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Abstract

Plexins are a family of genes (A,B,C, and D) that are expressed in many organ systems. Plexins expressed in the immune
system have been implicated in cell movement and cell-cell interaction during the course of an immune response. In this
study, the expression pattern of Plexin-B2 and Plexin-D1 in dendritic cells (DCs), which are central in immune activation, was
investigated. Plexin-B2 and Plexin-D1 are reciprocally expressed in myeloid and plasmacytoid DC populations. Plasmacytoid
DCs have high Plexin-B2 but low Plexin-D1, while the opposite is true of myeloid DCs. Expression of Plexin-B2 and Plexin-D1
is modulated upon activation of DCs by TLR ligands, TNFa, and anti-CD40, again in a reciprocal fashion. Semaphorin3E, a
ligand for Plexin-D1 and Plexin-B2, is expressed by T cells, and interestingly, is dramatically higher on Th2 cells and on DCs.
The expression of Plexins and their ligands on DCs and T cells suggest functional relevance. To explore this, we utilized
chimeric mice lacking Plxnb2 or Plxnd1. Absence of Plexin-B2 and Plexin-D1 on DCs did not affect the ability of these cells to
upregulate costimulatory molecules or the ability of these cells to activate antigen specific T cells. Additionally, Plexin-B2
and Plexin-D1 were dispensable for chemokine-directed in-vitro migration of DCs towards key DC chemokines, CXCL12 and
CCL19. However, the absence of either Plexin-B2 or Plexin-D1 on DCs leads to constitutive expression of IL-12/IL-23p40. This
is the first report to show an association between Plexin-B2 and Plexin-D1 with the negative regulation of IL-12/IL-23p40 in
DCs. This work also shows the presence of Plexin-B2 and Plexin-D1 on mouse DC subpopulations, and indicates that these
two proteins play a role in IL-12/IL-23p40 production that is likely to impact the immune response.
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Introduction

Semaphorins and plexins were initially identified as key

molecules in axon guidance during neuronal development [1,2].

Semaphorins are classified into three different groups based on

their origin and structural homology; invertebrate, vertebrate and

viral semaphorins [3]. Plexin receptors are divided into two large

groups, invertebrate and vertebrate, and further subdivided into

four different families, A–D [4]. Although plexins are considered

receptors for semaphorins, this view has been revised as

semaphorins have been demonstrated to mediate signal transduc-

tion [5–8]. The interactions between semaphorins and plexins are

varied. Semaphorins can interact with multiple plexins on a single

cell type or across multiple cell types and vice versa [4]. Plexins

and semaphorins control cell movement and migration and have

been implicated in neural cell function, vasculature formation, and

organ development [9–12].

Recent work has implicated plexins and semaphorins in the

regulation of immune system [13–16]. Several plexins and

semaphorins are expressed by both naı̈ve and activated immune

cells. Plexin-D1 and Semaphorin-3E are expressed in the

thymus [12]; Plexin-A1 and Semaphorin-6D are expressed on

DCs and T cells respectively [14,17,18]; Semaphorin-4A is

expressed by Th1 polarized T cells and DCs [19]; Semaphorin-

4D is expressed by T cells, DCs, and activated B cells [13,20–

24]; Plexin-A4 is expressed by T cells, B cells and DCs [16];

and Plexin-C1 is also expressed by DCs [15]. The wide

distribution of plexins and semaphorins across immune system

cells and environments suggest that they function in immune

system development and response.

The function of plexins and semaphorins on DCs has not yet

been fully characterized. Plexin-A1 expression on DCs is required

for proper T-cell activation and DC migration [14,18]. Sema-

phorin-6D, a known ligand for Plexin-A1, is expressed on

activated T cells and is required for late-phase T cell proliferation

[17]. Mice deficient in Plexin-A4 develop exacerbated MOG-

induced experimental autoimmune encephalomyelitis (EAE) and

defective inflammatory cytokine production [16,25]. Semaphorin-

4D maintains B-cell homeostasis and facilitates humoral immune
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responses [22]. The functions of plexins and semaphorins in cell to

cell communication demonstrate their importance in the immune

response.

To date, research regarding Plexin-D1 and Plexin-B2 in the

immune system has been limited. In other systems Plexin-D1

partners with two different semaphorin molecules: Semaphorin-3E

and Semaphorin-4A [11,26]. Plexin-B2 has been found to have

several semaphorin ligands including Semaphorin-3E, Sema-

phorin-4A, Semaphorin-4C, and Semaphorin-4D [27–30].

Plexin-D1 was recently shown to be expressed by double positive

thymocytes and facilitate their migration from the cortex into the

medulla [12]. Plexin-B2 is expressed on T-dependent germinal

center B cells but not T-independent germinal center B cells,

though the physiological consequence of this increase in expression

are unknown [31]. Studies of development in the model organism

zebrafish have shown that Plexin-B2 and Plexin-D1 both impact

sprouting, but in different ways. Plexin-B2 deficiency results in

delayed migration of sprouting angioblast while Plexin-D1

deficiency results in early angioblast sprouting [27]. These findings

show that zebra fish Plexin-B2 and Plexin-D1 both function in the

proper timing of cell homing, but their functional effects are

exerted indifferent ways.

This study reports that Plexin-B2 and Plexin-D1 are differen-

tially expressed in DCs and shows that this expression can be

modulated by a number of immune activators. To address the role

of Plexin-B2 and Plexin-D1 in DC development and function,

Plxnd12/2 and Plxnb22/2 mice were utilized. Due to the

embryonic lethality of these mice, chimeric mice created by fetal

liver transplantation were utilized as previously described [32].

In vitro and in vivo approaches to examine the direct effect of

Plexin-B2 and Plexin-D1 on DCs were employed. These studies

show that DCs lacking Plexin-B2 and Plexin-D1 were capable of

inducing a normal CD4+ T cell response, migrating properly

towards chemokines and accumulating in the spleen similar to

wildtype cells. Additionally, Plxnb22/2 and Plxnd12/2 DCs secrete

normal amounts of TNFa and IL-6. However, both Plxnb22/2

and Plxnd12/2 DCs are hyper-responsive in their secretion of IL-

12/IL-23 p40 at the steady state. This suggests that Plexin-B2 and

Plexin-D1 are negative regulators of IL-12/IL-23p40 response,

demonstrating both plexins may function in the same pathway in

DC. Modulation of this important pathway may be controlled by

the targeting both Plexin-B2 and Plexin-D1.

Results

Plexin-B2, Plexin-D1, and Semaphorin-3E Expression in
Immune Cells

Expression patterns of individual plexins in the immune system

during cell maturation or activation have been reported in the

literature. Prior work primarily focused on the expression of

Plexin-B2 and Plexin-D1 on lymphocytes. Plexin-B2 is expressed

on B cells from T cell dependent germinal centers but not T

independent germinal centers [31]. Plexin-D1 is expressed by

thymocytes and further down-regulated with T cell maturation as

well as by activated B cells [12,32]. However the expression of

these two genes in cells of the myeloid-monocytic lineage has not

been explored. Studies in this paper extended Plexin-B2 and

Plexin-D1 expression studies to include another immune cell type,

DCs. DCs are required for T cell priming in the secondary

lymphoid organs. Plexin-B2 and Plexin-D1 is expressed on cells

sorted by flow cytometry which represent splenic myeloid DCs

(mDCs) (CD11b+CD11c+) (Figure1A, B, and C). Plexin-B2 is

expressed by bone marrow derived DCs (BMDCs) that were

treated with GM-CSF and IL-4 for 6 days (D6), while cells treated

with the same cytokines for 10 days (D10) show decreased

expression, and then increases slightly with the addition of TNFa
and CD40L treatment (Figure 1A). Plexin-B2 expression on mDCs

is not increased by treatment with toll-like receptor (TLR) ligands

(P3C, TLR1/2), lipopolysaccharide (LPS, TLR4), or CpG

(TLR9). Plexin-B2 is also highly expressed by plasmacytoid DCs

(CD11c+B220+mPDCA1+) (Figure 1A, B).

The expression pattern of Plexin-B2 is in contrast with the

expression pattern of Plexin-D1. It increases during the matura-

tion of BMDCs and with treatment by TLR ligands P(3)C, LPS,

and CpG (Figure 1C). Plexin-D1 expression is not increased in

response to treatment with TNFa or CD40L, and is expressed at a

negligible level on plasmacytoid DCs. Both Plexin-B2 and Plexin-

D1 are expressed on splenic ex vivo DCs (Figure 1A, C).

Expression of Plexin-B2 throughout DC maturation was

confirmed at the protein level using a monoclonal antibody

against Plexin-B2 (Figure 1B). In conventional DCs that are

produced with GM-CSF and IL-4, the data shows that expression

of Plexin-B2 is bimodal at day 6, but singular with lower peak

expression at day 10. In plasmacytoid DCs that are matured with

Flt3L at day 6 and 10, Plexin-B2 is highly expressed. These data

support the differential cDNA expression pattern of Plexin-B2.

Antibodies to detect Plexin-D1 effectively are not commercially

available; therefore, we did not determine expression of Plexin-D1

at the protein level.

Studies have shown that the predominant Plexin-D1 partner

in the immune system is Semaphorin-3E, although the specific

cell type providing the ligand is unknown [11,12]. These studies

show that Semaphorin-3E is expressed in the thymic medulla

where it creates a gradient that is responsible for migration of

Plexin-D1 expressing thymocytes from the cortex into the

medulla [12]. The immune system binding partner for Plexin-

B2 is unknown. However, in zebra fish angioblast, Semaphorin-

3E is the ligand for Plexin-B2, and Plexin-D1 antagonizes the

Plexin-B2/Semaphorin-3E pathway. Upon observing the oppos-

ing expression patterns of Plexin-B2 and Plexin-D1 in cDCs, we

hypothesized that Semaphorin-3E may also be present on DCs.

Semaphorin-3E expression was analyzed in a number of

immune cells (Figure 1D). The data show that Semaphorin-3E

is minimally detected in naı̈ve and activated T and B cell

populations. However, Semaphorin-3E is highly expressed on

Th2 skewed T cells and splenic cDCs. The expression pattern

of Semaphorin-3E suggests that partnering of this protein with

Plexin-B2 and Plexin-D1 during the course of an immune

response may be important for T cell function.

Plxnb22/2 and Plxnd12/2 do not Affect DC Maturation
To further assess function of Plexin-B2 and Plexin-D1,

Plxnb22/ 2 and Plxnd12/2 DCs were studied. Plxnb22/2 and

Plxnd12/2 mice die shortly after birth, and therefore fetal liver

chimeric mice were utilized to study Plexin-B2 and Plexin-D1 in

the immune system. Lethally irradiated wild type congenic mice

were reconstituted with hematopoietic cells from E14 fetal livers of

Plxnb22/2, Plxnd12/2, or wild type siblings. Plxnb22/2 and

Plxnd12/2 DCs were derived in vitro in the presence of GM-CSF

and IL-4. BMDCs from Plxnb22/2, Plxnd12/2, and wild type

chimeric mice were then stimulated with LPS to determined

expression of co-stimulatory molecules on the DCs. Surface levels

of CD40, CD80, CD86, and I-Ab were equivalent between wild

type, Plxnb22/2 and Plxnd12/2 mice at both the basal level and

post activation indicating that these two plexins do not affect DC

maturation (Figure 2).

Plexin-B2 and Plexin-D1 and Dendritic Cells
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Plxnb22/2 and Plxnd12/2 DCs Stimulate T Cells Similarly
to Wild Type

DCs are proficient antigen presenting cells required for proper

T cell selection in the thymus and activation of naı̈ve T cells in the

periphery [33,34]. DCs take up antigen and present it to T cells in

the context of MHC molecules [34]. Upon cognate antigen

encounter, T cells proliferate, release a series of cytokines, and

function as cytotoxic T-lymphocytes or helper T cells (Th) [34].

The ability of Plxnb22/2 and Plxnd12/2 DCs to take up

ovalbumin (OVA) protein was assessed in vitro. DCs were cultured

for 2 hours in the presence of FITC-labeled OVA protein. The

amount of OVA taken up by DCs was assessed by flow cytometry.

Plxnb22/2, Plxnd12/2 and wild type DCs were able take up

antigen equivalently as shown by the level of mean fluorescence

intensity of the analyzed DCs (Figure 3A).

To determine the role of Plexin-B2 and Plexin-D1 in DCs, we

performed an in vitro antigen presentation assay using transgenic T

cells specific for OVA peptide 323–339, OTII T cells. Freshly

isolated carboxyfluorescein succinimidyl ester (CFSE)-labeled

OTII T cells were cultured in the presence of OVA protein-

pulsed Plxnb22/2, Plxnd12/2, and wild type splenic DCs for three

days. Non OVA-pulsed DCs were used as a negative control.

Proliferation of Vb5+ OTII T cells was assessed by flow cytometry.

As shown in Figure 3B, Plxnb22/2 and Plxnd12/2 DCs are

capable of stimulating T cells similarly to wild type. These data

suggests that neither Plexin-B2 nor Plexin-D1 play critical roles

during the in vitro activation of CD4+ T cells by DCs.

Plexin-B2 and Plexin-D1 do not Affect the Migration of
DCs

Plexins and semaphorins have been implicated in migration of

many different cell types including neuronal, endothelial, and

immune cells [7]. In zebra fish angioblast cells, knockdown of

Plexin-B2 or its ligand Semaphorin-3E yields delayed sprouting of

intersegmental (ISV) angioblast during development [27]. Knock-

down of Plexin-D1 in zebra fish embryos results in an opposite

Figure 1. Plexin-B2, Plexin-D1, and Semaphorin-3E expression. (A) Expression of Plxnb2 in splenic DCs, BMDCs at day 6 (D6) and day 10
(D10), D10 post 16 hour activation by TNF (20 ng/ml), CD40L (1 mg/ml), TLR ligands P3C (1 mg/ml), (LPS (1 mg/ml), CpG (4 mg/ml), and plasmacytoid
DCs (pDCs) as measured by real-time PCR. Data are representative of three independent experiments. (B) Expression of PlxnB2 in BM-derived pDCs
and cDCs at D3, D6, and D10. Green lines indicate IgG control antibody staining, red histograms are Plxnb2 antibody staining. (C) Expression of Plxnd1
in sDCs, BM-derived DCs D6, D10, post activation, and pDC as measured by real-time PCR. (D) Expression of Semaphorin3E in sorted naı̈ve and
activated T cell and B cell populations, and DCs. Data are representative of 3 independent experiments.
doi:10.1371/journal.pone.0043333.g001

Plexin-B2 and Plexin-D1 and Dendritic Cells
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effect of early ISV sprouting [27]. In the mouse nervous system,

Plxnb22/2 animals show defects in neuronal cell homing that

result in neural tube closure defects and cerebellum disorganiza-

tion [35]. Plexin-D1 is required for endothelial cell patterning [11]

as well as migration of DP thymocytes from the cortex into the

medulla during thymic maturation in mouse [12]. Therefore we

investigated the ability of Plxnb22/2 and Plxnd12/2 DCs to

migrate towards chemokines that are associated DC homing to the

lymph nodes, CXCL12 and CCL19 [18]. DCs were placed in the

top chamber of transwell migration chambers. Cytokines

CXCL12 (Figure 4A), CCL19 (Figure 4B), or media alone as a

control were place in the bottom of the transwell chambers. We

observed that at the 10 ng, 100 ng, and 1000 ng concentrations of

cytokines and with the media control Plxnb22/2 DCs migrated

similarly to wild type. Plxnd12/2 DCs migrated less efficiently

towards CXCL12 compared to wild type (Figure 4A), although the

trend did not reach statistical significance. This trend was not

observed during migration towards CCL19 (Figure 4B). To further

investigate the migration and homing capabilities of DCs deficient

in Plexin-B2 or Plexin-D1, DCs in the spleens of Plxnb22/2,

Plxnd12/2, and wild type reconstituted mice were visualized using

immunoflourescent staining. In Figure 4C, the data show that

CD11b+ macrophages, CD11c+ DCs, and B220+ B cells were

present in similar architecture in Plxnb22/2, Plxnd12/2, and wild

type spleens. This data shows that Plexin-B2 and Plexin-D1 did

not affect migration towards lymph node homing cytokines or the

architecture of DCs, macrophages, or B cells to the spleen.

Plexin-B2 and Plexin-D1 Affect the Basal IL-12/IL-23p40
Expression

To characterize DC activation cytokine profile experiments of

the common DC cytokines IL-6, TNFa, and IL-12/IL-23p40

were performed. Supernatants were collected from treatment of

DC cultures with LPS, P3C, and anti-CD40 antibody and

followed by ELISAs to determine amount of cytokine released

from the DCs. As shown in Figure 5A, we determined that

levels of IL-6 and TNFa cytokines released in culture

supernatants 24 hours post stimulation were equivalent between

Plxnb22/2, Plxnd12/2, and wild type DCs. However, we

observed that in unstimulated, CD40L stimulated, and LPS

Figure 2. DCs maturation is not affected in the absence of Plxnb2 and Plxnd1. Plxnb22/2 and Plxnd12/2 DCs are able to upregulate cell
surface receptors. DCs were derived in the presence of GM-CSF and IL4 from the bone marrow of mice reconstituted with Plxnb22/2, Plxnd12/2, and
wild type fetal liver cells. DCs were then cultured in the presence of LPS and cell surface receptor expression was assessed 24 hours later using flow
cytometry. Data are representative of 3 independent experiments. n = 6 mice per group.
doi:10.1371/journal.pone.0043333.g002

Plexin-B2 and Plexin-D1 and Dendritic Cells
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stimulated DCs, protein levels of IL-12/IL-23p40 are higher in

both Plxnb22/2 and Plxnd12/2 DCs when compared to wild

type cells. Additionally, a time course analysis of IL-12/IL-

23p40 transcript production was performed by real-time PCR.

DCs were isolated from the spleens of Plxnb22/2 and Plxnd12/2

mice and stimulated with LPS or sham for 6 hours. Cells were

harvested after 0 hours, 6 hours of sham treatment, and 6 hours

of LPS treatment and IL-12 mRNA levels were determined

(Figure 5 B). The data showed that IL-12/IL-23p40 mRNA

levels in the wild type controls were low at the 0 and 6 hours of

sham treatment time points and increased at the 6 hour with

LPS treatment time point. However, IL-12/IL-23p40 expression

was upregulated in Plxnb22/2 and Plxnd12/2 DCs in all time

points regardless of the absence of presence of LPS stimulation.

Figure 3. Plxnb22/2 and Plxnd12/2 DCs efficiently stimulate antigen specific T cells. (A) OVA uptake for Plxnb22/2, Plxnd12/2, and wild type
DCs. DCs were isolated from spleens of mice reconstituted with Plxnb22/2, Plxnd12/2, and wild type fetal liver cells and cultured in the presence of
OVA-FITC for 30 minutes. OVA uptake was assessed by flow cytometry. Data are representative of 2 independent experiments. n = 6 mice per group.
(B) DCs were isolated from spleens of mice reconstituted with Plxnb22/2, Plxnd12/2, and wild type fetal liver cells. DCs were then co-cultured with
OTII-specific T cells in the presence of OVA and T cell proliferation was assessed by CFSE dilution 72 hours later using flow cytometry. Data are
representative of 3 independent experiments. n = 9 mice per group.
doi:10.1371/journal.pone.0043333.g003

Plexin-B2 and Plexin-D1 and Dendritic Cells
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The highest level of IL-12/IL-23p40 detected was 6 hours post-

LPS treatment for both Plxnb22/2 and Plxnd12/ 2 DCs.

Discussion

This study characterized the expression of Plexin-B2, Plexin-

D1, and Semaphorin-3E in various immune cell types. Plexin-B2

is expressed early in development of BMDCs, decreases, and then

increases at maturation and with treatment of TNFa or LPS but

not TLR ligands. It is also highly expressed by pDCs. The bi-

modal expression pattern in cDCs and high expression in pDCs of

Plexin-B2 is opposite that of Plexin-D1. Plexin-D1 expression

increases in myeloid DCs throughout maturation, and is not

expressed on pDCs. Expression of Plexin-D1 by myeloid DCs is

increased when these cells are activated in the presence of TLR

agonists. Expression studies of a ligand for Plexin-B2 and Plexin-

D1, Semaphorin-3E, revealed that Semaphorin-3E is highly

expressed by Th2-type T cells and DCs. The differential

expression of Plexin-B2 and Plexin-D1 on DCs in this study and

previous studies in the literature demonstrating a role for Plexin-

D1 in thymocyte development [12], suggests that absence of

Plexin-B2 and/or Plexin-D1 would lead to abnormal T cell-DC

interactions. Although a role for Plexin-D1 in the thymocyte

migration has been previously reported, these studies do not

address the role of Plexin-D1 in T cell activation during immune

responses [12]. Studies of other plexins have demonstrated that

plexins can have a profound impact on T cell-DC interactions. For

example, Plexin-A1 deficient DCs result in an 85% reduction of T

cell proliferation in response to antigen both in-vitro and in-vivo

[14,17].

Another recent study reported expression of Plexin-D1 and

Plexin-B2 in the lungs of OVA stimulated animals [36]. Consistent

with our results, in this study Plexin-B2 was expressed by lung

APC-like cells further pointing to a potential role for Plexin-B2 in

antigen presentation during inflammation. Plexin-D1 expression

in the lung was primarily localized to the endothelial cell

compartment as well as macrophages. These studies further

demonstrated a role for Plexin-D1 and Plexin-B2 in inflammation

through antigen presentation.

The analysis reported in this study of Plxnb22/2 and Plxnd12/2

mice did not reveal a role for Plexin-B2 or Plexin-D1 in antigen

uptake by DCs or stimulation of T cells leading to proliferation.

These findings suggest that while other plexins are required for T

cell proliferation, Plexin-B2 and Plexin-D1 likely participate in

other functions of DCs. Alternatively, there may have been other

molecules that performed functions redundant to those of Plexin-

B2 and Plexin-D1, which obscured the effect of individual gene

deletion.

Figure 4. Plxnb22/2 and Plxnd12/2 DCs migrate similarly to wild type control towards chemokine gradients. (A) Purified wildtype (black
bar), Plxnb22/2 (grey bar), and Plxnd12/2 (open bar) DCs were placed in upper wells and subjected to in-vitro migration assays in the presence of
medium alone, CXCL12 and CCL19. Migrated cells were quantified by toxilight (Lonza, Basel, Switzerland) according to the manufacturers instructions
and normalized to a standard curve n = 6–7 mice per group. (B) Five mm sections of spleens from wildtype, Plxnb22/2 and Plxnd12/2 mice were
labeled with B220-AF350 (blue), CD11b-PE (red) and CD11c-FITC (green). FITC signal was amplified using anti-FITC-AF488. Images were acquired
using a Zeiss Axiovert 200 M confocal immunofluorescent microscope. n = 3 mice per group.
doi:10.1371/journal.pone.0043333.g004
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Plexins and semaphorins mediate cell migration in the

immune system. Plexin-C1 is expressed on DCs and facilitates

inhibition of chemokine induced migration when bound to ligand

[37]. Plexin-A1 is required for transmigration of DCs across

lymphatic endothelial cells yet is dispensable for chemokine

induced migration in-vitro [18]. DCs migrate towards the lymph

node homing chemokines CXCL12 and CCL19 upon matura-

tion. The studies presented here show that Plexin-B2 and Plexin-

D1 do not play a detectable role in migration towards lymph

node homing cytokines. These studies also demonstrate that in

steady state DC cell number and pattern in the spleen are similar

between Plxnb22/2, Plxnd12/2, and wild type. DCs are very

dynamic in their migration patterns throughout maturation and

activation in vivo, and this cannot necessarily be mimicked in vitro.

Future studies should address a role for Plexin-B2 and Plexin-D1

migration in vivo. Studies in vivo may reveal that Plexin-B2 and

Plexin-D1 are involved in migration under specific conditions

such as activation by pathogen or inflammatory immune

environments.

To further investigate the roles of Plexin-B2 and Plexin-D1 in

DC activation, cell surface markers and cytokine production by

Plxnb22/2 and Plxnd12/2 DCs were assayed. The data show that

Plexin-B2 and Plexin-D1 are not required for upregulation of

activation markers CD40, CD80, CD86, or I-Ab in response to

LPS induced activation. However, in untreated conditions and in

response to LPS both Plxnb22/2 and Plxnd12/2 DCs show

increased levels of IL-12/IL-23p40.

Levels of TNFa and IL-6 were not affected by lack of Plexin-B2

or Plexin-D1, indicating that only specific cytokines were affected

by Plexin-B2 and Plexin-D1. Taken together, these data suggest

that despite expression of Plexin-B2 and Plexin-D1 by the DC

population and their upregulation post activation, these proteins

are not required for expression of costimulatory molecules on the

surface of DCs or for production of IL-6 and TNFa. Instead,

Plexin-B2 and Plexin-D1 are required for the negative regulation

of IL-12/IL-23p40 by DCs in a dramatic fashion, since the

production of p40 is increased by up to 100 fold in their absence.

The IL-12/IL-23p40 subunit contributes to the active forms of

both IL-12 and IL-23, or can exist as a homodimer or monomer.

The IL-12 pathways leads to a Th1 response, while the IL-23

pathway leads to induction of Th17 cells reviewed in [38].

Intriguingly, the IL-12/IL-23p40 subunit has been shown to exist

in-vivo as a monomer or dimer of itself and is present in excess of

IL-12 or IL-23, and is suggested to function as a negative regulator

of IL-23 and/or IL-12 signaling reviewed in [39]. The monomer

form of IL-12p40 can function independently. For example, the

monomer form of IL-12p40 is required for dendritic cell migration

in response to Mycobacterium tuberculosis infection [40]. In our

experiments we were able to detect an increase in the mRNA

levels of IL-12p35 but were unable to detect IL-23 mRNA in

dendritic cells (Figure S1). Determining how IL-12 protein(s) are

negatively regulated by Plexin-B2 and Plexin-D1 is a critical next

step in understanding this finding and its immune consequence.

Future studies should address if both IL-12 and IL-23, which

share the common p40 subunit, are affected by both Plexin-B2

and Plexin-D1. Downstream physiological consequences of

overproduction of IL-12/23p40 in Plxnb22/2 and Plxnd12/2

mice, including Th skewing, response to pathogen, and potential

pathways that mediate this effect should be assessed.

In summary, the studies presented here reveal that Plexin-B2

and Plexin-D1 are differentially expressed in DCs, yet surprisingly,

both mediate negative regulation of IL-12/IL-23p40. These

findings suggest possible crosstalk between the signaling pathways

of Plexin-B2 and Plexin-D1 in DCs, similar to that previously

Figure 5. Plxnb22/2 and Plxnd12/2 DC time-course of IL-12/IL-23p40 cDNA. (A) Plxnb22/2 and Plxnd12/2 DCs are able to produce
inflammatory cytokines in response to TLR stimuli and anti-CD40. DCs were cultured in the presence of LPS, P3C, or anti-CD40 for 24 hours. Culture
supernatants were assessed for production of TNFa, IL-6, and IL-12/IL-23 p40 by ELISA. Data are representative of 3 independent experiments. n = 3–4
mice per group. *p,0.01. (B) DCs were isolated from the spleens of Plxnb22/2 and Plxnd12/2 mice and cultured in the presence of LPS for 6 hours.
Cells were collected and mRNA was isolated to determine mRNA levels of IL-12/IL-23 p40 by real-time PCR. Data are representative of 3 independent
experiments. n = 3–4 mice per group. *p,0.01.
doi:10.1371/journal.pone.0043333.g005
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reported in zebra fish angioblast [27]. The data suggest Plexin-B2

and Plexin-D1 function within the same pathway in DCs. The

differential expression of Plexin-B2 and Plexin-D1 demonstrate

that control of cell processes by plexins may be determined by

their expression.

Materials and Methods

Ethics Statement
All studies were conducted in accordance with the National

Institutes of Health Guide for the Care and Use of Laboratory

Animals and were approved by the University of North Carolina

Institutional Animal Care and Use Committee (protocol number

08-200).

Mice
C57BL/6 and congenic C57BL/6 CD45.1 mice were obtained

from the National Cancer Institute (Boston, MA). Plxnd1+/2 mice

have been previously described [11]. Plxnb2+/2 mice were a gift

from Dr. M. Tessier-Lavigne and have been described [35].

Plxnb2+/2 and Plxnd1+/2 mice were backcrossed in house at least

10 generations. OT-II mice (B6.Cg.Tg(TcraTcrb)425Cbn/J),

specific for the OVA residue 323–339, were obtained from the

Jackson Laboratory (Bar Harbor, ME). Mice were housed in a

pathogen-free barrier facility at University of North Carolina. For

fetal liver chimeras Plxnd1+/2 or Plxnb2+/2 mice were crossed for

over 10 generations with C57BL/6 mice and intercrossed to

obtain 2/2 and +/+ embryos. Fetal livers were prepared from E14

embryos post PCR genotyping as previously described [11]. Fetal

liver cells were injected (iv) into lethally irradiated C57BL/6

CD45.1 mice. Mice were analyzed 6–10 weeks post reconstitution.

Mice were allowed to reconstitute for 6–8 weeks before use.

ELISA
Splenic DCs were isolated from wild type, Plxnb22/2 and

Plxnd12/2 animals and were stimulated for 24 hours in the

presence, anti-CD40, Pam3Cys or LPS. The culture supernatants

were tested for IL6, TNFa, and IL-12/IL-23p40 cytokine levels by

ELISA (Ebioscience, San Diego, CA).

Antibodies and FACS
Monoclonal Abs included: B220 (RA3-6B2), CD23 (B3B4) and

APC-Alexa750-conjugated streptavidin from BD Pharmingen

(San Diego, CA); CD45.2 (104), CD4 (L3T4), CD8 (Ly-2), CD3

(145-2C11), CD28 (37.51), CD11b (M1/70), CD11c (N418) and

TCRb (H57-597) from eBioscience (San Diego, CA). Secondary

antibodies included anti-FITC-Alexa488 and Alexa405-conjugat-

ed streptavidin from Invitrogen (Carlsbad, California). Single cell

suspensions of different tissues were counted and 106 cells were

suspended in FACS buffer (1xPBS plus 2% FBS) and stained with

various antibody combinations. All flow cytometry was performed

on a FACSCalibur and analyzed with FlowJo software (Tree Star).

RT-PCR and Quantitative RT-PCR Analysis
RNA was isolated using a Qiagen RNA extraction kit. cDNA

was synthesized using SuperScript III reverse transcriptase

(Invitrogen). Primers used for RT-PCR and real-time PCR

analysis were: HPRT, 59-GCTGGTGAAAAGGACCTCT-39,

59-CACAGGACTAGAACA CCTGC-39; Plxnb2 59- CTAGA-

CATCCCTGAGTCACG-39, 59- AGTCAGCAGTGATG-

CAAAGT-39; Plxnd1, 59-CCTGGGTCACCTCTGTGTTT-39,

59-TATCTGTCAGGCAGGGGTTC-39; and Semaphorin-3E, 59-

AGGCCCTGAATACCACTGGTC-39, 59-

GGTTCCTGTGCCAGCAAAGT-39. Quantitative real-time

PCR was performed using SYBR Green reagent in a BIORAD

iCycler.

Cell Culture
DC culture. Murine bone marrow DCs were isolated from

wild type, Plxnb22/2, or Plxnd12/2 mice and were cultured in the

presence of GM-CSF and IL-4 as previously described [41]. T cell

culture: T cells from OT-II mice and purified by negative selection

(STEMCELL). DC:T cell co-cultures: DCs were harvested at day 10

and pulsed overnight with 50 mg/ml OVA (Sigma-Aldrich).

200,000 DCs were then washed and cultured in a 1:10 ratio with

T cells from OT-II transgenic T cells in 6 well plates.

Histology
Spleens of naı̈ve Plxnb22/2 and Plxnd12/2 mice were embed-

ded in OCT compound, snap frozen, and stored at 280uC. 5 mm

sections were prepared and fixed with 1:1 Acetone:Methanol for

10 min at 220uC and labeled with various combinations of

fluorescently labeled CD11b, CD11c, TCRb and B220 mAb.

FITC signal was amplified using anti-FITC-Alexa488 mAb.

Streptavidin-AlexaFluor405 was used to amplify B220-biotin

signal (blue). Images were acquired using a Zeiss LSM 710

confocal immunofluorescent microscope.

Statistical Analysis
Statistical significance was determined with two-tailed Student’s

t test or analysis of variance (ANOVA). All p values less than 0.05

were considered significant.

Supporting Information

Figure S1 Plxnb22/2 and Plxnd12/2 DC time-course of
IL-12/p35 and IL-23 cDNA. DCs were isolated from the

spleens of wild type, Plxnb22/2 and Plxnd12/2 mice and mRNA

was isolated to determine transription levels of IL-12/p35 and IL-

23 by real-time PCR. Data are representative of 3 independent

experiments. n = 3–4 mice per group. *p,0.01.

(TIF)
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