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SUMMARY

We focus on sparse modelling of high-dimensional covariance matrices using Bayesian latent
factor models. We propose a multiplicative gamma process shrinkage prior on the factor load-
ings which allows introduction of infinitely many factors, with the loadings increasingly shrunk
towards zero as the column index increases. We use our prior on a parameter-expanded loading
matrix to avoid the order dependence typical in factor analysis models and develop an efficient
Gibbs sampler that scales well as data dimensionality increases. The gain in efficiency is achieved
by the joint conjugacy property of the proposed prior, which allows block updating of the loadings
matrix. We propose an adaptive Gibbs sampler for automatically truncating the infinite loading
matrix through selection of the number of important factors. Theoretical results are provided
on the support of the prior and truncation approximation bounds. A fast algorithm is proposed
to produce approximate Bayes estimates. Latent factor regression methods are developed for
prediction and variable selection in applications with high-dimensional correlated predictors.
Operating characteristics are assessed through simulation studies, and the approach is applied to
predict survival times from gene expression data.

Some key words: Adaptive Gibbs sampling; Factor analysis; High-dimensional data; Multiplicative gamma process;
Parameter expansion; Regularization; Shrinkage.

1. INTRODUCTION

Factor models aim to explain the dependence structure among high-dimensional observations
through a sparse decomposition of a p × p covariance matrix � as ��T +�, where � is a
p × k factor loadings matrix with k � p and � is a p × p diagonal matrix with nonnegative
diagonal entries. A popular approach to ensure identifiability of the loading elements is to con-
strain the loading matrix to be lower triangular with positive diagonal entries (Geweke & Zhou,
1996). Factor models have been traditionally applied in behavioural and social sciences, where
the latent factors have a natural interpretation as certain unobserved psychological traits. A more
recent approach (West, 2003; Carvalho et al., 2008) uses the above sparse characterization as a
dimensionality reduction tool in large p and small n applications such as gene expression studies.

A Bayesian specification of the factor model (Arminger & Muthén, 1998; Song & Lee, 2001)
commonly uses inverse gamma priors on the residual variances and normal and truncated nor-
mal priors on the off-diagonal and diagonal elements of the loadings matrix, respectively. Such
choices lead to conditionally conjugate forms of the posterior distribution and enable poste-
rior computation by a straightforward Gibbs sampler. However, it has been observed that these
choices lead to poorly behaved Gibbs samplers with slow mixing when some of the outcomes
are highly correlated. Posterior inference also tends to be sensitive to certain hyperparameters.
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To address these issues, Ghosh & Dunson (2009) use parameter expansion (Liu & Wu, 1999;
Gelman, 2006) to induce a heavy-tailed default prior distribution on the loading elements and
propose an efficient Gibbs sampler.

Inference on the number of factors in factor analysis models is both conceptually and compu-
tationally challenging. Some of the early papers in this direction (discussion paper by Polasek,
1997, University of Basil) involve computation of the marginal likelihoods under models with
different numbers of factors. Lopes & West (2004) proposed a reversible jump Markov chain
Monte Carlo algorithm to allow for uncertainty in the number of factors. Lee & Song (2002)
developed a path sampling approach instead. A more recent method infers the number of factors
by zeroing a subset of the loading elements using Bayesian variable selection priors (Lucas et al.,
2006; Carvalho et al., 2008); see also the 2009 discussion paper from the University of Chicago
Booth School of Business by Schnatter and Lopes. Ando (2009) proposed an approach for cal-
culating the exact marginal likelihood in Bayesian factor analysis with heavy-tailed priors. This
method can be used for rapid estimation of the number of factors, but may be sensitive to sub-
jectively chosen priors.

In this article we introduce a multiplicative gamma process shrinkage prior that allows intro-
duction of infinitely many factors, with the loadings increasingly shrunk towards zero as the
column index increases. The key to our approach lies in the fact that for purpose of prediction
or inference on the covariance matrix, identifiability of the loadings is not necessary. In standard
factor models, the identifiability constraints induce undesirable properties, such as a priori order
dependence in the off-diagonal entries of the covariance matrix. Our proposed prior is placed on
a parameter expanded factor loadings matrix, making the induced prior on the covariance matrix
invariant to ordering of the data. The shrinkage prior allows us to adaptively select a truncation
of the infinite loadings to one having finite columns, which facilitates the posterior computation
while providing an accurate approximation to the infinite factor model.

2. BAYESIAN FACTOR MODELS

2·1. Model and prior specification

The generic form of a latent factor model is

yi =�ηi + εi , εi ∼ Np(0, �) (i = 1, . . . , n), (1)

where yi is a p-dimensional continuous response, � is a p × k factor loadings matrix, ηi ∼
Nk(0, Ik) are latent factors and εi is an idiosyncratic error with covariance� = diag(σ 2

1 , . . . , σ
2
p).

We follow standard practice in normalizing the data prior to analysis and hence do not include
an intercept term in (1). Each observation yi is assumed to have independent components given
the factors and dependence among the components is induced by marginalizing over the distri-
bution of the factors, so marginally yi ∼ Np(0, �) with�=��T +�. In practical applications
involving moderate to large p, the number of factors is typically much smaller than p, inducing
a sparse characterization of the unknown covariance matrix �.

The above decomposition of � is not unique and there are actually infinitely many possi-
bilities, since �1 =�P also satisfies the above condition for any semi-orthogonal matrix P
(P PT = I ). The usual lower triangular constraint for identifiability (Geweke & Zhou, 1996)
induces order dependence among the responses, with the choice of the first k response vari-
ables being an important modelling decision (Carvalho et al., 2008). From a Bayesian perspec-
tive, one does not require identifiability of the loading elements for a wide class of applications
including covariance matrix estimation, variable selection and prediction. The above fact has
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been exploited in our approach to define the prior on a parameter-expanded loadings matrix with
redundant parameters, resulting in better computational properties while simplifying the theory.

Letting �� denote the collection of all matrices � with p rows and infinitely many columns
such that ��T is a p × p matrix with all entries finite, we have

�� =
{
�= (λ jh), j = 1, . . . , p, h = 1 . . . ,∞, max

1� j�p

∞∑
h=1

λ2
jh <∞

}
. (2)

Using the Cauchy–Schwartz inequality, it is straightforward to show that all the entries of ��T

are finite if and only if the condition in (2) is satisfied. Let�� denote the set of p × p diagonal
matrices with nonnegative entries and let � denote all p × p positive semi-definite matrices.
Consider the function g : �� ×�� →� corresponding to g(�,�)=��T +�.

LEMMA 1. For any (�,�) ∈�� ×�� , we have g(�,�) ∈�.

All proofs can be found in the Appendix. The image of�� ×�� under g is the set
{
� : �=

g(�,�), (�,�) ∈�� ×��
}

. Letting g−1(�)⊂�� ×�� denote the pre-image of� ∈�, it
is straightforward to show that the set g−1(�) contains at least one element for any� ∈�, so that
the image of �� ×�� under g is the set �. For example, one element corresponds to (�, 0p),
with�= (�1/2 : 0p×∞),�1/2 a Cholesky decomposition of� and 0p denoting a p × p matrix
of zeros. Thus g is a continuous surjective function. However, g is not bijective, and in general
the cardinality of g−1(�) is ∞. Lemma 2 states a regularity property of g, which is later used to
prove sup-norm support of the proposed prior.

LEMMA 2. Let (�0, �0) be an arbitrary element of�� ×�� . For ε > 0, define the following
ε-ball around (�0, �0), Bε(�0, �0)= {(�,�) ∈�� ×�� : d2(�,�0) < ε, d∞(�,�0)< ε},
where d2(·, ·) denotes the L2 distance metric on ��,

d2(�,�0)=
⎧⎨
⎩

p∑
j=1

∞∑
h=1

(λ jh − λ0
jh)

2

⎫⎬
⎭

1/2

,

for p × ∞ matrices�= (λ jh),�0 = (λ0
jh), and d∞(A, B)= max1�r,s�p

∣∣ars − brs | is the sup-
norm metric for p × p matrices A = (ars), B = (brs). Then, the image g{Bε(�0, �0)} contains
values� ∈� in an ε∗ sized ball in sup norm around�0 = g(�0, �0), with ε∗ decreasing towards
zero monotonically as ε decreases to zero.

Observe that d2 is well defined and finite on �� by (2).
We adopt a Bayesian approach and choose independent priors supported on�� ×�� , which

in turn induces a prior on � ∈� through the operator g. We place the usual inverse gamma
priors on the diagonal elements of �. To define a prior supported on ��, we allow the entries
of � to decrease in magnitude flexibly as the column index increases. The prior is defined on
a parameter-expanded loading matrix without imposing any restriction on the loading elements.
The introduction of the redundant parameters simplifies the theory and the induced prior has
attractive properties including large support and order-independence. We use a shrinkage-type
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prior with the degree of shrinkage increasing across the column index as follows,

λ jh | φ jh, τh ∼ N (0, φ−1
jh τ

−1
h ), φ jh ∼ Ga(ν/2, ν/2), τh =

h∏
l=1

δl,

δ1 ∼ Ga(a1, 1), δl ∼ Ga(a2, 1), l � 2, σ−2
j ∼ Ga(aσ , bσ ) ( j = 1, . . . , p), (3)

where δl (l = 1, . . . ,∞), are independent, τh is a global shrinkage parameter for the hth col-
umn and the φ jhs are local shrinkage parameters for the elements in the hth column. The τhs
are stochastically increasing under the restriction a2 > 1, which favours more shrinkage as the
column index increases. If we only use the global shrinkage parameter, the prior has a tendency
to over-shrink the nonzero loadings. In gene expression examples involving large p, it is often
the case that a relatively small proportion of genes are within each pathway. In such applications,
we would like to shrink a subset of the elements strongly towards zero while retaining the sparse
signals. We refer to the induced prior on the space of covariance matrices as a multiplicative
gamma process shrinkage prior.

2·2. Properties of the shrinkage prior

Let �� ⊗�� denote the prior on (�,�) defined in (3). We first need to make sure that our
prior is well defined so that draws from the above prior are elements of�� ×�� almost surely.

PROPOSITION 1. If (�,�)∼�� ⊗�� , then �� ⊗��
(
�� ×��

)= 1.

For computational purposes, we would like to approximate the infinite loadings matrix with
a finite matrix having few columns relative to the number of outcomes p. As justification, we
obtain theoretical bounds on the truncation approximation error. Let (�,�)∼�� ⊗�� and
�=��T +� be the induced covariance matrix. We can approximate � by �H =�H�

T
H +

� where �H denotes the matrix obtained by setting the columns of � from H + 1 onwards
to zero or equivalently discarding those higher indexed columns. The following theorem states
that the prior probability of �H being arbitrarily close to � in an appropriate sense converges
exponentially fast to 1 as H tends to ∞.

THEOREM 1. If a2 > 2, then for any ε > 0,

pr
{

d∞
(
�,�H

)
> ε

}
<

6pb

ε(1 − a)
aH ,

for H > log{6pb/ε(1 − a)}/ log(1/a), where b = E
(
δ−1

1

)
and a = E

(
δ−1

2

)
, with δ1 and δ2 as in

(3).

The proof of the theorem assumes ν = 3 which has been used as a default choice through-
out, but the same argument holds for any ν > 2. Although the condition a2 > 2 is sufficient
to ensure that a < 1, for any Ga(a2, b2) prior on δ2, the theorem remains valid as long as
E(δ−1

2 )= b2/(a2 − 1) < 1 or a2 > 1 + b2.
Letting� denote the induced prior on�,�= (�� ⊗��) ◦ g−1 so that for any Borel subset

A of �, �(A)= (�� ⊗��){g−1(A)}. Since g is a continuous and hence measurable map, �
is a well-defined probability measure on (�,A), with A the Borel σ -algebra of subsets of �.

PROPOSITION 2. If �0 is any p × p covariance matrix and B∞
ε (�0) is an ε-neighbourhood

of �0 under the sup-norm, then �
{

B∞
ε (�0)

}
> 0 for any ε > 0.
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Proposition 2 shows that our proposed prior has large support, so places positive probability
in arbitrarily small neighbourhoods around any covariance matrix. We use Proposition 2 to show
weak consistency of the posterior distribution of � in Theorem 2. Denote K (�0, �) to be the
Kullback–Leibler divergence between Np(0, �0) and Np(0, �),

K (�0, �)=
∫

log
N (y; 0, �0)

N (y; 0, �)
N (y; 0, �0) dy.

THEOREM 2. Fix �0 ∈�. For any ε > 0, there exists ε∗ > 0, such that

{� : d∞(�0, �) < ε
∗} ⊂ {� : K (�0, �) < ε},

which implies that the posterior distribution of � is weakly consistent.

The weak consistency of the posterior follows from the Schwartz (1965) theorem, since any
Kullback–Leibler neighbourhood of the true density has positive probability using Proposition 2.

Another attractive property of our prior is that it is free of order dependence, so that the induced
prior on � is invariant to permutations with � having the same distribution as �π , where �π =
(wπrπs ) with π any permutation of {1, . . . , p} and �= (wrs). We have wrs =∑∞

h=1 λrhλsh =
λT

rλs , where λ j = (λ j1, λ j2, . . .)
T. Conditionally on τ = (τ1, τ2, . . .)

T, the λrh’s are independent
with λrh | τh ∼ t3(0, τ

−1
h ). Since the marginal prior on λr is the same for every r ,wrs has the same

distribution as wr ′s′ for any (r, s) |=(r ′, s′) such that r |= s, r ′ |= s′. The permutation invariance
follows from the fact that wrr and wr ′r ′ have the same distribution for any 1 � r, r ′ � p.

Although the distribution of wrs does not have a simple form, the first two moments of wrs

can be obtained as

E
(
wrs

)=
∞∑

h=1

E
{

E
(
λrhλsh | τh

)}= 0,

E
(
w2

rs

)= E
{

tr(λT
rλsλ

T
sλr )

}= tr
{

E
(
λrλ

T
rλsλ

T
s

)}
= tr

[
E
{

E(λrλ
T
r | τ)E(λsλ

T
s | τ)}]= 9

∞∑
h=1

E(τ−2
h ).

Thus E
(
w2

rs

)
is finite if d = E(δ−2

1 ) is finite and c = E(δ−2
2 ) < 1 and in that case E

(
w2

rs

)=
9d/(1 − c). One way to ensure the above conditions is to let a1 > 2 and a2 > 3. Hence the induced
prior on any of the off-diagonal entries of � has mean zero and the parameters a1, a2 dictate the
existence of higher order moments. We place gamma priors on a1 and a2 to learn these key
hyperparameters from the data.

3. POSTERIOR COMPUTATION

3·1. Gibbs sampler with a fixed truncation level

We propose a straightforward Gibbs sampler for posterior computation after truncating the
loadings matrix to have k∗ � p columns. An adaptive strategy for inference on the truncation
level k∗ is described in § 3·2. The Gibbs sampler is computationally efficient and mixes rapidly
as the shrinkage prior allows block updating of the loadings. The sampler cycles through the
following steps.
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Step 1. If we denote the j th row of �k∗ by λT
j , then the λ j s have independent conditionally

conjugate posteriors,

π(λ j | −)∼ Nk∗
{(

D−1
j + σ−2

j ηTη
)−1

ηTσ−2
j y( j),

(
D−1

j + σ−2
j ηTη

)−1
}
,

where η= (η1, . . . , ηn)
T, D−1

j = diag(φ j1τ1, . . . , φ jk∗τk∗) and y( j) = (y1 j , . . . , ynj )
T for

j = 1, . . . , p. Given the other parameters, π(λ j | −) denotes the conditional posterior of
λ j .

Step 2. Sample σ−2
j , j = 1 . . . , p, from conditionally independent posteriors

π(σ−2
j | −)∼ Ga

{
aσ + n

2
, bσ + 1

2

n∑
i=1

(yi j − λT
jηi )

2

}
.

Step 3. Sample ηi , i = 1 . . . , n, from conditionally independent posteriors

π(ηi | −)∼ Nk∗
{(

Ik∗ +�T
k∗�−1�k∗

)−1
�T

k∗�−1yi ,
(

Ik∗ +�T
k∗�−1�k∗

)−1
}
.

Step 4. Sample φ jh from

π(φ jh | −)∼ Ga

(
ν + 1

2
,
ν + τhλ

2
jh

2

)
.

Step 5. Sample δ1 from

π(δ1 | −)∼ Ga

⎧⎨
⎩a1 + pk∗

2
, 1 + 1

2

k∗∑
l=1

τ
(1)
l

p∑
j=1

φ jlλ
2
jl

⎫⎬
⎭,

and for h � 2, sample δh from

π(δh | −)∼ Ga

⎧⎨
⎩a2 + p

2
(k∗ − h + 1), 1 + 1

2

k∗∑
l=h

τ
(h)
l

p∑
j=1

φ jlλ
2
jl

⎫⎬
⎭,

where τ (h)l =∏l
t=1,t |= h δt for h = 1, . . . , k∗.

Step 6. Update a1 and a2 using a Metropolis–Hastings step within the Gibbs sampler.

3·2. Choosing the number of factors adaptively

In practical situations, we expect to have relatively few important factors compared with the
dimension p of the outcomes. Our proposed model with infinite number of factors obviates the
need for pre-specifying the number of factors, while the sparsity favouring prior on the loadings
ensures that the effective number of factors would be small when the truth is sparse. However,
we need a computational strategy for choosing an appropriate level of truncation k∗. We would
like to strike a balance between missing important factors by choosing k∗ too small and wasting
computation on an overly conservative truncation level. One can think of k∗ as the effective
number of factors, so that the contribution from adding additional factors is negligible. Starting
with a conservative guess k̃ of k∗, the posterior samples of�k̃ from the Gibbs sampler mentioned
in § 3·1 contain information about the effective number of factors. At the t th iteration of the Gibbs
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sampler, let m(t) denote the number of columns in�k̃ having all elements in a pre-specified small
neighbourhood of zero. Intuitively, m(t) of the factors have a negligible contribution at the t th
iteration. Usual shrinkage priors on the loadings exhibit the phenomenon of factor splitting, in
which none of the columns have all loadings close to zero even when k̃ is chosen to be greater than
the true number of factors. By shrinking increasingly in later columns, we avoid this problem.
We define k∗(t) = k̃ − m(t) to be the effective number of factors at iteration t .

The above approach has been shown to produce accurate estimates of the true effective num-
ber of factors k∗ in a number of simulation examples as long as k̃ � k∗. However, in order to
be assured that k̃ � k∗, it is typically necessary to choose a very conservative bound in large
p applications, which leads to wasted computational effort. Ideally, we would like to discard
the redundant factors and continue the sampler with a reduced number of columns in the load-
ings. With this aim, we modify our sampler described above to an adaptive Gibbs sampler, which
tunes the number of factors as the sampler progresses. The adaptations are designed to satisfy the
diminishing adaptation condition in Theorem 5 of Roberts & Rosenthal (2007). To be specific,
we adapt with probability p(t)= exp(α0 + α1t) at the t th iteration, with α0, α1 chosen so that
adaptation occurs around every 10 iterations at the beginning of the chain but decreases in fre-
quency exponentially fast. We generate a sequence ut of uniform random numbers between 0 and
1. At the t th iteration, if ut � p(t), we monitor the columns in the loadings having all elements
within some pre-specified small neighbourhood of zero. If the number of such columns drops to
zero, we add a column to the loadings and otherwise discard the redundant columns. The other
parameters are also modified accordingly. When we add a factor, we sample parameters from the
prior distribution to fill in additional columns, and otherwise retain parameters corresponding to
the nonredundant columns.

The most common approach for selecting the number of factors relies on fitting the factor
model for different choices of k∗, and then using the BIC or another criteria for selection. This
approach can be difficult to implement for large p, small n problems in which maximum like-
lihood estimates often do not exist, and the BIC is not well justified for factor models even for
small to moderate p. Lopes & West (2004) compared a number of alternatives, recommending
a reversible jump Markov chain Monte Carlo approach that requires a preliminary run for each
choice of the number of factors, so it is very computationally intensive. Path sampling faces
similar computational hurdles in scaling up to large p. Stochastic search variable selection algo-
rithms have been applied in large p settings, but performance is questionable given the need to
update elements of the loadings matrix one at a time, leading to very slow mixing and conver-
gence rates. In the econometrics literature on approximate factor models, there has been recent
work (Bai & Ng, 2002; Amengual & Watson, 2007) on consistent estimation of the number of
static and dynamic factors as the number of time series and observation times both increase to ∞
at a comparable rate; see also the discussion paper by Onatski (2005), University of Columbia.

A significant advantage of our adaptive method is that a single run provides posterior samples
of the parameters as well as information about the number of factors, with convergence of the
chain guaranteed by the theory in Roberts & Rosenthal (2007). In addition, we save computation
by discarding the unimportant factors. Letting k̃(t) denote the truncation level at iteration t and
k∗(t) = k̃(t) − m(t) denote the effective number of factors, we use the median or mode of {k∗(t)}
after burn-in as an estimate of k∗ with credible intervals quantifying uncertainty.

After a reasonable burn-in, �(t) =�
(t)
k̃(t)
�
(t) T

k̃(t)
+�(t) represent draws from the approximated

marginal posterior distribution of � given y1, . . . , yn , where {�(t)
k̃(t)
, �(t)} denote posterior sam-

ples at the t th iteration. The posterior samples �(t) can be used for inference on �. We also
propose a fast algorithm for calculating an approximate maximum a posteriori estimate of the
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covariance matrix. The proposed approach is useful to arrive at a quick working estimate of the
covariance matrix. Our proposed stochastic EM approach, (Celeux et al., 1996) approach replaces
draws from the conditional posterior distributions of�k̃(t) , � and φ in Steps 1, 2 and 4 above by
the respective conditional posterior modes.

4. SIMULATION EXAMPLE

4·1. Factor selection and covariance matrix estimation

We consider a number of simulation examples to illustrate our approach and compare with
competing methods. We simulated yi , i = 1, . . . , 200, from a p-dimensional normal distribu-
tion with zero-mean and covariance matrix �=��T +�, where � is a p × k matrix and �
is a p × p diagonal matrix. The diagonal elements of �−1 are drawn independently from a
Ga(1,0·25) distribution with mean 4. The number of non-zero elements in each column of �
are chosen linearly between 2k and k + 1 in a decreasing fashion. We randomly allocate the
location of the zeros in each column and simulate the nonzero elements independently from a
normal distribution with mean 0 and variance 9.

We choose three (p, k) combinations with moderate to large p, namely (100, 5), (500, 10) and
(1000, 15). For each pair we consider 50 simulation replicates. We run the adaptive Gibbs sampler
for 25 000 iterations with a burn-in of 5000, and collect every 5th sample to thin the chain. We
use a default choice of 5 log(p) as the starting number of factors. The hyperparameters aσ and
bσ for σ−2

j in (3) are 1 and 0·3 respectively, while ν is 3. We place Ga(2, 1) priors on a1 and a2.

We choose α0 and α1 in the adaptation probability p(t) as −1 and −5 × 10−4 respectively. We
monitor the columns in the loadings having all elements less than 10−4 in magnitude and proceed
by adapting the number of factors as in § 3·2. For the stochastic EM algorithm, we choose a burn-
in of 100 and monitored the estimated covariance matrix every 10 iterations. We stop the chain
when the sup-norm distance between the estimated covariance matrix at the current iteration was
within a small tolerance level compared with the estimate 10 iterations before.

The average of the estimated number of factors across the replicates is 6·82, 10·00 and
14·40 corresponding to k = 5, 10 and 15 with empirical 95% intervals for the number of fac-
tors (5, 8), (9, 11) and (13, 16), respectively. The estimated covariance matrix in each case is
close to the true value, with small mean square error, average and maximum absolute bias. We
compare the estimation of the covariance matrix to a recent method by Bickel & Levina (2008)
which bands the sample covariance matrix and proposes a resampling scheme for choosing the
optimal banding parameter. The stochastic EM algorithm was also used to arrive at an approxi-
mate maximum a posteriori estimate of the covariance matrix. We provide the summaries of the
mean square error, average absolute bias and maximum absolute bias for the three methods across
the replicates in Table 1. Based on Table 1, the proposed shrinkage approach does significantly
better than the Bickel & Levina (2008) method. The stochastic EM algorithm also performs well,
especially for smaller values of p.

4·2. Latent factor regression

It is common in many application areas to have a massive-dimensional vector of candidate
predictors, with many of the predictors being moderately to highly correlated. Modifications
using penalized least squares methods have been studied extensively. The lasso (Tibshirani, 1996)
and the elastic net (Zou & Hastie, 2005) are two of the most popular such methods. In order to
select correlated batches of predictors simultaneously, one can potentially use Bayesian latent
factor regression (Lucas et al., 2006; Carvalho et al., 2008).
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Table 1. Comparative performance in covariance matrix estimation in the simulation study. The
average, best and worst case performance across 50 simulation replicates in terms of mean
square error (×102), average absolute bias (×102) and maximum absolute bias (×102) are

tabulated for the different methods

true (p, k) (100, 5) (500, 10) (1000, 15)
method MGPS Banding MAP MGPS Banding MAP MGPS Banding MAP

MSE

mean 0·2 1·3 0·2 0·10 0·4 0·10 0·10 0·3 0·10
min 0·1 0·9 0·1 0·02 0·4 0·05 0·02 0·2 0·05
max 0·3 1·6 0·3 0·20 0·5 0·30 0·4 0·5 0·30

average absolute bias
mean 1·9 3·1 1·0 0·6 0·6 0·3 0·4 0·5 0·3
min 1·3 2·5 0·6 0·4 0·6 0·2 0·2 0·4 0·2
max 2·5 4·9 1·5 0·9 0·9 0·5 0·6 0·5 0·5
maximum absolute bias
mean 50·9 111·0 44·8 95·4 117·8 97·7 115·0 115 108·0
min 38·8 99·8 24·7 50·2 105·0 64·4 52·6 111 74·7
max 74·1 131·0 105·0 152·0 131·0 162·0 242·0 240 221·0
MGPS, posterior mean using our proposed multiplicative shrinkage prior; Banding, Banding sample covariance matrix;
MAP, approximate maximum a posteriori estimate under our proposed prior; MSE, mean square error.

Let yi = (zi , xT
i )

T, i = 1, . . . , n, where the xi s are (p − 1)-dimensional predictors and zi s are
the response. For ease of illustration, we assume the zi s to be univariate, though extensions to mul-
tivariate cases are straightforward. Also assume that the predictors and response are all continu-
ous. We can use standard data augmentation procedures otherwise. We jointly model the yi s as in
(1). Our objective is to predict the response zn+1 for a future subject based on the predictors xn+1
for that subject and y1, . . . , yn . The posterior predictive distribution of zn+1 | xn+1, y1, . . . , yn is

f (zn+1 | xn+1, y1, . . . , yn)=
∫

f (zn+1 | xn+1, �) π(� | y1, . . . , yn) d�.

For the simulation examples described in § 4·1, let zi = yi1 and xi = (yi2, . . . , yip)
T. We ran-

domly selected two locations in the first row of� and assigned values 1 and −1 to those locations,
with the other elements in the first row set to zero. The remaining rows of the loadings were sim-
ulated as mentioned before. We used a randomly chosen training set of size 100 and held out the
zi s for the remaining 100 samples. The coverage of 95% predictive intervals averaged across the
replicates were 0·95, 0·94 and 0·95, respectively. Table 2 compares the predictive performance
with lasso and elastic net. The proposed approach does similar to lasso and elastic net, but has
the advantage of quantifying predictive uncertainty.

The joint Gaussian model implies that E(zi | xi )= xT
i β, with β =�−1

xx �zx , with the�matrix
suitably partitioned. The elements of the (p − 1)-dimensional vector β can be considered as the
true regression coefficients of z on x . Letting �(t) denote the posterior samples of �, β(t) =
{�(t)xx }−1�

(t)
zx give samples from the posterior distribution of β. Since �(t)xx =�

(t)
x �

(t) T
x +�

(t)
xx ,

where �(t)x and �(t)xx are appropriate sub-blocks of �(t) and �(t), one can use the Sherman–
Morrison–Woodbury formula (Hager, 1989) to invert�(t)xx at each iteration of the Gibbs sampler,
which only requires the inverse of a k∗(t) × k∗(t) matrix, leading to many-fold speed up in large
p settings.
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Table 2. Predictive performance in the simulation study. Average, best and worst case
performance across 50 simulation replicates are reported for the different methods

true (p, k) (100, 5) (500, 10) (1000, 15)
method MGPS Lasso Elastic net MGPS Lasso Elastic net MGPS Lasso Elastic net

mspe
mean 0·63 0·55 0·55 0·41 0·38 0·38 0·95 0·87 0·88
min 0·32 0·33 0·33 0·18 0·22 0·22 0·57 0·55 0·56
max 0·89 0·79 0·78 0·86 0·57 0·56 1·48 1·44 1·44

aape
mean 0·62 0·59 0·59 0·51 0·49 0·49 0·80 0·77 0·75
min 0·47 0·47 0·47 0·33 0·38 0·37 0·60 0·59 0·59
max 0·85 0·73 0·72 0·80 0·58 0·59 0·99 0·98 0·99

mape
mean 2·19 2·07 2·07 1·71 1·66 1·68 2·54 2·48 2·48
min 1·36 1·43 1·40 1·21 1·17 1·18 1·83 1·83 1·80
max 3·15 2·91 2·89 2·95 2·70 2·63 3·27 3·07 3·07

MGPS, our proposed multiplicative shrinkage prior; mspe, mean squared prediction error; aape, average
absolute prediction error; mape, maximum absolute prediction error.

Table 3. Performance in estimating regression coefficients in the simulation study. We
report the mean square error (×103), average absolute bias (×103) and maximum abso-

lute bias (×103) averaged across 50 simulation replicates for the different methods

true (p, k) (100, 5) (500, 10) (1000, 15)
method MGPS Lasso Elastic net MGPS Lasso Elastic net MGPS Lasso Elastic net

MSE 1·1 1·2 1·3 0·1 0·3 0·4 0·0 0·1 0·1
aab 10·1 12·4 13·0 1·7 3·9 4·1 0·9 1·8 1·9
mab 176·1 207·3 211·3 172·5 253·3 244·5 102·6 109·0 122·6
MGPS, our proposed multiplicative shrinkage prior; MSE, mean squared error; aab, average absolute bias;
mab, maximum absolute bias.

As shown in Table 3, the estimate of β based on our method was close to the truth in each
case, with small mean square error, average and maximum absolute bias. The coverage of 95%
credible intervals for the elements of β were 0·96, 0·91 and 0·90 for the three cases, respectively.

The simulation examples were designed to induce correlation in groups of predictors, so that
batches of predictors are included in the response model. The sparsity in the loadings ensures
that many of the true regression coefficients are exactly equal to zero, with only a few important
predictors. We propose a simple algorithm for variable selection in our framework based on
thresholding the posterior mean of β. Let β̂(1) < · · ·< β̂(p−1) denote the ordered values of the
posterior means for the p − 1 predictors, and let π j = h denote that the j th predictor is the hth
smallest in magnitude. Then, our thresholding approach sets β j = 0 for all j with π j � h̃, with
h̃ chosen to minimize the mean squared prediction error. Table 4 shows the percentage of false
positives and power compared with lasso and elastic net.

The three simulation examples took 2, 14 and 33 seconds per hundred iterations, respectively,
in Matlab on a Intel(R) Core(TM) 2 Duo machine. The analyses were repeated with different
choices of hyperparameter values. We used ν = 3·5, 4, 5 and varied bσ between 0·1 and 0·5. We
also used different multiples of log(p) between 3 and 10 for the initial number of factors. The
results were robust, with the conclusions unchanged. We observed good mixing for the Gibbs
sampler using both exploratory and diagnostic tests. The effective sample size averaged across
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Table 4. Variable selection performance in the simulation study. Percentage of false positives
and power in detecting the true signal reported across 50 simulation replicates (average, best

and worst case) for the different methods

true (p, k) (100, 5) (500, 10) (1000, 15)
method MGPS Lasso Elastic net MGPS Lasso Elastic net MGPS Lasso Elastic net

false positives (%)
mean 0 9 7 0 4·0 3 0 3·0 2·0
min 0 0 0 0 0·2 0 0 0·7 0·7
max 0 26 25 0 14·0 14 0 8·0 10·0
power (%)
mean 72 76 77 75 76 77 71 72 72
min 68 72 74 73 75 76 70 71 71
max 81 80 83 80 79 79 73 73 72

MGPS, our proposed multiplicative shrinkage prior.

the elements of β were 55, 53 and 48% for the three cases, respectively, suggesting an excellent
computational efficiency.

The true loadings were not simulated from our proposed prior in any of the simulation exam-
ples. Although our prior on the loadings can concentrate in arbitrarily small neighbourhoods
around zero, it does not allow any of the loading elements to be exactly zero. In the simulation
study, many of the true loading elements were set equal to zero, and instead of shrinking the
nonzero loadings with the column index, they were all drawn from the same N(0, 9) distribu-
tion. To assess robustness when the model is not applicable, we ran simulations with correlated
factors and/or correlated idiosyncratic error, with the errors drawn from an AR(1) process. The
results were robust even in these cases, in particular, we always had similar predictive perfor-
mance as the elastic net. The adaptive method for factor selection proved to be extremely robust
with respect to the choice of the threshold. Although we used 10−4 as a default threshold, the
conclusions were mostly unchanged even with a threshold as small as 10−9. Also, one can use
either of the median or mode of the samples k∗(t) as an estimate of the number of factors as they
gave the same answer on all occasions. The simulation study clearly highlights the merit of our
method in a variety of applications, with much improved performance over competitors in terms
of covariance matrix estimation, regression coefficient estimation and variable selection.

5. DIFFUSE LARGE-B-CELL LYMPHOMA APPLICATION

5·1. Background

Lymphoma is a cancer of the white blood cell which occurs when lymphocytes, a type of
white blood cell, have abnormal growth. Diffuse large B-cell lymphoma is the most common
lymphoma among adults and has a high mortality rate. Rosenwald et al. (2002) analysed biopsy
samples from 240 patients with untreated diffuse large B-cell lymphoma and identified 17 genes
predictive of survival after chemotherapy. Segal (2006) reanalysed the data using penalized meth-
ods. The patients in the study were followed up after collection of biopsy specimens with a
median follow-up of 2·8 years. For each patient, a potentially right-censored survival time is avail-
able along with 7399 features representing 4128 genes from the Lymphochip cDNA microarray.
Rosenwald et al. (2002) divided the patients into a training set of 160 patients and a validation
set of 80 patients to gauge predictive performance.

Rosenwald et al. (2002) used hierarchical clustering to identify four signature groups
whose expressions were correlated with the survival times. They also identified a subset of
17 genes predictive of overall survival after chemotherapy. Gui & Li (2005), Segal (2006) and
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Table 5. Feature selection in the diffuse large-B-cell lymphoma data

Unique ID GenBank ID Signature Description

24094 AI476194 lymph CD63 antigen (melanoma 1 antigen)
17048 AA085368 lymph CD63 antigen (melanoma 1 antigen)
29636 NM005194 lymph enhancer binding protein (C/EBP), β
34818 U83461 lymph solute carrier family 31 (copper transporters), member 2
24394 AA729055 MHC major histocompatibility complex, class II, DR α

Lymph, lymph-node signature; MHC, major histocompatibility complex; GenBank, National Institute of
Health genetic sequence database.

Ma & Huang (2007) analysed this data using penalized methods. In each case, the selected fea-
tures mostly belonged to one of the four signature groups in Rosenwald et al. (2002), though the
individual selected features varied across the methods.

5·2. Model and results

Our interest lies in simultaneously identifying an important subset of the features and obtaining
a predictive model for the exact survival times. Let Ti denote the survival time for the i th patient
and let xi denote the corresponding 7399 dimensional feature vector. There were 72 patients in
the training set whose survival times were right-censored. Possibly due to rounding, there were
some survival times equal to zero, so we added one unit to the survival times of all the patients.
We took the logarithm of the shifted survival times and appended them to the xi s to create a p-
dimensional vector yi = (zi , xT

i )
T, where p = 7400 and zi = log(1 + Ti ). We model the yi s jointly

as in § 4·2 after normalizing them. The joint Gaussian model implies an accelerated failure time
model for the survival times, since the conditional mean of the log-shifted survival time zi given
the predictors xi is linear in xi . Since the exact survival times are known for the uncensored
subjects, the response was normalized with the mean and standard deviations of those subjects
only and an intercept for the response was added to the model. A normal prior with zero mean
and variance one was placed on the intercept. The posterior computation proceeds exactly as in
§ 3, but an additional step is needed to impute the shifted log survival times for the censored
subjects from a truncated normal distribution, truncated below by the transformed censoring
time. We ran the adaptive Gibbs sampler for 25 000 iterations with 5000 burn-in and collected
every fifth sample after burn-in to thin the chain. The estimated number of factors was 20, with
a 95% credible interval of (19,21).

We thresholded the posterior mean of the regression coefficients as described in § 4·2 to per-
form a variable selection. The thresholding approach selected 17 features, with all of the features
belonging to three of the four signature groups mentioned in Rosenwald et al. (2002). The three
signature groups were germinal-centre B-cell signature, major histocompatibility complex class
II signature and lymph-node signature, while no genes in the proliferation signature group were
selected. The top features mentioned in Gui & Li (2005) and Segal (2006) also come from the
same three signature groups. In Table 5, we provide a brief description of the top five genes
selected using our approach.

Among the features selected by our approach, the ones with GenBank ID AA729055,
AA805575 and X59812 also appear in Gui & Li (2005) and Segal (2006). Although standard
penalization methods tend to select one of a correlated group of important predictors, our
approach is designed to allow selection of highly correlated predictors into the same model.
This is illustrated in Table 5, as the first two predictors have a correlation coefficient of 0·96.
There are several groups of highly correlated predictors in the selected set of 17.
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Segal (2006) obtained the modest predictive accuracy using a variety of methods, so advocated
exercising care before making prognosis based only on the gene expressions. Our analysis also
suggested that the gene expression data explain only a small proportion of the variability in the
survival times. The 95% predictive intervals for the survival times in the test sample were wide
and contained the true survival times for the uncensored observations in all the cases. The mean
square prediction error and mean absolute prediction error for the uncensored observations were
1·31 and 0·89 while the same for lasso trained with the uncensored observations in the training
sample were 1·28 and 0·90. The proportion of times the predicted survival times for the censored
observations exceeded the censoring time was 0·54. We also performed sensitivity analysis by
varying ν, initial values of a1, a2 and the prior variance of the intercept. The conclusions were
unchanged, with the same set of top 10 genes selected on all occasions.
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APPENDIX

Proofs

Proof of Lemma 1. It is enough to show that, for any � ∈��, ��T is positive semi-definite. For any
vector v ∈ p, vT��Tv is finite since all elements of��T are finite. The proof is completed by observing
that vT��Tv = ‖�Tv‖2 � 0 where ‖ · ‖ denotes the Euclidian norm. �

Proof of Lemma 2. Let �= (wrs),�0 =w0
rs, λ jh = λ0

jh + ψ jh , clearly d2(�,�0)=
(∑p

j=1

∑∞
h=1

ψ2
jh

)1/2
. For any 1 � r, s � p,

∣∣wrs − w0
rs

∣∣� ∞∑
h=1

∣∣λ0
rhψsh

∣∣+ ∞∑
h=1

∣∣λ0
shψrh

∣∣+ ∞∑
h=1

∣∣ψrhψsh

∣∣+ ε � (2M0 + 1)ε + ε2,

by the Cauchy–Schwartz inequality, where M0 ={
max1� j�p

∑∞
h=1(λ

0
jh)

2
}1/2

<∞. Thus d∞(�,�0)� ε∗,
with ε∗ = (2M0 + 1)ε + ε2. �

Proof of Proposition 1. Clearly��

(
��

)= 1, so it is enough to show��

(
��

)= 1. The φ jhs are inde-
pendent of the δhs. Hence marginalizing over the φ jhs yields λ jh | τh ∼ t3(0, τ

−1
h ) where tν(μ, σ 2) denotes

the t distribution with ν degrees of freedom having location μ and scale σ 2. By the Cauchy–Schwartz
inequality, ( ∞∑

h=1

λrhλsh

)2

�
( ∞∑

h=11

λ2
rh

)( ∞∑
h=1

λ2
sh

)
� max

1� j�p

( ∞∑
h=1

λ2
jh

)2

,

and thus ∣∣∣∣
∞∑

h=1

λrhλsh

∣∣∣∣� max
1� j�p

( ∞∑
h=1

λ2
jh

)
.

Hence all the elements of ��T are bounded in absolute value by M , where
M = max1� j�p M j with M j =∑∞

h=1 λ
2
jh . Now,

E
(

M j

)=
∞∑

h=1

E
{

E
(
λ2

jh | τh

)}=
∞∑

h=1

E

(
3

τh

)
=

∞∑
h=1

3bah−1 = 3b

(1 − a)
<∞,
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where b = E
(
δ−1

1

)
and a = E

(
δ−1

2

)
< 1 if a2 > 2. Hence E(M)�

∑p
j=1 E(M j ) <∞ and thus M is finite

almost surely. It follows that �� ⊗��

(
�� ×��

)= 1. �

Proof of Theorem 1. Write ��T =�H�
T
H +�H . Clearly d∞(�,�H )= max1�r,s�p

∣∣aH
rs

∣∣, where aH
rs

is the rsth entry of �H so that aH
rs =∑∞

h=H+1 λrhλsh . An application of the Cauchy–Schwartz inequality
as in the previous proof gives

∣∣∣∣
∞∑

h=H+1

λrhλsh

∣∣∣∣� max
1� j�p

( ∞∑
h=H+1

λ2
jh

)
,

which implies d∞(�,�H )= max1� j�p aH
j j . Now, for a fixed ε > 0,

pr
{

d∞(�,�H )� ε
}= E

{
pr(aH

11 � ε, . . . , aH
pp � ε | δ)}

= E
{

pr(aH
11 � ε | δ)p

}
>
[
E
{

pr(aH
11 � ε | δ)}]p

= [
1 − E

{
pr(aH

11 > ε | δ)}]p �
[

1 − E

{
E(aH

11 | δ)
ε

}]p

=
{

1 − E(aH
11)

ε

}p

,

where the equality in the second line follows from the fact that aH
ii are conditionally independent and iden-

tically distributed given δ and the subsequent two inequalities use Jensen’s and Chebyshev’s inequalities
respectively. Now,

E(aH
11)= E{E(aH

11 | δ)} = E

( ∞∑
h=H+1

3

τh

)
=

∞∑
h=H+1

E

(
3

τh

)
=

∞∑
h=H+1

3bah−1 = 3b

(1 − a)
aH ,

where b = E
(
δ−1

1

)
, a = E

(
δ−1

2

)
< 1 if a2 > 2 and the third equality is a direct consequence of Fubini’s

theorem. Now use the inequality (1 − x/2) > exp(−x) if 0< x � 1.5 to get

pr
{

d∞(�,�H )� ε
}

� exp

{ −6pb

ε(1 − a)
aH

}

if H > log{2b/ε(1 − a)}/ log(1/a). Hence

pr
{

d∞(�,�H ) > ε
}

� 1 − exp

{ −6pb

ε(1 − a)
aH

}
� 6pb

ε(1 − a)
aH

for 6aH pb/{(1 − a)ε}< 1 or H > log{6pb/ε(1 − a)}/ log(1/a). �

Proof of Proposition 2. Let �∗ be a p × k matrix (k � p) and �0 ∈�� such that �0 =�∗�T
∗ +�0.

Set �0 = (�∗ : 0p×∞), then (�0, �0) ∈�� ×�� , with g(�0, �0)=�0. Fix ε > 0, choose ε1 > 0 such
that (2M0 + 1)ε1 + ε2

1 < ε, with M0 as in the proof of Lemma 2. By Lemma 2, g
{

Bε1(�0, �0)
}⊂

B∞
ε (�0), and thus Bε1(�0, �0)⊂ g−1

{
B∞
ε (�0)

}
. Now �

{
B∞
ε (�0)

}= (�� ⊗��) ◦ g−1
{

B∞
ε (�0)

}
�

�� ⊗��{Bε1(�0, �0)}. Clearly, ��{� : d∞(�,�0) < ε1}> 0, so it is enough to show ��
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{� : d2(�,�0) < ε1}> 0. We have,

pr{d2(�,�0) < ε1} = pr

⎧⎨
⎩

p∑
j=1

∞∑
h=1

(λ jh − λ0
jh)

2 < ε2
1

⎫⎬
⎭

� pr

{ ∞∑
h=1

(λ jh − λ0
jh)

2 < ε2
1/p, j = 1, . . . , p

}

= Eδ

⎡
⎣ p∏

j=1

pr

{ ∞∑
h=1

(λ jh − λ0
jh)

2 < ε2
1/p | δ

}⎤
⎦> 0

by the following Lemma. �

LEMMA 3. Fix 1 � j � p. For any ε > 0, pr
{∑∞

h=1(λ jh − λ0
jh)

2 < ε2
1/p | δ}> 0 almost surely.

Proof of Lemma 3. We have λ0
jh = 0 for h > k. Thus for any H � k,

pr

{ ∞∑
h=1

(λ jh − λ0
jh)

2 < ε | δ
}

� pr

{
H∑

h=1

(λ jh − λ0
jh)

2 < ε/2,
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h=H+1

λ2
jh < ε/2 | δ

}
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(λ jh − λ0
jh)

2 < ε/2 | δ
}
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λ2
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}
.

By Theorem 1, pr(
∑∞

h=H+1 λ
2
jh < ε/2)→ 1 as H → ∞, hence we can find H0 > k such that

pr(
∑∞

h=H0+1 λ
2
jh < ε/2) > 0 and thus pr(

∑∞
h=H0+1 λ

2
jh | δ) > 0 almost surely. The proof is completed by

observing that pr
{∑H

h=1(λ jh − λ0
jh)

2 < ε/2 | δ}> 0 almost surely for any H <∞. �

Proof of Theorem 2. Fix ε > 0, �0 ∈�. We have,

K (�0,�)= 1

2
log

det�0

det�
− 1

2
tr(Ip −�−1�0).

Let u0 = det�0, find ε1 > 0 such that |u − u0|< ε1 implies | log u − log u0|< ε. Since det(·) is a contin-
uous function from � to , we can find ε2 such that d∞(�0,�) < ε2 implies | det(�0)− det(�)|< ε1.
Now tr(Ip −�−1�0)=

∑p
i=1(1 − λi ), where λ1 � . . .� λp are the eigenvalues of �−1�0. Since � and

�0 are both positive definite,

0 � λ1 � xT�0x

xT�x
� λp,

where x is any p-dimensional vector with xTx = 1. For any x ∈ p with xTx = 1,∣∣∣∣ xT�0x

xT�x
− 1

∣∣∣∣= |xT�0x − xT�x |
xT�x

.

Now

|xT�0x − xT�x | �
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p∑
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|wi j − w0
i j ||xi x j | � d∞(�0,�)

( p∑
i=1

|xi |
)2

� p d∞(�0,�),

and

xT�x = xT�0x + (xT�0x − xT�x)� λmin(�0)+ (xT�0x − xT�x),
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where λmin(�0) > 0 denotes the smallest eigenvalue of �0. Choose 0< ε3 <λmin(�0)/2p such that
2p2ε3/λmin(�0) < ε. We have∣∣∣∣ xT�0x

xT�x
− 1

∣∣∣∣= |xT�0x − xT�x |
xT�x

� p ε3

λmin(�0)/2
< ε/p,

for all �0 such that d∞(�0,�) < ε3, since |xT�0x − xT�x |<λmin(�0)/2 and thus xT�x >λmin(�0)/2.
Choose ε∗ = min{ε2, ε3}, then for d∞(�0,�) < ε

∗, we have,

K (�0,�)�
1

2

∣∣∣∣ log
det�0

det�

∣∣∣∣+ 1

2

∣∣tr(Ip −�−1�0)
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� 1

2

∣∣∣∣ log(det�0)− log(det�)

∣∣∣∣+ 1

2

p∑
i=1

|1 − λi |

� ε

2
+ p max{|1 − λ1|, |1 − λp|}< ε,

which proves Theorem 2. �
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