid (2010) also provides a comprehensive review of other possible
measurements of genomic similarity. Wahba (2012) gave an overview of using dissimilarity
data in statistical modeling building. The ideas in Wahba (2012) can be applied to joint
analysis of rare and common variants from the sequencing data.
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