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      Sleep-disordered breathing (SDB), a condition asso-
ciated with abnormalities in respiratory gas exchange 

during sleep (particularly intermittent oxyhemoglo-
bin desaturation), has been implicated as a possible 
risk factor for deleterious cerebrovascular compli-

cations in children with sickle cell disease (SCD).  1-3   
Although the prevalence of SDB in these children 
has not been well established, estimates range from 
5% to 79%  4-10   and are far greater than the prevalence 
of 1% to 4% in children without SCD.  11   In addi-
tion, the pathophysiology of SDB in these children is 
not well understood. Possible mechanisms include 
hypoven tilation due to chronic lung disease,  12,13   obstruc-
tive sleep apnea syndrome (OSAS)  6   (a disorder char-
acterized by recurrent events of partial or complete 

  Background:    The prevalence of obstructive sleep apnea syndrome (OSAS) is higher in children with 
sickle cell disease (SCD) as compared with the general pediatric population. It has been speculated 
that overgrowth of the adenoid and tonsils is an important contributor. 
  Methods:    The current study used MRI to evaluate such an association. We studied 36 subjects 
with SCD (aged 6.9  �  4.3 years) and 36 control subjects (aged 6.6  �  3.4 years). 
  Results:    Compared with control subjects, children with SCD had a signifi cantly smaller upper 
airway (2.8  �  1.2 cm 3  vs 3.7  �  1.6 cm 3 ,  P   ,  .01), and signifi cantly larger adenoid (8.4  �  4.1 cm 3  
vs 6.0  �  2.2 cm 3 ,  P   ,  .01), tonsils (7.0  �  4.3 cm 3  vs 5.1  �  1.9 cm 3 ,  P   ,  .01), retropharyngeal nodes 
(3.0  �  1.9 cm 3  vs 2.2  �  0.9 cm 3 ,  P   ,  .05), and deep cervical nodes (15.7  �  5.7 cm 3  vs 12.7  �  4.0 cm 3 , 
 P   ,  .05). Polysomnography showed that 19.4% (seven of 36) of children with SCD had OSAS 
compared with 0% (zero of 20) of control subjects ( P   ,  .05) and that in children with SCD the 
apnea-hypopnea index correlated positively with upper airway lymphoid tissues size ( r   5  0.57, 
 P   ,  001). In addition, children with SCD had lower arterial oxygen saturation nadir (84.3%  �  12.3% 
vs 91.2%  �  4.2%,  P   ,  .05), increased peak end-tidal CO 2  (53.4  �  8.5 mm Hg vs 42.3  �  5.3 mm Hg, 
 P   ,  .001), and increased arousals (13.7  �  4.7 events/h vs 10.8  �  3.8 events/h,  P   ,  .05). 
  Conclusions:    Children with SCD have reduced upper airway size due to overgrowth of the 
surrounding lymphoid tissues, which may explain their predisposition to OSAS. 
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development, (2) intact adenoid and tonsils. Exclusion criteria 
included (1) evidence of a brain tumor or a seizure disorder 
requir ing therapy, (2) genetic disorders associated with any cra-
niofacial anomaly, (3) chronic respiratory disease other than 
asthma, (4) history of OSAS. 

 MRI 

 Studies were performed in the Department of Radiology at 
CHOP. For children  ,  7 years of age, studies were performed 
under sedation with IV pentobarbital 2 to 6 mg/kg   until sleep 
was achieved; a maximum of 200 mg was administered. All sub-
jects were monitored continuously by pulse oximetry and observed 
by an anesthesiologist throughout the study until recovery ( � 1 h). 

 MRI was performed with a 1.5T Siemens Vision system. Images 
were acquired using a commercially available head coil. Axial and 
sagittal sequential T1-weighted (TR650/TE14) and T2-weighted 
(TR6000/TE90) images with 3-mm slice thickness and 1 NEX were 
obtained from the orbital cavity to the larynx and from the midline 
bilaterally, respectively, as previously described.  21   

 Image Processing and Upper Airway Measurements 

 The acquired MRI studies were anonymized and converted 
to a multidimensional version of the digital imaging and commu-
nications in medicine (DICOM)   format. These were transferred 
via the CHOP’s picture archiving system to a workstation at the 
Division of Respiratory and Sleep Medicine at the Children’s 
Hospital at Montefi ore. Image analysis was performed by a blinded 
scorer using AMIRA, version 4.1.1, software (Visage Imaging, 
GmbH), and using intensity threshold after normalization. 

 Volumetric Measurements 

 The volumes of the following structures were determined as 
follows: 

 1. Airway: The upper airway including the nasopharynx ,  
defi ned as the region located superior to the level of the 
soft palate and continuous anteriorly, through the choanae, 
with the nasal cavities; oropharynx ,  defi ned as the region 
located between the level of the soft palate and the larynx, 
communicating anteriorly with the oral cavity, and having 
the posterior one-third of the tongue as its anterior border; 
and the hypopharynx ,  defi ned as the region posterolateral to 
the larynx, and communicating with the cavity of the larynx 
through the auditus and included the pyriform recesses and 
the valleculae. 

 2. Lymphoid tissues: Adenoid, combined palatine tonsils, com-
bined retropharyngeal nodes (defined as lymph nodes 
located between the internal carotid arteries from the base 
of the skull to the hyoid bone), and the combined deep cer-
vical lymph nodes (defi ned as level 2 nodes, located along 
the internal jugular vein from base of the skull to the level 
of the hyoid bone). 

 Polysomnography 

 Overnight polysomnography was performed in the sleep labo-
ratory at CHOP. The following parameters were recorded (using 
Embla): EEGs (C4/A1, C3/A2, O1/A2, O2/A1), right and left 
electrooculogram, submental and tibial electromyograms, chest 
and abdominal wall movement (Respitrace Systems; Ambulatory 
Monitoring Inc), ECG, end-tidal CO 2  ( etco  2 ) by capnography 
(Novametrix 7000; Novametrix), airfl ow by nasal pressure (Pro-
Tech) and three-pronged thermistor (Nihon Kohden), arterial 
oxygen saturation (Sp o  2 ) and pulse waveform (Masimo), and 

upper airway obstruction during sleep  14   that is associ-
ated with distinct neurocognitive defi cits and car-
diovascular morbidities  15  ), left ventricular diastolic 
dysfunction,  16   pulmonary hypertension,  17   and the pres-
ence of dyshemoglobins.  18   

 This study was part of a large investigation at the 
Children’s Hospital of Philadelphia (CHOP) on the 
prevalence, contributory mechanisms, and pulmo-
nary and vascular consequences of oxyhemoglobin 
desaturations in children with SCD-hemoglobin  . In 
this particular study, we aimed to determine the pos-
sible anatomic changes in the upper airway that may 
predispose to SDB and particularly OSAS. 

 In children without SCD, adenotonsillar hypertro-
phy is the most common cause of OSAS.  19-21   Children 
with SCD may be predisposed to the development 
of adenoidal and tonsillar hypertrophy due to a com-
pensatory response for their commonly described 
functional asplenia.  4,6,9   Thus, we hypothesized that 
children with SCD may have excess upper airway 
lymphoid tissue proliferation leading to a decrease in 
their upper airway size. Such alterations may in turn 
result in abnormal polysomnographic fi ndings and 
increase the prevalence of SDB and OSAS in this pop-
ulation. If such an association exists, greater attention 
to diagnosis and management of compromised airway 
size in this population would be warranted to reduce 
oxyhemoglobin desaturation during sleep. To this end, 
we used MRI to delineate the size of the upper air-
way and surrounding lymphoid tissues and overnight 
polysomnography to evaluate for SDB and/or OSAS 
in unselected children with SCD as compared with 
control subjects. 

 Materials and Methods 

 Subjects 

 The study was approved by the institutional review boards 
of CHOP (IRB#07-005188) and the Children’s Hospital at 
Montefi ore (CCI#2007-941). Informed assent was obtained from 
each child  .  7 years old, and informed consent was obtained from 
a parent/guardian of each child. 

 Subjects With SCD:   Children were recruited from the Com-
prehensive Sickle Cell Center at CHOP. Inclusion criteria were 
as follows: (1) SCD-hemoglobin  ; (2) age 2 to 21 years; (3) intact 
adenoid and tonsils; (4) steady state, defi ned as a period of at least 
3 months since the last RBC transfusion and at least 4 weeks since 
the last acute chest syndrome or painful episode. Exclusion cri-
teria were as follows: (1) treatment with hydroxyurea within the 
past 3 months; (2) chronic lung disease unrelated to SCD, other 
than asthma; (3) chronic transfusion protocol. 

 Control Subjects:   Control subjects were selected from patients 
who underwent a head or neck MRI at CHOP for medical indica-
tions such as concussion, headache, or seizures. Control sub-
jects were matched to subjects with SCD by age, sex, ethnicity, 
weight, and height. Inclusion criteria were (1) normal growth and 
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three-dimensional rendering of the face, upper air-
way, and lymphoid tissues of the same subject. 

 Airway:   We noted a signifi cantly smaller upper 
airway in the SCD group. In comparison with control 
subjects, subjects with SCD had an upper airway vol-
ume of 2.8  �  1.2 cm 3  compared to 3.7  �  1.6 cm 3  in 
control subjects ( P   ,  .01  ). 

 Lymphoid Tissues:   All lymphoid tissues surround-
ing the upper airway, including adenoid, tonsils, and 
retropharyngeal nodes, as well as the deep cervical 
nodes, were signifi cantly larger in children with SCD 
as compared with control subjects ( Table 2 ). For the 
SCD groups, we noted the following correlations 
between AHI and the various lymphoid tissues: ade-
noid,  r   5  0.71 ( P   ,  .001); retropharyngeal nodes, 
 r   5  0.61 ( P   ,  .001); tonsils,  r   5  0.1 ( P   5  not signifi cant 
[NS]), and deep cervical nodes,  r   5  0.1 ( P   5  NS). 
A positive correlation was noted between AHI and 
the combined volume of the lymphoid tissues sur-
rounding the upper airway (tonsils, adenoid, and ret-
ropharyngeal nodes;  r   5  0.57,  P   ,  .001) ( Fig 3  ). 

 Polysomnography 

 Polysomnography data were available for all 36 sub-
jects with SCD and for 20 control subjects and are 
shown in  Table 3  . Abnormalities in gas exchange in 
SCD, including lower baseline Sp o  2 , lower Sp o  2  nadir, 
increased baseline  etco  2 , and increased peak  etco  2 , 
are suggestive of SDB in this group. In addition, sub-
jects with SCD exhibited differences in sleep quality, 
including decreased sleep effi ciency and increased 
arousals, as compared with control subjects. 

 In regard to OSAS, on average the SCD group 
did not have more obstructive apneas or obstruc-
tive hypo pneas. However, seven of 36 (19.4%) of the 
SCD group had an AHI elevated above a sugges-
tive threshold for OSAS as compared with zero of 
20 (0%) in the control group ( P   ,  .05). These seven 

infrared video. Sleep staging and respiratory events were con-
sistent with the American Academy of Sleep Medicine pediatric 
scoring rules.  22   Accordingly, central apneas, obstructive apneas, 
and obstructive hypopneas were scored. An obstructive apnea-
hypopnea index (AHI) was calculated as the number of obstruc-
tive apneas and hypopneas per hour. The reported Sp o  2  nadir 
was the lowest oxygen saturation measured during polysom-
nography and not limited to an apnea or hypopnea event. We 
considered the diagnosis of OSAS when the AHI was  �  1.5/h.  23-25   

 Sleep Questionnaire 

 Since not all control subjects underwent polysomnography, 
we used a validated questionnaire developed by Brouilette et al  26   
to assess the likelihood of OSAS in these subjects. Accordingly, 
no subject with score  ,   2 1 would be expected to have OSAS; 
a score between  2 1 and 3.5 is considered indeterminate, and a 
score  .  3.5 is considered highly predictive of OSAS. 

 Data Analysis 

 Statistical analysis was conducted using SPSS, version 18 (SPSS 
Inc). Means and SDs were used to summarize continuous var-
iables. For comparisons between the groups for MRI data demo-
graphics, anthropometrics, and polysomnography data, we used 
a two-tailed unpaired  t  test and  x  2  test as appropriate. Pearson 
correlations were derived between AHI and upper airway lym-
phoid tissues within the SCD group. A  P  value  ,  .05 was con-
sidered signifi cant. 

 Results 

 We studied 36 children with SCD with a mean 
age of 6.9  �  4.3 years (2.0-16.8 years) and 36 con-
trol subjects with a mean age of 6.6  �  3.4 years 
(2.2-15.8 years). Subjects with SCD were similar to 
control subjects in age, ethnicity, sex, height, and 
weight ( Table 1  ). However, their mean BMI  z  score 
was signifi cantly lower ( Table 1 ). 

 Upper Airway Volumetric Measurements 

 Volumetric analysis based on 3-mm axial images of 
the upper airway is shown in  Table 2  . Upper airway 
lymphoid tissue analysis of an 11.8-year-old male 
subject with SCD with OSAS, using AMIRA, is pre-
sented graphically in  Figure 1  .  Figure 2   depicts a 

 Table 1— Demographics and Anthropometric Measures  

Measure  SCD (n  5  36)
Control Subjects 

(n  5  36)  P  Value

Age, y 6.9  �  4.3  6.6  �  3.4 NS
Range, y 2.0-16.8 2.2-15.8
Ethnicity: black, No. 36 36 NS
Sex, male, % 55.6 55.6 NS
Height, cm 117.6  �  24.8 117.4  �  21.8 NS
Weight, kg 23.5  �  13.3 25.2  �  11.7 NS
BMI  z  score  2 0.4  �  1.2 0.6  �  1.0  ,  .05

Data are displayed as mean  �  SD unless otherwise noted. NS  5  not 
signifi cant; SCD  5  sickle cell disease.

 Table 2— Airway and Lymphoid Tissues Volumes  

Area Measured
SCD 

(n  5  36)

Control 
Subjects 
(n  5  36)

% 
Difference  P  Value

Airway 2.8  �  1.2 3.7  �  1.6  2 24.3  ,  .01
Lymphoid tissues
 Adenoid 8.4  �  4.1 6.0  �  2.2 40.0  ,  .01
 Tonsils 7.0  �  4.3 5.1  �  1.9 37.3  ,  .01
 Retropharyngeal 

 nodes
3.0  �  1.9 2.2  �  0.9 36.4  ,  .05

 Deep cervical 
 nodes

15.7  �  5.7 12.7  �  4.0 23.6  ,  .05

Data are displayed a mean  �  SD. Units are cm 3 . % Difference  5  per-
cent mean volume difference. See Table 1 legend for expansion of 
abbreviation.
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tissues in children with SCD. Our fi ndings suggest that 
SCD is associated with a generalized increase in size 
of upper airway lymphoid tissues and concomitant 
decrease in upper airway size. We believe the current 
analysis can explain the high occurrence of OSAS in 
the subjects with SCD in our study and complements 
previous studies demonstrating a much higher preva-
lence of OSAS in subjects with SCD compared with 
the general population.  4-10   

 A few methodologic issues deserve comment. First, 
MRI is considered a reliable and accurate tool to 
evaluate the upper airway and surrounding soft tis-
sues. However, to minimize movement artifact during 
imaging, light sedation was provided to all chil-
dren  ,  7 years of age. It is possible that sedation 
altered upper airway dimensions in these children. 
However, this effect was indeed controlled by studying 
a similar number of sedated children in each group. 
Sedation should not have affected the volumetric 
measurements of the lymphoid tissues. Second, in 

subjects with OSAS had a mean obstructive apnea 
index of 3.0  �  3.9 events/h (median, 2.5 events/h), a 
mean AHI of 7.8  �  8.9 events/h (median, 5.9 events/h), 
a mean Sp o  2  nadir of 80.4%  �  8.1% (median, 83%), 
a mean peak  etco  2  of 52.7  �  4.3 mm Hg (median, 
54.6 mm Hg), and a mean arousal-awakening index 
of 14.9  �  5.1 events/h (median, 15.2 events/h). 

 Sleep Questionnaire 

 All control subjects had an OSAS questionnaire 
score  ,   2 1, suggesting that none had evidence of the 
disorder. In addition, scores in control subjects who 
had polysomnography were similar to those who did 
not ( 2 3.0  �  0.8 vs  2 3.1  �  0.9, respectively;  P   5  NS). 

 Discussion 

 The current study is the fi rst, to our knowledge, to 
quantify the upper airway and surrounding lymphoid 

  Figure  1.   Upper left, Surface rendering of the head and neck with three-dimensional reconstruction of the adenoid (magenta), tonsils 
(orange), retropharyngeal nodes (red), and deep cervical lymph nodes (green), of an 11.8-year-old male subject with sickle cell disease with 
obstructive sleep apnea syndrome using AMIRA software. Upper right, Axial T2-weighted image at the nasopharyngeal level outlining the 
adenoid (magenta). Lower left, Coronal reconstructed image outlining the adenoid (magenta) and tonsils (orange). Lower right, Midsag-
ittal reconstructed image outlining the adenoid (magenta) and tonsils (orange).   
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 Our hypothesis considered existence of general 
lymphoid hypertrophy in proximity to the upper 
airway in children with SCD. Therefore, our analysis 
was not limited to the adenoid and tonsils but also 
included the retropharyngeal nodes. The retropha-
ryngeal nodes are located posterior to the pharyngeal 
constrictor muscles and between the internal carotid 
arteries from the base of the skull to the hyoid bone. 
These nodes may contribute to upper airway restric-
tion and risk for OSAS when they are enlarged, in a 
similar way to the adenoid and tonsils.  29   This point is 
not well documented in the literature since these 
nodes are not visible on examination and are not rou-
tinely evaluated by radiographic measures. Our fi nd-
ings of larger adenoid, tonsils, and retropharyngeal 
nodes restricting the upper airway could explain the 
propensity of children with SCD to have OSAS. This 
is also supported by the demonstration of a positive 
correlation between the AHI and the size of lymphoid 
tissues surrounding the upper airway. 

 The large deep cervical nodes noted in these sub-
jects should not directly impact upper airway size 
because of their more distant location from the air-
way. However, the fi nding that the size of deep cer-
vical nodes is also increased in SCD lends support 
to the observation of overall lymphoid hypertrophy 
in these children. 

 The main polysomnographic fi ndings in our study 
included abnormalities in gas exchange in subjects 
with SCD; these fi ndings are not considered specifi c 
and may represent abnormalities in ventilation/per-
fusion ratio, hypoventilation, or abnormalities in gas 
diffusion. However, the more specifi c fi nding is of 
OSAS in 19% (seven of 36), which supports other 
studies evaluating the increased incidence of SDB 
and OSAS in this population.  4-10   

 Three important weaknesses related to our study 
should be mentioned. First, control subjects were 
excluded if any had a history of OSAS and/or previ-
ously underwent adenotonsillectomy. Thus, a possible 
selection bias may have been introduced by such 
criteria. However, we do not think this should sig-
nifi cantly affect our results, assuming a background 
prev alence of 2% of children in this age group with 
OSAS. 

 Second, not all control subjects who had an upper 
airway MRI agreed to have polysomnography. For 
this reason, we introduced a standardized sleep ques-
tionnaire to exclude the possibility of OSAS in any 
of the 16 additional control subjects. Interestingly, a 
subgroup analysis comparing the 36 subjects with 
SCD to the 20 control subjects who agreed to have 
polysomnography demonstrated similar fi ndings to 
our primary analysis. The SCD group had a smaller 
upper airway ( P   5  .0005) and larger tonsils ( P   5  .03). 
However, despite the fact that the adenoid and deep 

spite of our attempt to match control subjects to 
subjects with SCD by demographics and anthropo-
metrics, BMI  z  score was signifi cantly lower in subjects 
with SCD. This is probably due to suboptimal growth 
described in children with SCD.  27,28   We believe, how-
ever, that this fi nding of larger lymphoid tissues in 
the SCD group despite having a lower BMI  z  score 
further enhances our fi ndings. Third, we studied sub-
jects at steady state and excluded those requiring 
chronic blood transfusion or hydroxyurea or those with 
episodes of acute chest syndrome or pain episodes 
within 4 weeks of the study. 

  Figure  2. Surface rendering of the head and neck and three-
dimensional reconstruction of the upper airway and lymphoid 
tissues of the subject shown in  Figure 1 : airway (light blue), ade-
noid (magenta), tonsils (orange), retropharyngeal nodes (red), and 
deep cervical lymph nodes (green).   

  Figure  3. Correlation between apnea-hypopnea index and the 
combined upper airway lymphoid tissue volume (cm 3 ) in the group 
with sickle cell disease.   
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anisms of infl ammatory res ponse that occur in chil-
dren with SCD may at least partly explain their upper 
airway lymphoid hypertrophy. 

 In conclusion, we suggest that children with SCD 
should be screened for OSAS by an appropriate ques-
tionnaire and physical examination because of their 
risk of developing adenotonsillar hypertrophy. Adeno-
tonsillectomy should be considered once diagnosis of 
OSAS is confi rmed to reduce the deleterious effects 
of the disorder in this particular group. 

 Table 3— Polysomnography  

Measure SCD (n  5  36)
Control Subjects 

(n  5  20)  P  Value

Total sleep time, h 7.3  �  1.2 7.7  �  0.8 NS
Sleep effi ciency, % 83.7  �  12.4 90.4  �  5.3  ,  .05
Arousal index, events/h 13.7  �  4.7 10.8  �  3.8  ,  .05
Baseline Sp o  2 , % 95.3  �  2.9 97.1  �  0.9  ,  .05
Sp o  2  nadir, % 84.3  �  12.3 91.1  �  4.2  ,  .05
Baseline  etco  2 , mm Hg 43.0  �  3.1 37.5  �  4.6  ,  .001
Peak  etco  2 , mm Hg 53.4  �  8.5 42.3  �  5.3  ,  .001
Obstructive apnea index, 

events/h
0.7  �  2.0 0.2  �  0.3 NS

AHI 1.9  �  4.7 0.4  �  0.3 NS
OSAS (AHI  �  1.5) 7 of 36 0 of 20  ,  .05

Data are displayed as mean  �  SD. AHI  5  apnea-hypopnea index; 
 etco  2   5  end-tidal CO 2 ; OSAS  5  obstructive sleep apnea syndrome; 
Sp o  2   5  arterial oxygen saturation. See Table 1 legend for expansion 
of other abbreviations.
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