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Abstract
Autophagy is an essential process for the maintenance of cellular homeostasis in the heart under
both normal and stress conditions. Autophagy is a key degradation pathway and acts as a quality
control sensor. It protects myocytes from cytotoxic protein aggregates and dysfunctional
organelles by quickly clearing them from cell. It also responds to changes in energy demand and
mechanical stressors to maintain contractile function. The autophagic-lysosomal pathway
responds to serum starvation to ensure that the cell maintains its metabolism and energy levels
when nutrients run low. In contrast, excessive activation of autophagy is detrimental to cells and
contributes to development of pathological conditions. A number of signaling pathways and
proteins regulate autophagy. These include the AMPK/mTOR pathway, FoxO transcription
factors, Sirt1, oxidative stress, Bcl-2 family proteins, and the E3 ubiquitin ligase Parkin. In this
review, we will discuss how this diverse cast of characters regulates the important autophagic
process in the myocardium.
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INTRODUCTION
Autophagy is an evolutionarily conserved catabolic process that is responsible for the
degradation of cytoplasmic components via the lysosomal pathway 1. In the absence of
stress, autophagy complements the function of the proteasome by degrading long-lived
proteins. It also plays an important role in cellular quality control and is responsible for
clearing protein aggregates and dysfunctional organelles that could become toxic to the cell.
This quality control function is particularly important in post-mitotic cells such as myocytes
and neurons that are not easily replaced. Autophagy increases under conditions of limited
nutrients and degrades cytoplasmic material to provide the cell with amino acids and fatty
acids. The breakdown of organelles and proteins ensures that the cell can maintain its
metabolism and energy level when nutrients run low 2. Autophagy is also upregulated by
many other stressors including opening of the mitochondrial permeability transition pore
(mPTP) 3, ER stress 4, and increased production of reactive oxygen species (ROS) 5.
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Autophagy has important functions in the myocardium and its dysregulation has been
implicated in a wide variety of cardiovascular pathologies. For instance, Danon disease is a
fatal cardiomyopathy caused by a defect in the fusion between autophagosomes and
lysosomes that leads to an accumulation of autophagosomes in the myocytes 6, 7. Also,
cardiac specific deletion of the autophagy-related gene 5 (Atg5), a critical autophagy
protein, in the adult heart leads to disruption of autophagy with subsequent buildup of
dysfunctional mitochondria and development of cardiac dysfunction 8. Similarly, deletion of
Atg7 in skeletal muscle leads to accumulation of impaired mitochondria and a
corresponding increase in intracellular ROS levels 9. Increased autophagy is commonly
observed in the heart with acute and chronic ischemia, heart failure and dilated
cardiomyopathy 5, 10–14.

Since cardiac myocytes are terminally differentiated and possess extremely limited
regenerative capacity, rapid adaptive activation of autophagy in response to metabolic or
mechanical stress is critical for the maintenance of normal cardiac function. Activation of
autophagy will generate intracellular nutrients and energy required to survive the stress, and
will also remove damaged organelles such as leaky mitochondria that can be harmful to the
cell 15. Here, we review our current knowledge of metabolic and stress signaling pathways
that regulate autophagy in the myocardium.

Initiation of Autophagy
The study of autophagy in yeast has provided detailed knowledge about autophagic
signaling pathways and advanced our general understanding of autophagy in the heart. At
least sixteen different Atg gene products coordinate the formation of an autophagosome 16.
When the cell receives a signal to initiate autophagy, an isolation membrane (also called
phagophore) is formed (Figure 1). Although the origin of the membrane is still unclear,
recent studies have found that sarcoplasmic/endoplasmic reticulum 17, mitochondrial outer
membrane,18 and plasma membrane 19 can all serve as sources of the isolation membrane.
Unc-51-like kinase (ULK1), which forms a complex with Atg13 and focal adhesion kinase-
family interacting protein of 200 kD (FIP200), is a key regulator of the initiation of
autophagy 20, 21. The initial phagophore formation (nucleation) requires assembly of the
Beclin1 (Atg6 in yeast)-vacuolar sorting protein 34 (Vps34)-Vps15 complex 22. Beclin1 is
regulated by the anti-apoptotic proteins Bcl-2 and Bcl-XL, which bind Beclin1 to inhibit
activity and induction of autophagy 23–25. Subsequent expansion of the membrane is
mediated by two ubiquitin-like conjugation systems, Atg12 and Atg8 (microtubule-
associated protein 1 light chain 3 (LC3) in mammals) that together promote assembly of the
Atg16L complex and the processing of LC3 26, 27. The isolation membrane elongates until
the edges fuse around its target(s) forming a double-membrane structure called the
autophagosome. The autophagosome then moves along the microtubules to the microtubule
organizing center where it fuses with a lysosome 28. The contents are degraded by lysosomal
digestive enzymes, and the breakdown products, including amino acids, lipids, nucleosides,
and carbohydrates, are released into the cytosol where they can be used by synthetic and
metabolic pathways.

Autophagy and Energetic Balance
Induction of autophagy is critical for the maintenance of cardiac function under starved
conditions 2, 29, and inhibition of autophagy results in reduced ATP levels and development
of severe cardiac dysfunction 2. Moreover, autophagy plays an important role in salvaging
myocytes during acute myocardial infarction (MI) by preserving amino acid and ATP levels.
Autophagy was rapidly enhanced in the region bordering the infarction 30–32, and inhibiting
autophagy prior to coronary ligation resulted in increased injury. In contrast, starvation of
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mice for 24 h prior to MI enhanced autophagy after occlusion of the left descending
coronary artery and reduced infarct size compared to normally fed mice 30. Furthermore,
amino acid and ATP levels were significantly reduced 4 h post-infarction in controls, but
hearts of mice subjected to starvation prior to MI had preserved amino acid and ATP levels.
Inhibition of autophagy abolished the protective effect of starvation 30. Clearly, this suggests
that activation of autophagy during MI preserves ATP levels and maintains an adequate
amino acid pool, which can be used for energy production and protein synthesis that
required for the proper response to the ischemic insult.

The serine/threonine kinase mammalian target of rapamycin (mTOR) i s an important
negative regulator of autophagy in mammalian cells 33, 34 and integrates intracellular signals
such as growth factors, amino acids, glucose, and energy status 35. In the heart, mTORC1
plays an important role in regulating cellular homeostasis, and cardiac specific deletion of
mTOR leads to development of a fatal dilated cardiomyopathy 36. mTOR exists in a
multiprotein complex known as mTOR complex 1 (mTORC1) which includes Raptor,
proline-rich Akt substrate of 40-kDa (PRAS40), and MTOR associated protein LST8
homolog (Mlst8) 37. It has been reported that mTORC1 suppresses autophagy by binding
and phosphorylating the autophagy-initiating kinase ULK1 38. When inactivated, mTORC1
dissociates from ULK1, freeing it to initiate formation of the isolation membrane. Also,
perfusion of isolated hearts with rapamycin, an inhibitor of mTOR and activator of
autophagy, prior to I/R reduced infarct size suggesting that mTOR is an important regulator
of essential cellular functions during ischemia 39, 40.

The mTOR pathway is regulated by the 5’-AMP-activated protein kinase (AMPK) (Figure
1). AMPK is an intracellular energy sensor that is activated in response to changes in the
AMP/ATP ratio. Activation of AMPK results in adaptive changes in growth and metabolism
under conditions of low energy. AMPK stimulates autophagy by inhibiting mTOR through
phosphorylation and activation of the tuberous sclerosis complex 2 (TSC2) 41 and Raptor 42.
TSC2 exists in a complex with TSC1 in cells, and the TSC1/2 complex inhibits the mTOR
activator Rheb 43. TSC2 acts as a GTPase activating protein towards Rheb and by
stimulating the conversion of active Rheb-GTP into the inactive Rheb-GDP, the TSC1/2
complex inhibits mTOR 44. Raptor is an essential mTOR binding partner and is responsible
for recruiting substrates to the mTORC1 complex 45, 46. Recently, it was reported that
AMPK can directly activate autophagy by directly activating ULK1. Kim et al. discovered
that under glucose starvation, AMPK promotes autophagy by directly activating ULK1
through phosphorylation of Ser 317 and Ser 777 38. In contrast, during nutrient sufficiency,
high mTOR activity prevents ULK1 activation by phosphorylating ULK1 Ser757 and thus
disrupting the interaction between ULK1 and AMPK. When nutrients are limited, as seen in
myocardial ischemia, AMPK acts as a checkpoint by inhibiting cellular growth and inducing
autophagy in cardiac myocytes. The AMPK-mTOR pathway is an important regulator of
autophagy in response to glucose deprivation in neonatal myocytes as inhibition of AMPK
reduced autophagy and increased cell death in these cells 13. Also, transgenic mice with
cardiac specific expression of a dominant negative AMPK had attenuated induction of
autophagy in response to ischemia in vivo 13. This suggests that AMPK-induced autophagy
regulation via inhibition of mTOR plays an important role in the adaptation to ischemia.

Recently, glycogen synthase kinase-3 (GSK-3) was identified to be a regulator of the mTOR
pathway in cardiac cells. GSK-3 is an important signaling molecule and is involved in
regulating gene transcription, protein translation, and apoptosis, as well as hexose
metabolism 47. GSK-3β is known to function downstream of phosphatidylinositol 3-kinase
(PI3K) and Akt 48, and, in the heart, inhibition of GSK-3β has been reported to be
cardioprotective 14, 48–50. Similar to AMPK, GSK-3β was found to inhibit mTOR signaling
and activate autophagy via phosphorylation of TSC2 5152. Moreover, Zhai et al. discovered
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that GSK-3β is a critical upstream regulator of mTOR during both ischemia and reperfusion
in the heart 14.

Regulation of Autophagy by FoxO Transcription Factors and the NAD-
dependent deacetylase SIRT1

Autophagy is also regulated by the FoxO (Forkhead box-containing protein, O subfamily)
transcription factors 53. FoxO1 and FoxO3 are highly expressed in the heart 54 and regulate
autophagy by activating transcription of the Atg genes 55. It was recently reported that
glucose deprivation of cardiac myocytes induced translocation of FoxO1 and FoxO3 to the
nucleus where they activated transcription of genes involved in autophagy 5556. In addition,
transgenic mice overexpressing FoxO3 in the heart showed increased levels of autophagy
which correlated with the development of cardiac atrophy 57. In contrast, genetic deletion of
FoxO3 resulted in development of cardiac hypertrophy 58. Both FoxO1 and FoxO3 have
been reported to induce expression of the BCL2/adenovirus E1B 19 kDa protein-interacting
protein 3 (Bnip3) 59, 60 which is a potent inducer of autophagy.

Acetylation/deacetylation status of certain proteins is also linked to regulation of autophagy.
The Sirtuin 1 (Sirt1) is a NAD-dependent deacetylase which is upregulated in response to
starvation or caloric restriction 61, 62. Interestingly, Lee et al. found that starvation-induced
autophagy was reduced in Sirt1−/− MEFs and that Sirt1 regulates autophagy via
deacetylation of Atg5, Atg7 and Atg8 63. Another study recently reported that deacetylation
of FoxO1 by Sirt1 was an essential step for autophagy in glucose-deprived cardiac myocytes
as FoxO1 mutants that cannot be deacetylated by Sirt1 inhibited induction of autophagy 56.

Induction of Autophagy by Stress Signals
Many studies have reported that autophagy is upregulated in the heart in response to
ischemia/reperfusion and hemodynamic stress 5, 10, 13. Multiple signaling pathways are
activated in these hearts, and many of them are likely to contribute to the activation of
autophagy. For instance, increased oxidative stress activates autophagy in cells, including
cardiac myocytes 5, 64. Production of ROS played an important role in inducing autophagy
during I/R in vivo, and the presence of an anti-oxidant significantly reduced the level of
autophagy 5. Interestingly, mitochondria are a major source of ROS, which promotes
activation of autophagy in cells. For instance, inhibition of electron transport chain
complexes I or II induced ROS production and autophagy in cells, whereas the presence of a
ROS scavenger decreased autophagy 65. Increased ROS could affect autophagy by directly
acting on the autophagy proteins. Hydrogen peroxide was reported to oxidize and
subsequently inactivate Atg4 during starvation. Atg4 is responsible for recycling of LC3 by
cleaving phosphatidylethanolamine (PE) from PEconjugated LC3 and inhibition of Atg4
leads to accumulation of LC3-PE (LC3-II) and increased autophagosome formation 66. In
addition, oxidative stress might indirectly activate autophagy by causing damage to
organelles such as mitochondria that induces mitochondrial autophagy.

The mitochondrial permeability transition pore (mPTP) causes permeabilization of the inner
mitochondrial membrane resulting in swelling of the inner membrane with subsequent
rupture of the outer membrane 67. Opening of the mPTP have been reported to activate
autophagy in mammalian cells 68–70. In contrast, starvation-induced autophagy was
significantly reduced in the presence of cyclosporine A, an inhibitor of the mPTP 3.
Cyclophilin D (CypD) is an essential component of the mPTP, and CypD-deficient mice are
resistant to mPTP opening 71. This study found that fasting failed to induce autophagy in
CypD-deficient mice while, transgenic mice overexpressing cypD in the heart showed
enhanced levels of autophagy under normal and fasting conditions compared to wild type
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mice 3. This study suggests that the mPTP plays an important role in starvation-induced
autophagy. In contrast, Quinsay et al. found that the BH3-only protein Bnip3 induced
autophagy independent of the mPTP in cardiac myocytes 72. Although the mPTP plays a
role in the induction of autophagy, it is unclear if loss of mitochondrial membrane potential
due to pore opening alone is responsible for the induction of autophagy or if factor(s)
released from the mitochondria activate the autophagic pathway.

The endoplasmic reticulum (ER) is important in regulating cytosolic Ca2+ homeostasis and
proper folding of newly synthesized proteins 73. Defects in ER function lead to activation of
the ER stress pathway and activation of autophagy 4 via down-regulation of mTOR
signaling 74, monocyte chemotactic protein-1 induced protein (MCPIP) 75, and JNK/p38 and
activating transcription factor 4 (ATF4)-dependent activation 76. Interestingly, treatment of
hearts with low doses of tunicamycin or thapsigargin, two different inducers of ER stress,
resulted in induction of autophagy and reductions in apoptosis and infarct size 77. This
suggests that ER stress-mediated autophagy can serve a protective role in the heart.

Mitochondrial Autophagy in the Myocardium
For a long time, autophagy was considered to be a non-selective process in which the
autophagosomes randomly sequestered material in the cytosol for degradation. However,
many studies have now demonstrated that autophagy can be selective and specifically
remove damaged organelles and toxic protein aggregates (Figure 2). Bnip3 and Bnip3-like
(Bnip3L/Nix) belong to the BH3-only proteins of the Bcl-2 family that are primarily
localized to mitochondria in cells. Both Bnip3 and Nix are potent inducers of mitochondrial
autophagy 78–80. Sandoval et al. found that Nix was required for mitophagy in erythroid
cells 81. Interestingly, Nix was not required for the induction of general autophagy, but only
for the elimination of mitochondria 79. Similarly, Bnip3 has been reported to induce
mitochondrial autophagy in cardiac myocytes 72, 78, 82. Exactly how Nix and Bnip3 target
mitochondria for autophagy is still unclear, but it has been shown that Nix-dependent loss of
mitochondrial membrane potential (Δψm) was important in targeting the mitochondria to
autophagosomes 81. In addition, Nix has been proposed to act as an autophagy receptor by
interacting directly with the autophagy proteins LC3 and GABARAP 83. Bnip3 has also
been reported to interact with LC3 84. However, the importance of Nix and Bnip3 as
autophagy receptors is still unclear since mitophagy was restored when Nix−/− cells were
treated with compounds that caused mitochondrial depolarization 81.

The E3 ubiquitin ligase Parkin has also been identified as an important regulator of
mitochondrial autophagy in cells. Parkin-mediated clearance of mitochondria plays an
important role in cardiac preconditioning 85. Narendra et al. discovered that Parkin
accumulated on depolarized mitochondria which promoted their removal by autophagy 86.
Parkin was found to ubiquitinate proteins on dysfunctional mitochondria, which served to
recruit HDAC6 and p62/SQSTM1, and promote assembly of the autophagy machinery at the
impaired mitochondrion 87. Interestingly, p62 was not essential for Parkin-mediated
mitophagy as p62 deficiency in cells did not prevent CCCP-mediated mitophagy 88. We
recently found that Bnip3-mediated mitochondrial autophagy was dependent on Parkin in
cardiac myocytes and that Parkin deficient myocytes had reduced induction of autophagy in
response to Bnip3 overexpression 89. We also found that mitochondria had to undergo Drp1-
mediated mitochondrial fission prior to Parkin-translocation and removal by
autophagosomes. Also, Ding et al. found that CCCP-induced Parkin translocation was
significantly reduced in Nix deficient MEFs 90. These studies suggest that Bnip3 and Nix
cooperate with the Parkin pathway to clear dysfunctional mitochondria in cells.

Lee et al. Page 5

J Cardiovasc Pharmacol. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Maladaptive role of Autophagy in the Myocardium
Most studies suggest that autophagy is a protective response activated by the cell during
stress. However, it is now evident that constitutive and/or excessive autophagy can be
detrimental to the heart. Recently, Schips et al. reported that constitutive activation of
FoxO3 in mouse hearts led to increased autophagy and atrophy 57. These hearts reduced
stroke volume and cardiac output, suggesting that constitutive activation of autophagy is
harmful for the myocardium. Interestingly, this study discovered that the cardiac atrophy
and dysfunction were reversible when FoxO3 expression was turned off 57. In addition,
studies have reported that excessive autophagy contributes to pathological conditions in
response to stress. Upregulation of Beclin1 and activation of autophagy during reperfusion
after ischemia have been found to be detrimental to cardiac myocytes 13. Interestingly,
Beclin1 heterozygous (Beclin1+/−) mice had reduced levels of autophagy and showed
significantly smaller infarcts compared to wild type mice after I/R. This suggests that
upregulation of Beclin1 contributes to excessive activation of autophagy which is
detrimental to cells. Similarly, it was reported that reduced mTOR activity and enhanced
autophagy during reperfusion contributed to I/R injury 14. Autophagy has also been reported
to play a maladaptive role in a mouse model of pressure overload 10, 91. Zhu et al. found that
Beclin1 heterozygous mice had decreased induction of autophagy and reduced hypertrophic
growth in response to pressure over load, whereas overexpression of Beclin1 led to
increased induction of autophagy and enhanced pathological hypertrophy compared to wild
type mice 10. Collectively, these studies suggest that the duration and level of autophagy
play an important role in determining whether autophagy will be protective or maladaptive
in the heart.

Conclusion
Studies suggest that basal levels of autophagy are important for maintaining cellular
homeostasis and for protecting cells against accumulation of toxic protein aggregates or
dysfunctional organelles. It is also clear that enhancing autophagy can promote survival in
response to stress, such as nutrient deprivation or hypoxia, by recycling macromolecules to
maintain energy levels and removing damaged organelles such as mitochondria. In contrast,
excessive levels of autophagy contribute to development of pathological conditions, most
likely by removal of too many essential organelles and proteins. Manipulation of signaling
pathways that regulate autophagy may represent a potential future therapeutic target to treat
or prevent development of heart disease. A more thorough understanding of signaling
pathways that regulate autophagy will be of great importance for future studies of the heart.
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Figure 1.
Schematic of the autophagic process. The plasma membrane, mitochondria, and E/SR serve
as sources of the isolation membrane. The initiation of autophagy is regulated by the ULK1
protein complex. The initial phagophore formation requires Beclin1-Vps34-Vps15 complex
and expansion of the membrane is mediated by two ubiquitin-like conjugation systems,
Atg12 and LC3. The membrane elongates until the edges fuse around its target forming the
autophagosome. The autophagosome then fuses with the lysosome and the content is
degraded.
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Figure 2.
Induction of mitochondrial autophagy in response to cellular stress. After Drp1-mediated
mitochondrial fission, Parkin is recruited to dysfunctional mitochondria where it
ubiquitinates proteins. The p62 adaptor protein binds to the ubiquitinated proteins and LC3
on the autophagosomes linking the two organelles. Alternatively, LC3 can directly interact
with Bnip3 or Nix on the mitochondria.
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