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Abstract
Genetical genomics experiments have now been routinely conducted to measure both the genetic
markers and gene expression data on the same subjects. The gene expression levels are often
treated as quantitative traits and are subject to standard genetic analysis in order to identify the
gene expression quantitative loci (eQTL). However, the genetic architecture for many gene
expressions may be complex, and poorly estimated genetic architecture may compromise the
inferences of the dependency structures of the genes at the transcriptional level. In this paper, we
introduce a sparse conditional Gaussian graphical model for studying the conditional independent
relationships among a set of gene expressions adjusting for possible genetic effects where the gene
expressions are modeled with seemingly unrelated regressions. We present an efficient coordinate
descent algorithm to obtain the penalized estimation of both the regression coefficients and sparse
concentration matrix. The corresponding graph can be used to determine the conditional
independence among a group of genes while adjusting for shared genetic effects. Simulation
experiments and asymptotic convergence rates and sparsistency are used to justify our proposed
methods. By sparsistency, we mean the property that all parameters that are zero are actually
estimated as zero with probability tending to one. We apply our methods to the analysis of a yeast
eQTL data set and demonstrate that the conditional Gaussian graphical model leads to more
interpretable gene network than standard Gaussian graphical model based on gene expression data
alone.
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1. Introduction
Genetical genomics experiments have now been routinely conducted to measure both the
genetic variants and gene expression data on the same subjects. Such data have provided
important insights into gene expression regulations in both model organisms and humans
(Brem and Kruglyak, 2005; Schadt et al., 2003; Cheung and Spielman, 2002). Gene
expression levels are treated as quantitative traits and are subject to standard genetic analysis
in order to identify the gene expression quantitative loci (eQTL). However, the genetic
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architecture for many gene expressions may be complex due to possible multiple genetic
effects and gene-gene interactions, and poorly estimated genetic architecture may
compromise the inferences of the dependency structures of genes at the transcriptional level
(Neto et al., 2010). For a given gene, typical analysis of such eQTL data is to identify the
genetic loci or single nucleotide polymorphisms (SNPs) that are linked or associated with
the expression level of this gene. Depending on the locations of the eQTLs or the SNPs, they
are often classified as distal trans-linked loci or proximal cis-linked loci (Kendzioski and
Wang, 2003; Kendzioski et al., 2006). Although such a single gene analysis can be effective
in identifying the associated genetic variants, gene expressions of many genes are in fact
highly correlated due to either shared genetic variants or other unmeasured common
regulators. One important biological problem is to study the conditional independence
among these genes at the expression level.

eQTL data provide important information about gene regulation and have been employed to
infer regulatory relationships among genes (Zhu et al., 2004; Bing and Hoeschele, 2005;
Chen et al, 2007). Gene expression data have been used for inferring the genetic regulatory
networks, for example, in the framework of Gaussian graphical models (GGM) (Schafer and
Strimmer, 2005; Segal et al., 2005; Li and Gui, 2006; Peng et al., 2009). Graphical models
use graphs to represent dependencies among stochastic variables. In particular, the GGM
assumes that the multivariate vector follows a multivariate normal distribution with a
particular structure of the inverse of the covariance matrix, called the concentration matrix.
For such Gaussian graphical models, it is usually assumed that the patterns of variation in
expression for a given gene can be predicted by those of a small subset of other genes. This
assumption leads to sparsity (i.e., many zeros) in the concentration matrix and reduces the
problem to well-known neighborhood selection or covariance selection problems (Dempster,
1972; Meinshausen and Bühlmann, 2006). In such a concentration graph modeling
framework, the key idea is to use partial correlation as a measure of the independence of any
two genes, rendering it straightforward to distinguish direct from indirect interactions. Due
to high-dimensionality of the problem, regularization methods have been developed to
estimate the sparse concentration matrix where a sparsity penalty function such as the L1
penalty or SCAD penalty is often used on the concentration matrix (Li and Gui, 2006;
Friedman et al., 2008; Fan et al., 2009). Among these methods, the coordinate descent
algorithm of Friedman et al. (2008), named glasso, provides a computationally efficient
method for performing the Lasso-regularized estimation of the sparse concentration matrix.

Although the standard GGMs can be used to infer the conditional dependency structures
using gene expression data alone from eQTL experiments, such models ignore the effects of
genetic variants on the means of the expressions, which can compromise the estimate of the
concentration matrix, leading to both false positive and false negative identifications of the
edges of the Gaussian graphs. For example, if two genes are both regulated by the same
genetic variants, at the gene expression level, there should not be any dependency of these
two genes. However, without adjusting for the genetic effects on gene expressions, a link
between these two genes is likely to be inferred. For eQTL data, we are interested in
identifying the conditional dependency among a set of genes after removing the effects from
shared regulations by the markers. Such a graph can truly reflect gene regulation at the
expression level.

In this paper, we introduce a sparse conditional Gaussian graphical model (cGGM) that
simultaneously identifies the genetic variants associated with gene expressions and
constructs a sparse Gaussian graphical model based on eQTL data. Different from the
standard GGMs that assume constant means, the cGGM allows the means to depend on
covariates or genetic markers. We consider a set of regressions of gene expression in which
both regression coefficients and the error concentration matrix have many zeros. Zeros in
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regression coefficients arise when each gene expression only depends on a very small set of
genetic markers; zeros in the concentration matrix arise since the gene regulatory network
and therefore the corresponding concentration matrix is sparse. This approach is similar in
spirit to the seemingly unrelated regression (SUR) model of Zellner (1962) in order to
improve the estimation efficiency of the effects of genetic variants on gene expression by
considering the residual correlations of the gene expression of many genes. In analysis of
eQTL data, we expect sparseness in both the regression coefficients and also the
concentration matrix. We propose to develop a regularized estimation procedure to
simultaneously select the SNPs associated with gene expression levels and to estimate the
sparse concentration matrix. Different from the original SUR model of Zellner (1962) that
focuses on improving the estimation efficiency of the regression coefficients, we focus more
on estimating the sparse concentration matrix adjusting for the effects of the SNPs on mean
expression levels. We develop an efficient coordinate descent algorithm to obtain the
penalized estimates and present the asymptotic results to justify our estimates.

In the next sections, we first present the formulation of the cGGM for both the mean gene
expression levels and the concentration matrix. We then present an efficient coordinate
descent algorithm to perform the regularized estimation of the regression coefficients and
concentration matrix. Simulation experiments and asymptotic theory are used to justify our
proposed methods. We apply the methods to an analysis of a yeast eQTL data set. We
conclude the paper with a brief discussion. All the proofs are given in the online
Supplemental Material.

2. The Sparse cGGM and Penalized Likelihood Estimation
2.1. The sparse conditional Gaussian graphical model

Suppose we have n independent observations from a population of a vector (y′, x′), where y
is a p × 1 random vector of gene expression levels of p genes and x is a q × 1 vector of the
numerically-coded SNP genotype data for q SNPs. Furthermore, suppose that conditioning
on x, y follows a multivariate normal distribution,

(1)

where Γ is a p × q coefficient matrix for the means and the covariance matrix Σ does not
depend on x. We are interested in both the effects of the SNPs on gene expressions Γ and the
conditional independence structure of y adjusting for the effects of x, that is, the Gaussian
graphical model for y = (y1, · · ·, yp) conditional on x. In applications of gene expression
data analysis, we are more interested in the concentration matrix Θ = Σ−1 after their shared
genetic regulators are accounted for. It has a nice interpretation in the Gaussian graphical
model, as the (i, j)-element is directly related to the partial correlation between the ith and
jth components of y after their potential joint genetic regulators are adjusted. In the Gaussian
graphical model with undirected graph (V, E), vertices V correspond to components of the
vector y and edges E = {eij, 1 ≤ i, j ≤ p} indicate the conditional dependence among different
components of y. The edge eij between yi and yj exists if and only if θij ≠ 0, where θij is the
(i, j)-element of Θ. We emphasize that in the graph representation of the random variable y,
the nodes include only the genes and the markers are not part of the graph. We call this the
sparse conditional Gaussian graph model (cGGM) of the genes. Hence, of particular interest
is to identify zero entries in the concentration matrix. Note that instead of assuming a
constant mean as in the standard GGM, model (1) allows heterogeneous means.

In eQTL experiments, each row of Γ and the concentration matrix Θ are expected to be
sparse and our goal is to simultaneously learn the Gaussian graphical model as defined by
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the Θ matrix and to identify the genetic variants associated with gene expressions Γ based on

n independent observations of ( ), i = 1, · · ·, n. From now on, we use yi to denote the
vector of gene expression levels of the p genes and xi to denote the vector of the genotype
codes of the q SNPs for the ith observation unless otherwise specified. Finally, let

 be genotype matrix and 

2.2. Penalized likelihood estimation

Suppose that we have n independent observation ( ) from the cGGM (1). Let

 and . Then the negative of the
logarithm of the likelihood function corresponding to the cGGM model can be written as

where Ξ = (Θ, Γ) represents the associated parameters in the cGGM.

The Hessian matrix of the negative log-likelihood function l(Ξ) is

(see Proposition 1 in Supplementary Material, Section 3). In addition, l(Ξ) is a bi-convex
function of Γ and Θ. In words, this means that for any fixed Θ, l(Ξ) is a convex function of
Γ, and for any Γ, l(Ξ) is a convex function of Θ. When n > max(p, q), the global minimizer
of l(Ξ) is given by

Under the penalized likelihood framework, the estimate of the Γ and Σ in model (1) is the
solution to the following optimization problem,

(2)

where pen1(·) and pen2(·) denote the generic penalty functions, γst is the stth element of the
Γ matrix and θtt′ is the tt′th element of the Θ matrix, and
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Here ρ and λ are the two tuning parameters that control the sparsity of the sparse cGGM.
We consider in this paper both the Lasso or L1 penalty function pen(x) = |x| (Tibshirani,
1996) and the adaptive Lasso penalty function pen(x) = |x|/|x̃|γ for some γ > 0 and any
consistent estimate of x, denoted by x̃ (Zou, 2007). In this paper we use γ = 0.5.

2.3. An efficient coordinate descent algorithm for the sparse cGGM
We present an algorithm for the optimization problem (2) with Lasso penalty function for
pen1(·) and pen2(·). A similar algorithm can be developed for the adaptive Lasso penalty
with simple modifications. Under this penalty function, the objective function is then

(3)

The subgradient equation for maximization of the log-likelihood (3) with respect to Θ is

(4)

where Λij ∈ sgn(Θij). If Γ is known, Banerjee et al. (2008) and Friedman et al. (2008) have
cast the optimization problem (3) as a block-wise coordinate descent algorithm, which can
be formulated as p iterative Lasso problems. Before we proceed, we first introduce some
notations to better represent the algorithm. Let W be the estimate of Σ. We partition W and
SΓ as

Banerjee et al. (2008) show that the solution for w12 satisfies

which by convex duality is equivalent to solving the dual problem

(5)

where . Then the solution for w12 can be obtained via the solution of the Lasso
problem and through the relation w12 = W11β. The estimate for Θ can also be updated in this
block-wise manner very efficiently through the relationship WΘ = I (Friedman et al., 2008).

After we finish an updating cycle for Θ, we can proceed to update the estimate of Γ. Since
the object function of our penalized log-likelihood is quadratic in Γ given Θ, we can use a
direct coordinate descent algorithm to get the penalized estimate of Γ. For the (i, j)th entry of

Γ, γij, note that for an arbitrary q × p matrix A,  where ej and ei are
the corresponding base vector with q and p dimensions. So the derivative of the penalized
log-likelihood function (3)with respect to γij is
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(6)

where function sgn is defined as

Setting the equation (6) to zero, we get the updating formula for γij:

(7)

where  and Γ̃, γ̃ij are the estimates in the
last step of the iteration.

Taking these two updating steps together, we have the following coordinate descent-based
regularization algorithm to fit the sparse cGGM:

The Coordinate Descent Algorithm for the sparse cGGM
1. Start with  and . If CX is not invertible, use Γ = 0

and W = CY + ρI instead.

2. For each j = 1, 2, · · ·, p, solve the Lasso problem (5) under the current estimate of
Γ. Fill in the corresponding row and column of W using w12 = W11β̂. Update β̂.

3. For each i = 1, 2, · · ·, p, and j = 1, 2, · · ·, q update each entry γ̂ij in Γ̂ using the
formula (7), under the current estimate for Θ.

4. Repeat step 2 and step 3 until convergence.

5. Output the estimate β̂, Ŵ and Γ̂.

The adaptive version of the algorithm can be derived in the same steps with adaptive penalty
parameters and is omitted here. Note that when Γ = 0, this algorithm simply reduces to the
glasso or the adaptive glasso (aglasso) algorithm of Friedman et al. (2008). A similar
algorithm was used in Rothman et al. (2010) for sparse multivariate regressions. Proposition
2 in the Supplementary Material proves that the above iterative algorithm for minimizing
pl(Ξ) with respective to Γ and Θ converges to a stationary point of pl(Ξ).

While the iterative algorithm reaches a stationary point of pl(Ξ), it is not guaranteed to reach
the global minimum. Since the objective function of the optimization problem (2) is not
always convex in (Γ, Θ), it is convex in either Γ or Θ with the other fixed. There are
potentially many stationary points due to the high-dimensional nature of the parameter
space. We also note a few straightforward properties of the iterative procedure, namely that
each iteration monotonically decreases the penalized negative log-likelihood and the order
of minimization is unimportant. Finally, the computational complexity of this algorithm is
O(pq) plus the complexity of the glasso.
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2.4. Tuning parameter selection
The tuning parameters ρ and λ in the penalized likelihood formulation (2) determine the
sparsity of the cGGM and have to be tuned. Since we focus on estimating the sparse
precision matrix and the sparse regression coefficients, we use the Bayesian information
criterion (BIC) to choose these two parameters. The BIC is defined as

where pn is the dimension of y, sn is the number of non-zero off-diagonal elements of β̂ and
kn is the number of non-zero elements of Γ̂. The BIC has been shown to perform well for
selecting the tuning parameter of the penalized likelihood estimator (Wang et al., 2007) and
has been applied for tuning parameter selection for GGMs (Peng et al., 2009).

3. Theoretical Properties
Sections 4–5 in the Supplementary Materials state and prove theoretical properties of the
proposed penalized estimates of the sparse cGGM: its asymptotic distribution, the oracle
properties when p and q are fixed as n → ∞ and the convergence rates and sparsistency of
the estimators when p = pn and q = qn diverge as n → ∞. By sparsistency, we mean the
property that all parameters that are zero are actually estimated as zero with probability
tending to one (Lam and Fan, 2009).

We observe that the asymptotic bias for β̂ is at the same rate as Lam and Fan (2009) for
sparse GGMs, which is (pn + sn)/n multiplied by a logarithm factor log pn, and goes to zero
as long as (pn + sn)/n is at a rate of O{(log pn)−k} with some k > 1. The total square errors
for Γ̂ are at least of rate kn/n since each of the kn nonzero elements can be estimated with
rate n−1/2. The price we pay for high-dimensionality is a logarithmic factor log(pnqn). The
estimate Γ̂ is consistent as long as kn/n is at a rate of O{(log pn + log qn)−l} with some l > 1.

4. Monte Carlo Simulations
In this section we present results from Monte Carlo simulations to examine the performance
of the proposed estimates and to compare it with the glasso procedure for estimating the
Gaussian graphical models using only the gene expression data. We also compare the
cGGM with a modified version of the neighborhood selection procedure of Meinshausen
and Bühlmann (2006), where each gene is regressed on other genes and also the genetic
markers using the Lasso regression, and a link is defined between gene i and j if gene i is
selected for gene j and gene j is also selected by gene i. We call this procedure the multiple
Lasso (mLasso). Note that the mLasso does not provide an estimate of the concentration
matrix. For adaptive procedures, the MLEs of both the regression coefficients and the
concentration matrix were used for the weights when p < n and q < n. For each simulated
data set, we chose the tuning parameters ρ and λ based on the BIC.

To compare the performance of different estimators for the concentration matrix, we used
the quadratic loss function
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where β̂ is an estimate of the true concentration matrix Θ. We also compared ||Δ||∞, |||Δ|||∞,
||Δ|| and ||Δ||F, where Δ = Θ − β̂ is the difference between the true concentration matrix and
its estimate, ||A|| = max{||Ax||/||x||, x ∈ Rp, x ≠ 0} is the operator or spectral norm of a matrix

A, ||A||∞ is the element-wise l∞ norm of a matrix A,  for A =
(aij)p×q is the matrix l∞ norm of a matrix A, and ||A||F is the Frobenius norm, which is the
square-root of the sum of the squares of the entries of A. In order to compare how different
methods recover the true graphical structures, we considered the Hamming distance between
the estimated and the true concentration matrix, defined as DIST(Θ, β̂) = Σi;j |I(θij = 0) −
I(θ̂ij ≠ 0)|, where θij is the (i, j)-th entry of Θ and I(·) is the indicator function. Finally, we
considered the specificity(SPE), sensitivity(SEN) and Matthews correlation
coefficient(MCC) scores, which are defined as follows:

where TP, TN, FP and FN are the numbers of true positives, true negatives, false positives
and false negatives in identifying the non-zero elements in the concentration matrix. Here
we consider the non-zero entry in a sparse concentration matrix as “positive.”

4.1. Models for concentration matrix and generation of data
In the following simulations, we considered a general sparse concentration matrix, where we
randomly generated a link (i.e., non-zero elements in the concentration matrix, indicated by
δij) between variables i and j with a success probability proportional to 1/p. Similar to the
simulation setup of Li and Gui (2006), Fan et al. (2009) and Peng et al. (2009), for each link,
the corresponding entry in the concentration matrix is generated uniformly over [−1, −0.5]∪
[0.5, 1]. Then for each row, every entry except the diagonal one is divided by the sum of the
absolute value of the off-diagonal entries multiplied by 1.5. Finally the matrix is
symmetrized and the diagonal entries are fixed at 1. To generate the p × q coefficient matrix
Γ = (γij), we first generated a p×q sparse indicator matrix Δ = (δij), where δij = 1 with a
probability proportional to 1/q. If γij = 1, we generated γij from Unif ([vm, 1] ∪ [−1, −vm]),
where vm is the minimum absolute non-zero value of Θ generated.

After Γ and Θ were generated, we generated the marker genotypes X = (X1, · · ·, Xq) by
assuming , for i = 1, · · ·, q. Finally, given x, we generated y the
multivariate normal distribution Y |X ~ (Γ X, Σ). For a given model and a given
simulation, we generated a dataset of n i.i.d. random vectors (X, Y). The simulations were
repeated 50 times.

4.2. Simulation results when p < n and q < n
We first consider the setting when the sample size n is larger than the number of genes p and
the number of genetic markers q. In particular, the following three models were considered:

Model 1 (p, q, n)=(100, 100, 250), where pr(θij ≠ 0)=2/p, pr(Γij ≠ 0)=3/q;

Model 2 (p, q, n)=(50, 50, 250), where pr(θij ≠ 0)=2/p, pr(Γij ≠ 0)=4/q;

Model 3 (p, q, n)=(25, 10, 250), where pr(θij ≠ 0)=2/p, pr(Γij ≠ 0)=3.5/q.

We present the simulation results in Table 1. Clearly, cGGM provided better estimates (in
terms of the defined LOSS function and the four metrics of “closeness” of the estimated and
true matrices) of the concentration matrix over glasso for all three models considered in all
measurements. This is expected since glasso assumes a constant mean of the multivariate

Yin and Li Page 8

Ann Appl Stat. Author manuscript; available in PMC 2012 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



vector, which is not a misspecified model. We also observed that the adaptive cGGM and
adaptive glasso both resulted in better estimates of the concentration matrix, although the
improvements were minimal. This may be due to the fact that the MLEs of the concentration
matrix when p is relatively large do not provide very informative weights in the L1 penalty
functions.

In terms of graph structure selection, we first observed that different values of the tuning
parameter ρ for the penalty on the mean parameters resulted in different identifications of
the non-zero elements in the concentration matrix, indicating that the regression parameters
in the means indeed had effects on estimating the concentration matrix. Table 1 shows that
for all three models, the cGGM or the adaptive cGGM resulted in higher sensitivities,
specificities and MCCs than the glasso or the adaptive glasso. We observed that glasso often
resulted in much denser graphs than the real graphs. This is partially due to the fact that
some of the links identified by glasso can be explained by shared common genetic variants.
By assuming constant means, in order to compensate for the model misspecification, glasso
tends to identify many non-zero elements in the concentration matrix and result in larger
Hamming distance between the estimate and the true concentration matrix. The results
indicate that by simultaneously considering the effects of the covariates on the means, we
can reduce both false positives and false negatives in identifying the non-zero elements of
the concentration matrix.

The modified neighborhood selection procedure using multiple Lasso accounts for the
genetic effects in modeling the relationship among the genes. It performed better than glasso
or adaptive glasso in graph structure selection, but worse than the cGGM or the adaptive
cGGM. This procedure, however, did not provide an estimate of the concentration matrix.

4.3. Simulation results when p > n
In this Section, we consider the setting when p > n and simulate data from the following
three models with values of n, p and q specified as:

Model 4 (p, q, n)=(1000, 200, 250), pr(Θij ≠ 0)=1.5/p, pr(Γij ≠ 0)=20/q;

Model 5 (p, q, n)=(800, 200, 250), pr(Θij ≠ 0)= 1.5/p, pr(Γij ≠ 0)=25/q;

Model 6 (p, q, n)=(400, 200, 150), pr(Θij ≠ 0)= 2.5/p, pr(Γij ≠ 0)=20/q.

Note that for all three models, the graph structure is very sparse due to the large number of
genes considered.

Since in this setting we did not have consistent estimates of Γ or Ω, we did not consider the
adaptive cGGM or adaptive glasso in our comparisons. Instead, we compared the
performance of cGGM, glasso, and the modified neighborhood selection procedure using
multiple Lasso in terms of estimation of the concentration matrix and graph structure
selection. The performances over 50 replications are reported in Table 2 for the optimal
tuning parameters chosen by the BICs. For all three models, we observed much improved
estimates of the concentration matrix from the proposed cGGM as reflected by both smaller
L2 loss functions and different norms of the difference between the true and estimated
concentration matrices. The mLasso procedure did not provide estimates of the
concentration matrix.

In terms of graph structure selection, since glasso does not adjust for potential effects of
genetic markers on gene expressions, it resulted in many wrong identifications and much
lower sensitivities and smaller MCCs than the cGGM. Compared to the modified
neighborhood selection using multiple Lasso, estimates from the cGGM have smaller
Hamming distance and larger MCC than mLasso. In general, we observed that when p is
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larger than the sample size, the sensitivities from all three procedures are much lower than
the settings when the sample size is larger. For Models 5 and 6, mLasso gave higher
sensitivities but lower specificities than cGGM or glasso. This indicates that recovering the
graph structure in a high-dimensional setting is statistically difficult. However, the
specificities are in general very high, agreeing with our theoretical sparsistency result of the
estimates.

5. Analysis of Yeast eQTL Data
To demonstrate the proposed methods, we present results from the analysis of a data set
generated by Brem and Kruglyak (2005). In this experiment, 112 yeast segregants, one from
each tetrad, were grown from a cross involving parental strains BY4716 and wild isolate
RM11-1a. RNA was isolated and cDNA was hybridized to microarrays in the presence of
the same BY reference material. Each array assayed 6,216 yeast genes. Genotyping was
performed using GeneChip Yeast Genome S98 microarrays on all 112 F1 segregants. These
112 segregants were individually genotyped at 2,956 marker positions. Since many of these
markers are in high linkage disequilibrium, we combined the markers into 585 blocks where
the markers within a block differed by at most 1 sample. For each block, we chose the
marker that had the least number of missing values as the representative marker.

Due to small sample size and limited perturbation to the biological system, it is not possible
to construct a gene network for all 6,216 genes. We instead focused our analysis on two sets
of genes that are biologically relevant: the first set of 54 genes that belong to the yeast
MAPK signaling pathway provided by the KEGG database (Kanehisa et al., 2010), another
set of 1,207 genes of the protein-protein interaction (PPI) network obtained from a
previously compiled set by Steffen et al. (2002) combined with protein physical interactions
deposited in Munich Information center for Protein Sequences (MIPS). Since the available
eQTL data are based on observational data, given limited sample size and limited
perturbation to the cells from the genotypes, it is statistically not feasible to learn directed
graph structures among these genes. Instead, for each of these two data sets, our goal is to
construct a conditional independent network among these genes at the expression levels
based on the sparse conditional Gaussian graphical model in order to remove the false links
by conditioning on the genetic marker information. Such graphs can be interpreted as a
projection of true signaling or protein interaction network into the gene space (Brazhnik et
al., 2002; Kontos, 2009).

5.1. Results from the cGGM analysis of 54 MAPK pathway genes
The yeast genome encodes multiple MAP kinase orthologs, where Fus3 mediates cellular
response to peptide pheromones, Kss1 permits adjustment to nutrient-limiting conditions
and Hog1 is necessary for survival under hyperosmotic conditions. Lastly, Slt2/Mpk1 is
required for repair of injuries to the cell wall. A schematic plot of this pathway is presented
in Figure 1. Note that this graph only presents our current knowledge about the MAPK
signaling pathway. Since several genes such as Ste20, Ste12 and Ste7 appear at multiple
nodes, this graph cannot be treated as the “true graph” for evaluating or comparing different
methods. In addition, although some of the links are directed, this graph does not meet the
statistical definition of either directed or undirected graph. Rather than trying to recover the
MAPK pathway structure, we chose this set of 54 genes on the MAPK pathway to make
sure that these genes are potentially dependent at the expression level.

For each of the 54 genes, we first performed a linear regression analysis for gene expression
level using each of the 585 markers and selected those markers with a p-value of 0.01 or
smaller. We observed a total of 839 such associations between the 585 markers and 54
genes, indicating strong effects of genetic variants on expression levels. We further selected
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188 markers associated with the gene expression levels of at least two out of the 54 genes,
resulting in a total of 702 such associations. In addition, many genes are associated with
multiple markers (see Figure 2(a)). This indicates that many pairs of genes are regulated by
some common genetic variants, which when not taken into account, can lead to false links of
genes at the expression level.

We applied our proposed cGGM on this set of 54 genes and 188 markers and used the BIC
to choose the tuning parameters. The BIC selected λ = 0.28 and ρ = 0.54. With these tuning
parameters, the cGGM procedure selected 188 non-zero elements of the concentration
matrix and therefore 94 links among these 54 genes. In addition, under the cGGM model,
677 elements of the regression coefficients Γ are not zero, indicating the SNPs have
important effects on the gene expression levels of these genes. The numbers of SNPs
associated with the gene expressions range from 0 to 17 with a mean number of 4. Figure
2(b) shows the undirected graph for 43 linked genes on the MAPK pathway based on the
estimated sparse concentration matrix from the cGGM. This undirected graph constructed
based on the cGGM can indeed recover lots of links among the 54 genes on this pathway.
For example, the kinase Fus3 is linked to its downstream genes Dig1, Ste12 and Fus1. The
cGGM model also recovered most of the links to Ste20, including Bni1, Ste11, Ste12, Ste5
and Ste7. Ste20 is also linked to Cdc42 through Bni1. Clearly, most of the links in the upper
part of the MAPK signaling pathway were recovered by cGGM. This part of the pathway
mediates cellular response to peptide pheromones. Similarly, the kinase Slt2/Mpk1 is linked
to its downstream genes Swi4 and Rlm1. Three other genes on this second layer of the
pathway, Fks1, Rho1 and Bck1, are also closed linked. These linked genes are related to cell
response to hypotonic shock.

As a comparison, we applied the glasso to the gene expression of these 54 genes without
adjusting the effects of genetic markers on gene expressions and summarize the results in
Table 3. The optimal tuning parameter λ = 0.145 was selected based on the BIC, which
resulted in selection of 341 edges among the 54 genes (i.e., 682 non-zero elements of the
concentration matrix), including all 94 links selected by the cGGM. The difference of the
estimated graph structures between the cGGM and glasso can be at least partially explained
by the genetic variants associated with the expression levels of multiple genes. Among these
247 edges that were identified by only the glasso, 41 pairs of genes were associated with at
least one genetic variant. The cGGM adjusted the genetic effects on gene expression and
therefore did not identify these edges at the expression levels. Another reason is that the
glasso assumes a constant mean vector for gene expression, which clearly misspecified the
model and led to the selection of more links.

We also compared the graph identified by the modified neighborhood selection procedure of
using multiple Lasso. Specifically, each gene was regressed on all other genes and 188
markers using the Lasso. Again, the BIC was used for selecting the tuning parameter. This
procedure identified a total of 45 links among the 54 genes. In addition, a total of 33
associations between the SNPs and gene expressions were identified. Among these 45 links,
36 were identified by the cGGM and 45 were identified by glasso.

Table 4 shows a summary of the degrees of the graphs estimated by these three procedures.
It is clear that glasso resulted in a much denser graph than the neighborhood selection and
cGGM, and the mLasso tends to select few links.

5.2. Results from the cGGM analysis of 1207 genes on yeast PPI network
We next applied the cGGM to the yeast protein-protein interaction network data obtained
from a previously compiled set by Steffen et al. (2002) combined with protein physical
interactions deposited in MIPS. We further selected 1,207 genes with variance greater than
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0.05. Based on the most recent yeast protein-protein interaction database BioGRID (Stark et
al., 2011), there are a total of 7,619 links among these 1,207 genes. The BIC chose λ = 0.34
and ρ = 0.43, which resulted in selection of 12,036 links out of a total of 727,821 possible
links, which gives a sparsity of 1.65%. Results from comparisons with the two other
procedures are shown in Table 3. The glasso without adjusting for the effects of genetic
markers resulted in a total of 18,987 edges with an optimal tuning parameter λ = 0.22. There
were 9,854 links that were selected by both procedures. Again glasso selected a lot more
links than the cGGM, among the links that were identified by the glasso only, 1,569 pairs
are associated with at least one common genetic marker (see Table 3), further explaining
that some of the links identified by gene expression data alone can be due to shared
comment genetic variants.

The modified neighborhood selection procedure mLasso identified only 1,917 edges with λ
= 0.42, out of which 1,750 were identified by the cGGM and 1,916 were identified by the
glasso. There was a common set of 1,749 links that were identified by all three procedures.
A summary of the degrees of the graphs estimated by these three procedures is given in
Table 4. We observe that the glasso gave a much denser graph than the other two
procedures, agreeing with what we observed in simulation studies.

If we treat the PPI of the BioGRID database as the true network among these genes, the true
positive rate from cGGM, glasso and the modified neighborhood selection procedure was
0.067, 0.071 and 0.019, respectively, and the false positive rate was 0.016, 0.026 and
0.0025, respectively. The MCC score from cGGM, glasso and the modified neighborhood
selection procedure was 0.041, 0.030 and 0.033, respectively. One reason for having low
true positive rates is that many of the protein-protein interactions cannot be reflected at the
gene expression level. Figure 3(a) shows the histogram of the correlations of genes that are
linked on the BioGRID PPI network, indicating that many linked gene pairs have very small
marginal correlations. The Gaussian graphical models are not able to recover these links.
Figure 3 plots (b) – (d) show the marginal correlations of the genes pairs that were identified
by cGGM, glasso and mGlasso, clearly indicating that the linked genes identified by the
cGGM have higher marginal correlations. In contrast, some linked genes identified by
glasso have quite small marginal correlations. Another reason is that the PPI represents the
marginal pair-wise interactions among the proteins rather than the conditional interactions.

6. Conclusions and Discussion
We have presented a sparse conditional Gaussian graphical model for estimating the sparse
gene expression network based on eQTL data in order to account for genetic effects on gene
expressions. Since genetic variants are associated with expression levels of many genes, it is
important to consider such heterogeneity in estimating the gene expression networks using
the Gaussian graphical models. We have demonstrated by simulation studies that the
proposed sparse cGGM can estimate the underlying gene expression networks more
accurately than the standard GGM. For the yeast eQTL data set we analyzed, the standard
Gaussian graphical model without adjusting for possible genetic effects on gene expressions
identified many possible false links that result in very dense graphs and make the
interpretation of the resulting networks difficult. On the other hand, our proposed cGGM
resulted in a much sparser and biologically more interpretable network. We expect similarly
good performance on data from other published sources, such as from Schadt et al. (2003)
and Cheung and Spielman (2002).

Due to the limits of the gene expression data, one should not expect to recover completely
the true signaling networks since many dependencies among these genes can be observed
only at the protein or metabolite level. In any global biochemical network such signaling
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network or protein interaction network, genes do not interact directly with other genes;
instead, gene induction or repression occurs through the activation of certain proteins, which
are products of certain genes (Brazhnik et al., 2002; Kontos, 2009). Similarly, gene
transcription can also be affected by protein-metabolite complexes. Despite these limitations
of the gene expression, it is still useful to abstract the actions of proteins and metabolites and
represent genes acting on other genes in a gene network (Kontos, 2009). This gene network
is what we aim to learn based on the proposed cGGM. As we observed from our analysis of
the yeast eQTL data, such graphs or gene networks constructed from the cGGM can indeed
explain the data and provide certain biological insights into gene interactions. Such graphs
can be interpreted as a projection of true signaling or protein interaction network into the
gene space (Brazhnik et al., 2002; Kontos, 2009).

We have focused in this paper on estimating the sparse conditional Gaussian graphical
model for gene expression data by adjusting for the genetic effects on gene expressions.
However, we expect that by explicitly modeling the covariance structure among the gene
expressions, we should also improve the identification of the genetic variants associated
with the gene expressions (Rothman et al., 2010). This is in fact the original motivation of
the SUR models proposed by Zellner (1962). It would be interesting to investigate
theoretically as to how modeling the concentration matrix can lead to improvement in
estimation and identification of the genetic variants associated with the gene expression
traits.

We used the Gaussian graphical models for studying the conditional independence among
genes at the transcriptional level. Such undirected graphs do not provide information on
causal dependency. Data from genetic genomics experiments have been proposed to
construct the gene networks represented by directed causal graphs. For example, Liu et al.
(2008) and Bing and Hoeschele (2005) used structural equation modeling and a genetic
algorithm to construct causal genetic networks among genetic loci and gene expressions.
Neto et al. (2009) developed an efficient Markov chain Monte Carlo algorithm for joint
inference of causal network and genetic architecture for correlated phenotypes. Although
genetical genomics data can indeed provide opportunity for inferring the causal networks at
the transcriptional level, these causal graphical model-based approach can often only handle
a small number of transcripts because the number of possible directed graphs is super-
exponential in the number of genes considered (Chickering et al., 2004). Regularization
methods may provide alternative approaches to joint modeling of genetic effects on gene
expressions and causal graphs among genes at the expression level.
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Fig 1.
The yeast MAPK pathway from the KEGG database
http://www.genome.jp/kegg/pathway/sce/sce04011.html
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http://www.genome.jp/kegg/pathway/sce/sce04011.html


Fig 2.
Analysis of yeast MAPK pathway. (a) Association between 188 markers and 54 genes in the
MAPK pathway based on simple regression analysis. Black color indicates significant
association at p-value< 0.01. (b) The undirected graph of 43 genes constructed based on the
cGGM.
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Fig 3.
Histograms of marginal correlations for pairs of linked genes based on BioGRID (a) and
linked genes identified by cGGM (b), glasso (c) and a modified neighborhood selection
procedure (mLasso) (d).
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Table 3

Comparison of the links identified by the cGGM, modified neighborhood selection using multiple Lasso
(mLasso), the graphical Lasso (glasso) for the genes of the MAPK pathway and genes of the protein-protein
interaction (PPI) network. Shown in the table is the number of links that were identified by the procedure
indexed by row but were not identified by the procedure indexed by column due to sharing of at least one
common

cGGM mLasso

MAPK pathway (PPI network)

cGGM

- 0 (0)

mLasso

10 (218) -

glasso

41 (1569) 2 (66)
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