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Abstract

Background: Characterization of long-term health trajectory in older individuals is important for proactive
health management. However, the relative prognostic value of information contained in clinical profiles of
nonfrail older adults is often unclear.
Methods: We screened 825 phenotypic and genetic measures evaluated during the Health, Aging, and Body
Composition Study (Health ABC) baseline visit (3,067 men and women aged 70–79). Variables that best pre-
dicted mortality over 13 years of follow-up were identified using 10-fold cross-validation.
Results: Mortality was most strongly associated with low Digit Symbol Substitution Test (DSST) score
(DSST < 25; 21.9% of cohort; hazard ratio [HR] = 1.87 – 0.06) and elevated serum cystatin C ( ‡ 1.30 mg/mL; 12.1%
of cohort; HR = 2.25 – 0.07). These variables predicted mortality better than 823 other measures, including
baseline age and a 45-variable health deficit index. Given elevated cystatin C ( ‡ 1.30 mg/mL), mortality risk was
further increased by high serum creatinine, high abdominal visceral fat density, and smoking history (2.52 £ HR
£ 3.73). Given a low DSST score ( < 25) combined with low-to-moderate cystatin C ( < 1.30 mg/mL), mortality risk
was highest among those with elevated plasma resistin and smoking history (1.90 £ HR £ 2.02).
Conclusions: DSST score and serum cystatin C warrant priority consideration for the evaluation of mortality risk
in older individuals. Both variables, taken individually, predict mortality better than chronological age or a
health deficit index in well-functioning older adults (ages 70–79). DSST score and serum cystatin C can thus
provide evidence-based tools for geriatric assessment.

Introduction

The identification of mortality risk factors is im-
portant for the care of older patients and for supporting

informed decisions on treatment alternatives within clinical
settings. Chronological age is one factor that correlates with
mortality risk and functional limitation, but individuals of
the same chronological age can exhibit heterogeneous aging
trajectories.1 Indicators of ‘‘frailty’’ also predict health out-
comes and mortality in older individuals (e.g., weight loss,
low grip strength, lack of energy, slow walking speed, and

low physical activity).2 However, among well-functioning
older adults, trademark characteristics of frailty may occur
at low frequency and thus provide little guidance for clin-
ical decision-making.3 Furthermore, frailty indices have not
accounted for or assigned special weight to predictors of
long-term outcomes, such as smoking or diabetes status.3,4

In predominantly nonfrail populations, therefore, chrono-
logical age and frailty metrics may not accurately predict
aging trajectory and long-term outcomes. At the same time,
there is no consensus on which indicators are most sensitive
to future health status in well-functioning adults, and few

1Department of Genetics, Harvard Medical School, Boston, Massachusetts.
2Research Institute, California Pacific Medical Center, San Francisco, California.
3Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
4Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.
5Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
6Intramural Research Program, National Institute on Aging, Bethesda, Maryland.
7Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania.
8Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.

REJUVENATION RESEARCH
Volume 15, Number 4, 2012
ª Mary Ann Liebert, Inc.
DOI: 10.1089/rej.2011.1297

405



analyses have evaluated relative predictive validity of
measures that might identify mortality risk in seemingly
low-risk persons.3–5

The clinical profile of older adults can be extensive, and
information with prognostic value can be drawn from sev-
eral domains, including basic demographic data, family
history, clinical or subclinical disease markers, measures of
physical performance, and biochemical assay results. Geno-
type and genome sequencing data will further add to the size
and complexity of geriatric profiles in coming years.6 A key
challenge, in this context, is to identify parsimonious subsets
of information that can predict mortality patterns as well as
the rate of functional decline with increased age.3 Numerous
variables have been associated with all-cause mortality in
older adults.3,7–10 However, in relative terms, some variables
may be more useful for prediction and warrant focused
clinical attention.3 Moreover, relative value of predictors can
vary among subgroups defined by shared risk factors. For
example, serum vascular adhesion protein-1 (VAP-1) levels
(elevated with chronic hyperglycemia) predict mortality
among those with diabetes, but this association is not present
among those without diabetes.11

We performed a comprehensive screen of 825 vari-
ables measured in year 1 of the Health, Aging, and Body
Composition (Health ABC) Study (3,067 men and women
aged 70–79 years). Health ABC participants were well-
functioning, community-dwelling older adults without
mobility-related disability at the time of enrollment.
Therefore, we expected that measures most predictive of
mortality in this cohort could provide metrics for geriatric
assessment and indicators of aging trajectory. We highlight
phenotypic measures that, relative to all other participant
attributes, are most predictive of mortality in the Health
ABC cohort. Additionally, we partition the Health ABC
cohort into subgroups defined by shared risk factors and
identify the strongest mortality predictors within each
subgroup.

Methods

Study Design and Participants

Health ABC is a prospective cohort study designed to
evaluate interrelationships between weight-related health
conditions, body composition, and physical function in
older adults. Participants included 3,075 initially well-
functioning 70- to 79-year-old men and women (52%
women and 42% black). These individuals were identified
from a random sample of white Medicare beneficiaries and
all age-eligible community-dwelling black residents in
designated zip code areas surrounding Memphis, Tennes-
see, and Pittsburgh, Pennsylvania. Participants were eligi-
ble if they reported no difficulty in walking one quarter of a
mile, going up 10 steps without resting, or performing basic
activities of daily living. Participants were excluded if they
reported a history of active treatment for cancer in the prior
3 years, planned to move out of the study area in the next 3
years, or were currently participating in a randomized trial
of a lifestyle intervention. Baseline data, collected between
April, 1997, and June, 1998, included an in-person interview
and clinic-based examination, with evaluation of body
composition, clinical and subclinical diseases, and physical
functioning. Participant characteristics at the time of base-

line examination are summarized in Supplemental Table 1
(supplemental data available at www.liebertpub.com/rej).
Following enrollment, participants were contacted every 6
months by telephone or during scheduled clinic visits.
Deaths were ascertained from family member proxies, local
obituaries, or the Social Security death index. Immediate
and underlying causes of death were assigned by an adju-
dication committee based upon review of medical records,
death certificate, and decedent proxy interview. The most
frequent (assigned) causes of death were cancer (28%),
atherosclerotic cardiovascular disease (23%), dementia
(10%), and cerebrovascular disease (10%). The current
analysis is based upon all deaths that occurred through
November, 2010 (1,430 deaths or 46.5% of the cohort).

Health Deficit Index

A health deficit index was constructed from participant
responses to 45 questions relating to diverse domains of in-
dividual health (Supplemental Table 2), where each question
was scored as a deficit (value = 1) or nondeficit (value = 0).
The final index comprises the total number of deficits among
the 45 items normalized to range from 0 to 1.12 Applying
guidelines from previous work,12 approximately 26% of
participants were frail according to the 45-variable health
deficit index (index > 0.20) (Supplemental Fig. 1). In contrast,
fewer than 1.5% of Health ABC participants were frail ac-
cording to the five-component Fried frailty index developed
within the Cardiovascular Health Study (CHS) or the three-
component index developed within the Study of Osteo-
porotic Fractures (SOF) (data not shown).2,13

Data mining to identify mortality predictors:
Preprocessing of Health ABC data

We applied a data mining procedure and screened 825
variables (498 categorical and 327 continuous) to determine
which best predicted mortality in the Health ABC cohort
(Supplemental Fig. 2). These 825 variables included: In-
formation obtained from the baseline questionnaire (214
variables); participant responses and measurements obtained
during a clinical visit (179 variables); medication inventory
(52 variables), imaging data processed and interpreted by
specialists (156 variables; e.g., soft tissue computed tomog-
raphy, dual-energy X-ray absoptiometry [DXA], and elec-
trocardiogram [ECG]); calculated variables derived from
baseline measures (133 variables; e.g., body mass index
[BMI]); biochemical assay results from blood samples (24
variables); and single-nucleotide polymorphism (SNP) ge-
notypes (55 variables). Also included were age at baseline,
study site, sex, race, the 45-variable deficit index described
above, and the CHS and SOF frailty indices.2,13 The 825
variables represented a filtered subset derived from an initial
set of 3,300 possible measures obtained from Health ABC
participants at baseline (1,894 phenotypic variables and 1,406
genetic markers). We removed 2,427 variables from consid-
eration because data were missing for more than 5% of men
or 5% of women, and 54 measures were removed because
they did not exhibit any interparticipant variability. Ad-
ditionally, 8 participants were excluded because data were
missing for more than 20% of the 825 variables satisfying
inclusion criteria. These preprocessing steps yielded a data
matrix consisting of 3,067 participants and 825 variables,
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with fewer than 1% missing values for each of the 825 var-
iables (on average). This data matrix was used in cross-
validation experiments (see below) and further preprocessed
to impute missing entries and to generate a larger set of rep-
resentative data vectors (i.e., indicators for each categorical
variable and alternatively scaled versions of each continuous
variable) (Supplemental Fig. 2). A partial listing of the 825
included variables is provided in Supplemental Table 3.

Missing values for phenotypic measures and genetic
marker data were separately imputed using the nearest-
neighbor approach, with imputed values calculated from
the 20 participants most similar to any given participant
with missing data.3 This imputation was only carried out
as part of the data mining procedure and estimation of
cross-validation area under the curve (AUC) values (Sup-
plemental Fig. 2). For all other calculations, such as the
estimation of hazard ratios, participants with missing data
were simply excluded from analyses. Following imputa-
tion, data vectors representative of the 825 variables were
generated. For each categorical variable with k levels, we
generated k vectors where each vector was a 0-1 indicator.
For example, with respect to sex, two vectors were gener-
ated—one with value of 1 if the participant was male (and
0 otherwise) and another with value 1 if the participant was
female (and 0 otherwise). For continuous variables, we
anticipated that prediction accuracy in simulation trials
might be influenced by choice of scale. For each continuous
variable, therefore, six data vectors were generated, in-
cluding one vector identical to the original variable (same
units and scale), along with five vectors generated by ap-
plying Box–Cox transformations to the original variable
with power parameter k equal to - 2, - 1, 0, 1 and 2, re-
spectively. Following this preprocessing, we had generated
3,683 vectors (representative of 825 total variables), which
were further screened in cross-validation analyses (see be-
low and Supplemental Fig. 2).

Data mining to identify mortality predictors:
Cross-validation assessment of prognostic value

Ten-fold cross-validation was used to identify data vectors
best able to predict mortality in the Cox regression model
framework.3 In each simulation trial, 90% of participants
were randomly assigned to a training set, with the remaining
10% of participants assigned to a testing set. A univariate
Cox regression model was fit based upon vector values and
the follow-up survival times of participants in the training
set, including both censored and noncensored survival times.
The fitted model was then applied to vector values of par-
ticipants in the testing set to generate risk scores (linear
predictors). Prediction accuracy was then estimated from
correspondence between risk scores and the censored or
noncensored survival times of participants in the testing set.
This correspondence was quantified by an AUC-based con-
cordance index representing a weighted average of time-
specific AUC statistics.3,14 This composite AUC statistic was
calculated in each of N cross-validation trials, and for each
vector we assessed prognostic value based upon the average
AUC statistic value across the N trials.3

A computationally efficient procedure was used to screen
vectors based upon cross-validation performance (Supple-
mental Fig. 2). The approach first removes the weakest vec-

tors from consideration using relatively few simulation trials
per vector, and subsequently reevaluates top-ranking vectors
using more simulations to obtain a more precise estimate of
the average AUC.3 First, all 3,683 data vectors were evalu-
ated based upon N = 30 cross-validation trials each, and the
500 data vectors with highest average AUC were identified.
These 500 vectors were further screened using N = 300 cross-
validation trials each, and the 50 vectors with highest aver-
age AUC were identified. The relative prognostic value of
these 50 vectors was then established based upon N = 30,000
cross-validation trials each. Given N = 30,000 simulation tri-
als, the standard error associated with the average AUC es-
timate was less than 0.001. In the final step, the 50 selected
vectors were mapped back to their associated variables,
yielding a ranked set of p variables ( p £ 50). If more than one
vector mapped to the same variable, the largest mean AUC
among such vectors was assigned to that variable. For in-
stance, if one vector representing BMI on its original scale
yielded an average AUC of 0.55, while a second vector re-
presenting BMI with Box–Cox transformation k = 2 yielded
an average AUC of 0.56, then an AUC of 0.56 was assigned
to the variable BMI. The complete procedure (Supplemental
Fig. 2) was applied to the full Health ABC cohort (n = 3,067)
and subsequently to multiple subgroups, which were de-
fined based upon those variables that best predicted mor-
tality in the full Health ABC cohort.

Results

Digit Symbol Substitution Test score and serum
cystatin C each predict mortality better than
823 other Health ABC baseline measures

We screened 825 variables evaluated during year 1 of the
Health ABC study to determine which best predicted mor-
tality over 13 years of follow-up (Supplemental Fig. 2; me-
dian follow-up = 12.2 years; interquartile range [IQR] = 5
years). This approach identified the Digit Symbol Substitu-
tion Test (DSST) score and serum cystatin C as the strongest
overall predictors of mortality (AUC = 0.599 and 0.587, re-
spectively; N = 30,000 cross-validation trials) (Table 1). Other
top-ranked predictors included the Health ABC performance
score (a composite metric based upon performance in chair
stand, usual walk, narrow walk, and balance tasks; AUC =
0.578),15 Modified Mini-Mental State (3MS) exam score
(AUC = 0.575), serum creatinine (AUC = 0.573), and chrono-
logical age at baseline evaluation (AUC = 0.566) (Table 1).
DSST score and cystatin C remained the top two mortality
predictors (AUC = 0.599 and 0.581, respectively) when 179
deaths occurring during the first 3 years of follow-up were
censored. Both variables were also among the top three
predictors when added to models that already included both
age and sex (DSST, AUC = 0.619; cystatin C, AUC = 0.613;
Supplemental Table 4). Additionally, we screened all pos-
sible 4,950 bivariate models generated from the top 100
variables with highest AUC value, and identified the com-
bination DSST score + cystatin C as the best-performing
bivariate model (AUC = 0.628).

Low DSST score ( < 25) predicted mortality in the full
Health ABC cohort and 23 of 25 subgroups (Fig. 1A;
1.40 £ HR £ 2.11; DSST ‡ 25 in reference group). In the full
Health ABC cohort, the association of low DSST score with
mortality remained significant after adjustment for any other
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variable, including education, age, and 3MS exam score (i.e.,
bivariate Cox regression models). Mortality risk increased
continuously with lower DSST scores, although risk was
significantly heightened only among participants with a
DSST score < 25 (Fig. 1B; n = 671 participants). Among par-
ticipants with DSST < 25 that died during follow-up, there
was no significant increase in dementia as an assigned un-
derlying cause of death (Fig. 1C).

Elevated cystatin C ( ‡ 1.30 mg/L) was significantly asso-
ciated with mortality in the full Health ABC cohort and each
of 25 participant subgroups (Fig. 2A; 1.93 £ HR £ 2.59; cy-
statin C < 1.30 in reference group). In the full cohort, this
association remained significant in bivariate regression
models that included any of the other 825 variables, such as
creatinine, resistin, or C-reactive protein. Participants with
low cystatin C ( < 1.30 mg/L; n = 2,666) had slightly reduced
mortality risk, and there was significantly increased mortal-

ity risk among those with elevated cystatin C ( ‡ 1.30 mg/L;
n = 372) (Fig. 2B). Among participants with elevated cystatin
C ( ‡ 1.30 mg/L) who died, renal failure as an assigned un-
derlying cause of death was over six-fold more likely (relative
risk [RR] = 6.70, 95% confidence interval [CI] 3.44, 13.03;
n = 261 deaths with an assigned cause; see Fig. 2C). Ad-
ditionally, there was increased frequency of atherosclerotic
cardiovascular disease and decreased frequency of dementia
and cerebrovascular illness among these participants (Fig. 2C).

DSST score and serum cystatin C each predict
mortality better than chronological age
and an index of health deficits

Direct comparisons were performed to assess the relative
predictive value of DSST score, serum cystatin C, chrono-
logical age, and an index of health deficits (Supplemental
Fig. 3). Comparisons were carried out with respect to each
of 25 subgroups of Health ABC participants (e.g., men,
women, smokers, nonsmokers, etc.). In 16 of 25 subgroups,
DSST score was the best predictor compared to cystatin C,
age, and the deficit index. The relative advantage of DSST
score was strongest among nondiabetics who did not
smoke (Supplemental Fig. 3). In 9 of 25 subgroups, cystatin
C was the best predictor, and the relative advantage of
cystatin C was strongest among diabetic females (Supple-
mental Fig. 3). In all cases, both DSST score and cystatin C
predicted mortality better than age and the health deficit
index (Supplemental Fig. 3). DSST score and cystatin C also
predicted mortality better than the deficit index in the
context of three-variable models that included both age and
sex (AUC ‡ 0.613 versus AUC = 0.588; see Supplemental
Fig. 4).

Participants with elevated cystatin C: Serum
creatinine, abdominal visceral fat density, and smoking
history provide secondary indicators of mortality risk

Co-occurrence of elevated cystatin C with elevated creat-
inine was associated with significantly increased mortality
risk (Fig. 3). The data mining procedure shown in Supple-
mental Fig. 2 was applied to 372 participants with elevated
cystatin C ( ‡ 1.30 mg/L), and this identified serum creatinine
as the strongest predictor of mortality within this subgroup
(AUC = 0.600; Fig. 3). Among the 372 participants, there were
43 with elevated cystatin C ( ‡ 1.30 mg/L) and elevated cre-
atinine ( ‡ 2 mg/dL), and mortality risk within this group
was higher than any other subgroup we evaluated
(HR = 3.73; 95% CI 2.69, 5.18; Fig. 3). In addition to elevated
creatinine ( ‡ 2 mg/dL), we identified three other factors as
most predictive of mortality among those with cystatin
C ‡ 1.30 mg/L, including high abdominal fat density ( ‡ - 81
HU), low DSST score ( < 25), and exposure to smoking ( ‡ 30
pack-years) (Fig. 3).

Participants with low DSST score and low-to-moderate
cystatin C: Plasma resistin and smoking history
provide secondary indicators of mortality risk

DSST score was identified as the strongest predictor of
mortality among 2,666 participants with low-to-moderate
cystatin C ( < 1.30 mg/L) (AUC = 0.603; Fig. 3). DSST score
appeared to predict mortality risk independently of cystatin

Table 1. Top-Ranking Variables That Best Predicted

Mortality Over 13 Years in the Full Health

ABC Cohort (n = 3,067)

Variable Transformation
Mean
AUC

SD
(AUC)

DSST score (number
of correct substitutions) a

k = 2 0.599 0.024

Serum cystatin C (mg/L) b k = 0 0.587 0.021
Health ABC performance

score (0– 4) c
k = 2 0.578 0.023

3MS score a k = 2 0.575 0.020
Serum creatinine (mg/dL) b k = 0 0.573 0.021
Chronological age

at baseline exam
None 0.566 0.023

Time to walk 6 m
(fastest of two trials) c

k = –1 0.565 0.023

Full standing balance
test time 0–90 sec c

k = 2 0.565 0.023

Pack-years exposure
to cigarettes

k = 0 0.564 0.023

EPESE performance
battery score 0–12 c

k = 2 0.563 0.022

The table lists 10 variables that best predicted mortality as
identified from the data mining and cross-validation procedure
described in Supplemental Fig. 2. For each variable, the mean area
under the curve (AUC) from the highest-ranking vector associated
with that variable is listed. Data vectors for each variable were
generated using Box–Cox transformations (see Methods). The
‘‘transformation’’ column indicates the Box–Cox parameter that
yielded the highest-scoring mean AUC listed for each variable. If the
highest-scoring vector for a given variable was an untransformed
variable on its original scale, then ‘‘None’’ is listed in the transfor-
mation column. All mean AUC values were calculated using 30,000
cross-validation trials, with a standard error less than 0.001 in each
case. The standard deviation (SD) among AUC statistics generated in
the 30,000 simulation trials is listed for each variable in the final
column.

aDigit Symbol Substitution Test (DSST) score (number of correct
substitutions) was correlated with the Modified Mini-Mental State
(3MS) score (rs = 0.59; p < 0.001).

bSerum cystatin C was correlated with serum creatinine (rs = 0.57;
p < 0.001).

cHealth, Aging, and Body Composition Study (Health ABC)
performance score was correlated with full standing balance test
time (rs = 0.76), time taken to walk 6 m (rs = - 0.70), and Established
Populations for Epidemiological Study of the Elderly (EPESE)
performance battery score (rs = 0.69) ( p < 0.001 for each variable).
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C, because in bivariate Cox models both cystatin C and DSST
score were significant predictors with nonsignificant inter-
action (n = 2999; p = 0.025 for cystatin C; p < 0.001 for DSST
score; p = 0.40 for interaction). We further evaluated 571
participants with a DSST score less than 25, who were not at
risk on the basis of cystatin C levels (cystatin C < 1.30 mg/L)
(Fig. 3). Within this subgroup, high plasma resistin ( ‡ 24 ng/
mL) and smoking history ( ‡ 12 pack-years) were most pre-
dictive of increased mortality (Fig. 3).

Discussion

The phenotypic and genetic information available for
predicting long-term outcomes in older individuals will
continue to expand in coming decades. The relative prog-
nostic value of such information, however, is not always
clear. We conducted a large-scale evaluation of 825 measures
taken at baseline in the Health ABC cohort, where each

measure was obtainable from a single clinic visit (e.g., de-
mographic data, physical and cognitive test performance,
body composition measures, analysis of biospecimens, and
genetic information). Our findings highlight DSST score and
serum cystatin C as measures that warrant evaluation and
priority consideration for health assessment of initially well-
functioning older adults (aged 70–79). Each of these mea-
sures predicted mortality better than chronological age, an
index of health deficits, and all other variables measured at
baseline, including smoking history, diabetes status, and
walking speed. These results point towards ‘‘leading indi-
cators’’ that can be used to characterize aging trajectory or
subclinical disease in older adults.

DSST score emerged from our analysis as the strongest
overall predictor of all-cause mortality in the Health ABC
cohort. This one variable was, in nearly all subgroups con-
sidered, able to predict mortality patterns better than base-
line age or a health deficit index. This result is consistent

FIG. 1. Digit Symbol Substitution Test (DSST) score predicts mortality in the Health Aging, and Body Composition Study
(Health ABC) cohort and multiple participant subgroups. (A) The hazard ratio (HR) associated with low DSST score (DSST
< 25) was estimated in the full Health ABC cohort and each of 25 subcohorts. Significant HRs are indicated by an asterisk
symbol (*). Point estimates with 95% confidence intervals are listed in the right margin. Sample sizes used for each subgroup
are listed at the end of each horizontal bar (participants with missing data were excluded from calculations). A 0-1 indicator
was used as the independent variable in Cox regression models, where the value of the indicator was 1 for participants with
low DSST (DSST < 25) and 0 otherwise. HR estimates are adjusted for study site (Memphis or Pittsburgh). (B) The HR
associated with low to high DSST score intervals (windows) was evaluated. Participants were sorted in ascending order
according to DSST score (horizontal axis). A sliding window analysis was then performed in which the HR was estimated for
a window of 100 participants relative to all other participants outside of the window. The solid black line represents the
estimated HR for a given window of 100 participants, and the dark grey region outlines a 95% confidence interval (CI). The
light grey vertical region in the background outlines the middle 50% of DSST scores among all participants (i.e., interquartile
range). (C) The relative risk of (assigned) underlying causes of death was evaluated in participants with a DSST score < 25
(n = 414 deaths) and participants with a DSST score ‡ 25 (n = 915 deaths). Assigned causes of death are sorted from most
frequent to least frequent among those with a DSST score < 25 (frequencies are given in parentheses).
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with previous studies that have also reported an association
between DSST score and long-term outcomes.16–19 DSST score
provides an integrative measure of visuomotor coordination,
processing speed, and short-term memory.20 It is possible
that low DSST score denotes a deficit reflecting ‘‘slowness’’ of
cognitive function, which might directly impact health to
increase mortality risk (e.g., inability to follow medication
schedules).16 Alternatively, low DSST score may signal the
presence of other health problems possibly outside the cen-
tral nervous system itself, such as vascular or metabolic
disease.21 Among those with DSST scores less than 25 (also
with cystatin C < 1.30 mg/mL), high plasma resistin
( ‡ 24 ng/mL) was an indicator of increased mortality risk
(Fig. 3). Because plasma resistin reflects the degree of sys-
temic inflammation, elevated resistin may reflect underlying
vascular or metabolic diseases that drive cognitive decline
and development of other health problems.22

Cystatin C has been viewed as a marker of kidney func-
tion, atherosclerosis, and systemic inflammation.23–25 How-
ever, cystatin C is not routinely measured in geriatric health
assessment. Previous studies of the Health ABC and CHS
cohorts have identified cystatin C as a strong predictor of all-
cause mortality and delineated high-risk groups as those
with cystatin C above 1.19 mg/L (Health ABC) or above
1.28 mg/L (CHS).23,24 Our threshold value of 1.30 mg/L is in
rough agreement with these prior estimates (see Fig. 2B). Our
findings do not indicate that cystatin C is a specific predictor
of renal failure, because atherosclerotic cardiovascular dis-
ease was the most frequent cause of death among those with
cystatin C ‡ 1.30 mg/L (Fig. 2C). However, relative to all
other Health ABC participants, renal failure as an assigned
underlying cause of death was 6.7 times more common in
those with elevated cystatin C ( ‡ 1.30 mg/L) (8% versus
1.2%). For participants with both cystatin C ‡ 1.3 mg/L and

FIG. 2. Serum cystatin C levels predict mortality in the Health, Aging, and Body Composition Study (Health ABC) cohort
and are associated with renal failure and atherosclerotic cardiovascular disease. (A) The hazard ratio (HR) associated with
high cystatin C (cystatin C ‡ 1.30) was estimated in the full Health ABC cohort and each of 25 subcohorts. Significant HRs are
indicated by an asterisk symbol (*). Point estimates with 95% confidence intervals are listed in the right margin. Sample sizes
used for each subgroup are listed at the end of each horizontal bar (participants with missing data were excluded from
calculations). A 0-1 indicator was used as the independent variable in Cox regression models, where the value of the indicator
was 1 for participants with high cystatin C (cystatin C ‡ 1.30) and 0 otherwise. HR estimates are adjusted for study site
(Memphis or Pittsburgh). (B) The HR associated with low to high cystatin C intervals (windows) was evaluated. Participants
were sorted in ascending order according to measured cystatin C (horizontal axis). A sliding window analysis was then
performed in which the HR was estimated for a window of 100 participants relative to all other participants outside of the
window. The solid black line represents the estimated HR for a given window of 100 participants, and the dark grey region
outlines a 95% confidence interval. The light grey vertical region in the background outlines the middle 50% of cystatin C
levels among all participants (i.e., interquartile range). (C) The relative risk of (assigned) underlying causes of death was
evaluated in participants with cystatin C ‡ 1.30 (n = 261 deaths) and participants with cystatin C < 1.30 (n = 1,083 deaths).
Assigned causes of death are sorted from most frequent to least frequent among those with cystatin C ‡ 1.30 (frequencies are
given in parentheses).
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serum creatinine ‡ 2.0 mg/dL, renal failure as an assigned
underlying cause of death was 16.8 times more common
(29.7% versus 1.8%). Interestingly, for one-third of partici-
pants with elevated cystatin C ( ‡ 1.30 mg/L), mortality was
not significantly increased (Fig. 3). Defining characteristics of
this subgroup included low creatinine ( < 2.0 mg/dL), low
abdominal visceral fat density ( < - 81 HU), DSST score ‡ 25,
and limited smoking history ( < 30 pack-years) (Fig. 3).

Some limitations of this study should be noted. First, we
analyzed older individuals screened to exclude those with
overt functional deficits. Our findings, therefore, may not
apply to a more general population of older adults. Second,
although our analysis included 825 variables, it is possible that
other variables, either not measured in Health ABC or ex-
cluded due to missing data, may have provided better pre-
dictors of mortality than those we identified. Third, we have
highlighted individual variables in our study that best pre-
dicted mortality, but it is possible that, in some cases, corre-
lated measures could be substituted with only modest loss of

prediction accuracy (e.g., 3MS score for DSST score; Table 1).
In practical settings, the choice between alternative metrics
would also depend upon the ease and cost of collecting in-
formation, which we have not factored into our analysis.
Fourth, we have focused only on mortality outcomes in the
Health ABC cohort. Variables that predict mortality may also
be useful for predicting other long-term outcomes, such as
accumulation of daily living impairments and the rate of
physical strength decline with increased age.3 However, fur-
ther work is required to determine whether mortality pre-
dictors we have identified are also informative with regard to
health span and maintenance of physical function. Finally, the
AUC statistics generated from univariate models were modest
in magnitude in the context of 10-fold cross validation (e.g.,
AUC values < 0.600; see Table 1). More accurate tools for
prediction of mortality patterns can be generated by devel-
opment of multivariate risk score indices, although cross-
validation prediction accuracy can also be improved by the
analysis of larger prospective cohort datasets.3

FIG. 3. Factors that modify mortality risk given elevated serum cystatin C or low digit symbol substitution test (DSST)
score. The algorithm shown in Supplemental Fig. 2 was applied to Health, Aging, and Body Composition Study (Health
ABC) subgroups to identify dominant mortality predictors in each subgroup. For each subgroup, the variable associated with
the highest area under the curve (AUC) value was identified, based upon cross-validation assessment and the mortality
patterns among participants within the group. This top-ranking variable was then used to further divide the subgroup, as
represented by the nested tree structure. If the top-ranking variable was continuous, an appropriate division point was
chosen by inspecting sliding window plots of the hazard ratio (HR) versus variable values (e.g., see Figs. 1B and 2B). For each
group at each level of the tree, the listed sample size (n) excludes any participants that could not be assigned to that group
due to missing data. The HR value ( – standard error) estimates the risk of mortality for individuals in that subgroup as
compared to the complete Health ABC cohort. An asterisk symbol (*) is used to denote cases in which the HR is significantly
different from 1 ( p < 0.05). The highlighted text indicates subgroups for which the estimated HR is significantly greater than 1
( p < 0.05).
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Attention to geriatric conditions in the clinical setting is
often insufficient, and older individuals are, as a group, at
risk for not receiving care that could otherwise prolong life
or improve its quality.26,27 Comprehensive geriatric assess-
ment has been viewed as one avenue leading toward better
recognition of disease states and improved care.28 Compre-
hensive geriatric assessment, however, carries substantial
time and resource demands.28 In this context, there is a need
to: (1) Deemphasize elements of a geriatric profile only
weakly associated with long-term outcomes and (2) better
emphasize assessments that provide a stronger basis for
long-term decision making. This study has identified mea-
sures most informative for predicting 13-year mortality in
older adults. The priority consideration of these measures in
clinical settings may facilitate geriatric assessment that is
both efficient and evidence-based.
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