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Interest in pharmacological treatments for obesity that act in the brain to reduce appetite has increased exponentially over
recent years, but failures of clinical trials and withdrawals due to adverse effects have so far precluded any success. Treatments
that do not act within the brain are, in contrast, a neglected area of research and development. This is despite the fact that a
vast wealth of molecular mechanisms exists within the gut epithelium and vagal afferent system that could be manipulated to
increase satiety. Here we discuss mechano- and chemosensory pathways from the gut involved in appetite suppression, and
distinguish between gastric and intestinal vagal afferent pathways in terms of their basic physiology and activation by
enteroendocrine factors. Gastric bypass surgery makes use of this system by exposing areas of the intestine to greater nutrient
loads resulting in greater satiety hormone release and reduced food intake. A non-surgical approach to this system is
preferable for many reasons. This review details where the opportunities may lie for such approaches by describing
nutrient-sensing mechanisms throughout the gastrointestinal tract.

Abbreviations
ASIC, acid-sensing ion channel; BMI, body mass index; CART, cocaine- and amphetamine-regulated transcript; CCK,
cholecystokinin; DPP-IV, dipeptidyl peptidase 4; EC, enterochromaffin; FFAR, free fatty acid receptor; GHS, growth
hormone secretagogue; GI, gastrointestinal; GIP, glucose-dependent insulinotropic peptide; GLP, glucagon-like peptide;
GPRC6A, G-protein-coupled receptor family C group 6 member A; HFD, high-fat diet; mGluR, metabotropic glutamate
receptor; NPW, neuropeptide W; PepT1, peptide transporter 1; PYY, peptide tyrosine-tyrosine; T1R, taste receptor
subtype 1; TRPM, transient receptor potential channel-melastatin subtype; TRPV, transient receptor potential
channel-vanilloid subtype; WHO, World Health Organization

Introduction
Obesity is a major health issue in the modern era, with its
increasing prevalence focussing attention on a problem not
of famine or infection, but the outcome of surplus. Most
developed societies are experiencing an epidemic of obesity
and its closely related co-morbidity type 2 diabetes (Chan
et al., 1994; Colditz et al., 1995). The prevalence of obesity
worldwide has more than doubled since 1980, with
2.6 million deaths directly related to the disease each year and
predictions that by 2015, over 1.5 billion adults will be over-
weight [body mass index (BMI) >25] or obese [BMI >30, World
Health Organization (WHO) 2011]. Obesity further contrib-
utes to increased incidence of diseases such as ischaemic
heart disease, stroke, hypertension, obstructive sleep apnoea,

non-alcoholic steatohepatitis, polycystic ovary syndrome and
numerous forms of cancer (Calle et al., 2003; Ning et al.,
2010). Although being overweight or obese is a serious risk to
both physical and mental health, it is extremely resistant to
behavioural intervention (Wadden et al., 2004). Very recent
evidence suggests that increased drive to eat upon dieting is a
result of decreased gut hormone release, rather than being
entirely a psychological phenomenon (Sumithran et al.,
2011). To date, therapeutic approaches to obesity manage-
ment have been largely aimed at appetite control via actions
within the CNS, and have had limited efficacy and/or unac-
ceptable adverse effects. Probably, the most effective current
interventions in obesity are firstly, gastric bypass surgery,
whereby nutrient is shunted to distal regions of the intestine,
where it provokes greater release of satiety hormones via a
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chemosensory mechanism (Bueter and le Roux, 2011),
although intestinal bypass procedures improve glucose
homeostasis disproportionately to weight loss (Rubino et al.,
2010), indicating there are additional consequences of this
surgery besides satiety. The second major intervention is
gastric banding, which restricts the volume that can be con-
tained within the stomach before it becomes overstretched
and excessively activates mechanosensory nerves. These
treatments have their own drawbacks that are beyond the
scope of this review, but they exemplify the potential of
peripherally directed approaches to obesity. Not surprisingly,
there is growing interest in developing non-surgical, pharma-
cological therapies that lead to a reduction in energy intake
by altering satiety and/or hunger and, thereby, weight loss.
Targeting the initiation of the satiety signal arising from the
gastrointestinal (GI) tract is, therefore, an attractive therapeu-
tic treatment for obesity.

Pathways from the gut involved in
appetite suppression

Satiation following food intake occurs via two principal
routes within the GI tract – distension of the stomach, and
the release of GI peptides in response to the presence of
luminal nutrients. Table 1 shows the range of nutrient recep-
tors that are thought to be expressed on gut epithelial cells
and elsewhere. From this, it is clear that there is the capacity
for detection of all major classes of nutrients, and discrimi-
nation according to specific molecular variants of amino
acids and fatty acids. Many of these nutrient receptors are
GPCR, and mirror a role they may have elsewhere in the
body. For example, the calcium-sensing receptor functions to
detect both amino acids and extracellular calcium concentra-
tions, which is crucial in parathyroid function, but also in
gastric hormone release (see later Buchan et al., 2001). In
some cases, specific GPCR are co-localized with specific hor-
mones (Hirasawa et al., 2005), but on the whole, the organi-
zation of this system is poorly understood, and the relative
role of each type of receptor is unclear. There are some par-
allels with the taste system that operates in the lingual epi-
thelium, and many components of this pathway are found in
the gut. In particular, sweet taste receptors are coupled via the
G-protein a-gustducin, and via PLCb, lead to opening of the
transient receptor potential channel transient receptor poten-
tial channel-melastatin subtype (TRPM)5, which in turn
allows calcium influx and excitation and secretion of media-
tors such as glucagon-like peptide-1 (GLP-1, see later).

While hormones released from GI tract can signal satiety
directly to the CNS, strong functional evidence exists to show
that vagal afferent neurons are a primary route to convey
mechanical and chemical cues from the GI tract to the brain-
stem and higher brain centres. Within these brain regions,
gustatory, olfactory and textural inputs are then integrated
with past experience to control feeding behaviour (Broberger
and Hokfelt, 2001; French and Cecil, 2001).

While outside the focus of this review, the role of spinal
sensory afferents in food intake regulation is less well known.
Spinal sensory innervation of the GI tract is thought to be
mainly involved in signalling pain in response to potentially

injurious stimuli such as acid-pepsin attack, over-distension
or spasm. The cell bodies of gastric and intestinal spinal
afferents reside mainly in the thoracic and lumbar dorsal root
ganglia adjacent to the spinal cord. Recordings from these
afferent pathways show that responses to nutrients do occur
(Ranieri et al., 1973; Perrin et al., 1981; Mei et al., 1984);
however, evidence so far suggests their role in food intake
regulation is minor. For example, bilateral abdominal
splanchnectomy in rats does not lead to significant weight
loss, in comparison to vagotomy (Furness et al., 2001). Celiac-
superior mesenteric ganglionectomy, however, has been
shown to reduce acute intake during intraduodenal carbohy-
drate or fatty acid infusion in rats, while a role of splanchnic
afferents in conveying gastric mechanical signals has been
suggested (Ozaki and Gebhart, 2001; Sclafani et al., 2003).
Further experiments are required to determine the exact con-
tribution of spinal afferents to the GI satiety signal, and
whether these afferents signal this directly, and/or indirectly
(for example, via mediating changes in intestinal blood
supply).

Vagal sensory innervation of the GI tract arises from affer-
ent neurones with cell bodies in the nodose and jugular
ganglia, and with endings concentrated in the upper GI tract.
Nerve tracing studies have shown that vagal afferent nerves
terminate within the muscular layers of the GI tract, within
the mucosa, or at both sites. Mechanically sensitive vagal
afferent endings form specialized endings within the muscu-
laris externae associated with myenteric ganglia as intragan-
glionic laminar endings (tension receptors) or as in series
intramuscular arrays (putative stretch receptors) running in
parallel to circular or longitudinal muscle fibres (Neuhuber,
1987; Berthoud et al., 1992; Zagorodnyuk et al., 2001; Powley
and Phillips, 2011). Mucosal vagal afferents (mucosal recep-
tors), in contrast, terminate within the parenchyma of
mucosal villi in close contact with the basal lamina, but not
with the epithelial surface (Berthoud et al., 1995) and are
both mechanosensitive and chemosensitive. This anatomy
largely precludes a direct chemosensory action by luminal
stimuli, and indicates that specialized epithelial cells serve as
primary GI chemosensory cells, and signal to adjacent vagal
afferent endings, or enteric neurons, in a paracrine manner.
These specialized cells represent less than 1% of the mucosal
cell population but together form the largest endocrine organ
of the body. They are regionally distributed throughout the
GI tract and possess an array of transduction machinery to
sense luminal stimuli, and in turn, release over 20 different
gut peptides or bioactive molecules (for review, see Cum-
mings and Overduin, 2007; Rindi et al., 2004). Many of these
gut peptides undergo rapid proteolytic breakdown in circula-
tion or have high liver clearance, indicating that physiologi-
cal effects beyond their site of local release within the lamina
propria may be limited. Accordingly, paracrine activation of
vagal afferent endings is likely to represent an important
mode of satiety signalling.

Gastric vagal afferent satiety signals

Investigations of the role in satiety of vagal afferents inner-
vating the stomach have generally been conducted by disrup-
tion of the vagal innervation to all abdominal viscera, but
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Table 1
Ligand, location and GI mediators associated with nutrient-sensing receptors

Ligand Location GI mediators Reference

Carbohydrate, sweet sensing

T1R2/T1R3
(Tas1r2/Tas1r3)

Sweet tastants: glucose, fructose,
sucrose, D-amino acids1,2

Sweeteners: aspartame, dulcin
cyclamate, saccharin,
ace-sulfame K1,2

Taste buds2

GI tract: jejunum, ileum,
colon3,4

Brain 5

Pancreas 6

T1R2: GIP7, CCK8,
GLP-19 (PYY 10)

T1R3: GIP7, GLP-17,
ghrelin11 (PYY12)

1(Li et al., 2002), 2(Nelson
et al., 2001), 3(Bezencon
et al., 2007), 4(Dyer et al.,
2005), 5(Ren et al., 2009),
6(Nakagawa et al., 2009),
7(Moran et al., 2010a),
8(Shen et al., 2005), 9(Moran
et al., 2010b), 10(Gerspach
et al., 2011), 11(Hass et al.,
2010), 12(Steinert and
Beglinger, 2011)

Protein hydolysate, amino acid sensing

GPR93
(GPR92/Lpar5)

Protein hydrolysate,
oleoyl-L-a-lysophosphatidic
acid13 farnesyl pyrophosphate

N-arachidonylglycine14

GI tract: stomach, small
intestine, large
intestine13

Lymphocytes15

Brain13,15

CCK16 13(Choi et al., 2007a), 14(Oh
et al., 2008), 15(Kotarsky
et al., 2006), 16(Choi et al.,
2007b)

mGluR1 Agonist potency: quisqualate
>3,5-dihydroxyphenylglycine
= glutamate > > (1S,3R)-1-
aminocyclopentane-1,3-
dicarboxylic acid >3-
hydroxyphenylglycine;
glutamate acts as a full
agonist, others as partial
agonists17,18

Taste buds
(circumvallate)19

GI tract: fundic glands,
duodenal mucosa,
ileum20–22

Brain22,23,24,25

Not assessed with
GI mediators

17(Schoepp et al., 1994),
18(Aramori and Nakanishi,
1992), 19(Toyono et al.,
2003), 20(Akiba et al., 2009),
21(San Gabriel et al., 2007),
22(Martin et al., 1992), 23

(Testa et al., 1994), 24(Görcs
et al., 1993), 25(Stephan
et al., 1996)

mGluR4 Agonist potency: L-2-amino-4-
phosphonobutyrate (L-AP4) >
L-serine-O-phosphate 26 >
L-glutamate > (1S,3R)-1-
aminocyclopentane-1,3-
dicarboxylic acid >
> quisqualate > quisqualate >
L-homocysteate = ibotenate27,28

Taste buds29

GI tract: fundic and
duodenal mucosa20,30

Brain28,31,32,33

Nodose ganglia33

Not assessed with
GI mediators

26(Thomsen and Suzdak,
1993), 27(Kristensen et al.,
1993), 28(Flor et al., 1995),
29(Chaudhari et al., 1996),
30(Chang et al., 2005),
31(Tanabe et al., 1993),
32(Makoff et al., 1996),
33(Hoang and Hay, 2001)

Calcium-sensing
receptor (CasR)

L-amino acids (preference for
aromatic and aliphatic amino
acids)34

Taste buds35

GI tract: oesophagus36,
fundic glands20,37,38,
duodenal mucosa 20,
ileum39, colon40

Brain39,41

Gastrin42, CCK43 34(Conigrave et al., 2000),
35(Bystrova et al., 2010),
36(Justinich et al., 2008),
37(Dufner et al., 2005),
38(Haid et al., 2011), 39(Ruat
et al., 1995), 40(Chihara
et al., 1979), 41(Ferry et al.,
2000), 42(Ray et al., 1997),
43(Wang et al., 2011)

T1R1/T1R3
(Tas1r1/Tas1r3)

Most amino acids (notably
l-aspartate and l-glutamate),
but not their D-enantiomers or
other compounds44

Taste buds (fungiform)45

GI tract: oesophageal
mucosa20, gastric
mucosa/antrum3,20,
duodenal mucosa3,20,
jejunum3,46, ileum3,
colon3

Brain5

Sensory neurons20

T1R1: NA
T1R3: See above

44(Nelson et al., 2002),
45(Raliou et al., 2009),
46(Mace et al., 2007)

GPRC6A Basic L-alpha-amino acids
L-Arginine, L-Lysine, L-ornithine47

Taste cells35

Stomach38

Brain 48,49

Gastrin38 47(Wellendorph et al., 2005),
48(Wellendorph and
Bräuner-Osborne, 2004),
49(Luo et al., 2010)
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Table 1
Continued

Ligand Location GI mediators Reference

Fatty acid sensing

GPR41 (FFAR3) Agonist potency:
Propionate = pentanoate =

butyrate > acetate > formate50

Colonic mucosa51

Brain52
CCK53, PYY51

(leptin54)

50(Brown et al., 2003), 51(Tazoe
et al., 2009), 52(Bonini et al.,
1997), 53(Samuel et al.,
2008), 54(Xiong et al., 2004)

GPR43 (FFAR2) Agonist potency:
Acetate = propionate = butyrate

> pentanoate > hexanoate =
formate > valerate50,55

Oral tissue56

GI tract: ileum57,
colon57,58)

PYY57, GLP-159

(PYY60)

55(Nilsson et al., 2003), 56(Mau
et al., 2011), 57(Karaki et al.,
2006), 58(Karaki et al., 2006),
59(Kaji et al., 2011), 60(Zaibi
et al., 2010)

GPR84 Medium-chain fatty acids with
acyl chain lengths 9–14.

Agonist potency:
Capric acid (C10) > Undecanoic

acid (C11) > Lauric acid
(dodecanoic acid) (C12) >
Tridecanoic acid (C13) >
Myristic acid (C14) >
Nonanoic acid (C9) 61

Not assessed in GI,
vagal pathways

Not assessed with
GI mediators

61(Wang et al., 2006)

GPR40 (FFAR1) Medium- and long-chain
saturated and unsaturated
fatty acids62.

Medium-length saturated fatty
acids (C10–12) have the
highest potency:

Capric acid > lauric acid >
myristic acid > palmitic acid.
Unsaturated free fatty acids
with C < 20 carbon atoms
activate, but with lower
potency Stearidonic acid >
linolenic acid > linoleic acid >
oleic acid)63

Taste buds64

GI tract: pylorus,
duodenum, jejunum,
ileum, colon65

Brain62,66

Gastrin, GIP, CCK,
PYY, GLP-1,
ghrelin65

62(Briscoe et al., 2003),
63(Kotarsky et al., 2003),
64(Cartoni et al., 2010),
65(Edfalk et al., 2008),
66(Ma et al., 2007)

GPR120 Long-chain unsaturated fatty
acids

a-Linolenic acid (C18:3) >
g-Linolenic acid (C18:3) >
cis-11,14,17-Eicosatrienoic acid
(C20:3) > cis-5,8,11,14,17-
Eicosapentaenoic acid (C20:5)
> Palmitoleic acid (C16:1) >
cis-4,7,10,13,16,19-
Docosahexaenoic acid
(C22:6)67,68

Taste buds
(circumvallate)64,69

GI tract: stomach70,
small intestine12,67,
colon71

GIP72, CCK73,
GLP-171

67(Hirasawa et al., 2005),
68(Burns and Moniri, 2010),
69(Matsumura et al., 2007),
70(Fredriksson et al., 2003),
71(Miyauchi et al., 2009),
72(Parker et al., 2009),
73(Tanaka et al., 2007)

GPR119 Lysophosphatidylcholine74,
oleoylethanolamide75,
endovallinoid
N-oleoyldopamine76, 2-oleoyl
glycerol and
2-monoacylglycerols77

GI tract75

Brain75
GIP72, PYY78

(GLP-179)

74(Soga et al., 2005),
75(Overton et al., 2006),
76(Chu et al., 2010),
77(Hansen et al., 2011),
78(Sakamoto et al., 2006),
79(Flock et al., 2011)

The majority of localization data listed is from immunohistochemistry studies in rodents and humans. Bracketed GI mediators indicate a
functional association between receptor and GI hormone exists (e.g. GI hormone release upon agonist activation), but direct co-localization
has not been established.
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this unfortunately provides no discrete evidence of the con-
tribution of gastric vagal afferents (for review, see Ritter,
2004). However, disruption of vagal pathways in rodents with
closed pyloric cuffs (to prevent post-gastric-mediated satia-
tion) led to increased consumption and attenuated the reduc-
tion of food intake following gastric preloads (Lorenz, 1983).
These data highlight a distinct role of gastric vagal afferents
in satiety signalling. In humans, there are two main surgical
approaches to obesity, both of which involve reduction in the
size of the stomach. One is gastric reduction alone, whereby
the volume of the stomach is reduced by resection or using an
extraluminal band; the other is by gastric resection combined
with bypass of a large part of the small intestine. Both types
of surgery are effective treatments for obesity, which argues in
favour of approaches that target the gastric satiety signal
(Elder and Wolfe, 2007). Gastric restriction is accomplished
by creating a small gastric pouch and restricting gastric emp-
tying by reducing the size of the gastric outlet, inducing early
satiety presumably by increased activation of gastric mecha-
noreceptors. Other mechanisms of action of bariatric surgery
include malabsorption. However, after bariatric surgery, 80%
of weight loss is achieved due to diminished energy intake
rather than malabsorption (Elder and Wolfe, 2007); therefore,
gastric restriction alone is effective in obesity control. The
consequence of reducing the size of the stomach is that a
smaller meal volume is able to exert sufficient mechanical
stimulus to activate vagal mechanoreceptive afferents (Black-
shaw et al., 1987), which signal fullness to the CNS. Corre-
spondingly, vagal electrical stimulation has been shown to
reduce food intake and body weight in rats (Laskiewicz et al.,
2003) and more specifically, electrical modulation of gastric
vagal nerves is being used successfully for the treatment of
obesity in humans (Toouli et al., 2007). Gastric bypass surgery
provides an additional mechanism to gastric restriction, by
direct exposure of the distal small intestine to unabsorbed
nutrient, which activates intestinal chemosensory mecha-
nisms (see later).

There are two functional classes of mechanosensitive
vagal afferents in the stomach, mucosal receptors and tension
receptors, according to the location of their mechanorecep-
tive fields (examples in Figures 1 and 3; Iggo, 1955; 1958;
Davison, 1972; Clarke and Davison, 1975; Cottrell and Iggo,

1984a,b; Page and Blackshaw, 1998; Page et al., 2002). Both of
these classes give rise to behavioural changes when activated.

We have shown that mucosal receptors are generally
silent at rest and respond mechanically to light stroking of
the mucosa, generating a burst of action potentials each time
the stimulus passes over the receptive field (Page and Black-
shaw, 1998; Page et al., 2002). They are insensitive to disten-
sion and contraction of the gastric wall. There is evidence
that they are important in the initiation of satiety, nausea
and vomiting by chemical and osmotic stimuli (Andrews and
Sanger, 2002). In the stomach, solid food is triturated into
small particles before emptying into the duodenum. Mucosal
afferents in the antrum and pylorus are the most likely to
mediate this discrimination of particle size and provide nega-
tive feedback onto control of gastric motor patterns that
promote emptying (Becker and Kelly, 1983; McIntyre et al.,
1997; Tuleu et al., 1999). Their high sensitivity to mechanical
stimulation of the mucosa also makes them ideal candidates
for detecting undigested food to initiate satiety signals.

Tension receptors often have a resting discharge that may
be modulated in phase with ongoing contractions. They
show slowly adapting responses to normal contractions and
distension with a linear relationship to wall tension (Black-
shaw et al., 1987; Page and Blackshaw, 1998; Page et al.,
2002). Tension receptors signal the level of gastric distension
to the CNS, which is important not only in triggering reflexes
controlling GI function, but also critical in signalling food
intake and generating sensations such as satiety and fullness.
Because of their exquisite sensitivity to distension, their sig-
nalling of an isovolumetric load is amplified after formation
of a gastric pouch (Blackshaw et al., 1987; Blackshaw and
Grundy, 1989), as occurs in bariatric surgery, providing a
markedly increased satiety signal. We have recently reported
that the mechanosensitivity of gastric vagal afferent tension
receptors is significantly reduced after chronic consumption
of a high-fat diet (HFD) suggesting that the satiety signal
would be reduced in these circumstances (see (Kentish et al.,
2011; Figure 1). Such a mechanism may have evolved to
maximize assimilation of energy from calorie-rich foods in
anticipation of famine. A number of studies have shown that
obese humans have increased gastric capacity (Geliebter,
1988; Kim et al., 2001), which would result in increased
energy intake. This could occur due to a reduction in the
gastric distension-stimulated vagal afferent satiety signal.
Another recent study has shown that the sensitivity of jejunal
afferents to satiety stimuli is also reduced after a HFD (Daly
et al., 2011). They revealed that the major mechanism for this
decrease in sensitivity is a reduction in the excitability of the
neuronal cell membrane (Daly et al., 2011). An alteration in
the ion channels involved in mechanotransduction may
explain this reduction in excitability of vagal afferents. For
example, transient receptor potential vanilloid type-1
(TRPV1) channels have been implicated in obesity. Capsaicin
activation of TRPV1 channels has been shown to prevent
obesity, while the relative expression of TRPV1 in visceral
adipose tissue was significantly reduced in mice fed with a
HFD (Zhang et al., 2007). In addition, researchers have shown
that consumption of red pepper (a source of capsaicin) along
with caffeine significantly reduced energy intake in humans
(Yoshioka et al., 2001). Therefore, it is possible that the reduc-
tion in mechanosensitivity of tension receptors is due to an

Figure 1
Response of gastric tension receptors to circular stretch in mice fed
either a standard laboratory diet (SLD; 7% energy from fat) or a HFD
(60% energy from fat). The response to stretch is significantly
reduced in mice fed a HFD (P < 0.00; two-way ANOVA). From Kentish
et al. (2011).
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alteration in the expression of TRPV1 channels in these par-
ticular vagal afferent neurones. However, acid-sensing ion
channels (ASIC3s) have also been implicated in gastro-
oesophageal vagal afferent mechanosensitivity (Page et al.,
2005) and therefore further research in this area is required to
find the mechanism responsible for the reduction in mecha-
nosensitivity after chronic consumption of a HFD.

Gastric mechanosensitive vagal afferents can also be
modulated by peptides or hormones known to affect appetite.
In fact, many of these peptides have been shown to be
located in gastric epithelial cells and are therefore in an ideal
position to be released and act upon local gastric vagal affer-
ent endings.

Gastric hormones have been shown to have potent effects
on satiety, and there is an abundance of evidence that this
occurs via vagal mechanisms (Date et al., 2002; Peters et al.,
2005). A rich variety of hormones are released from the epi-
thelium of which numerous are implicated in the role of
satiety signalling. Their role, source and targets are detailed
below and in Figure 2.

Leptin
Traditionally, it was thought that only leptin released from
adipocytes was responsible for the long-term regulation of
food intake. However, in addition to its role as an adipocytic

mediator, leptin is also a gut peptide that interacts with vagal
afferents. Epithelial cells in the stomach synthesize and
secrete leptin in rodents (Bado et al., 1998) and in humans
(Sobhani et al., 2000). Leptin-secreting cells in the epithelium
were initially identified as pepsinogen-secreting chief cells
(Bado et al., 1998; Sobhani et al., 2000); however, subsequent
studies have also detected leptin in the secretory granules of
endocrine P cells in the gastric fundus and pylorus (Cinti
et al., 2000). Leptin release from the stomach is regulated by
feeding (Attoub et al., 1999) (although which nutrients are
responsible is unknown), acetylcholine released by the vagus
nerve (Sobhani et al., 2002) and small intestinal hormones
such as cholecystokinin (CCK) and secretin (Bado et al., 1998;
Sobhani et al., 2000). Cell bodies of abdominal vagal afferents
in the nodose ganglia synthesize receptors and transmitters,
which are subsequently transported to the nerve terminals
(Figure 3). Expression of leptin receptor mRNA has been
detected in both rodent and human nodose ganglia (Buyse
et al., 2001; Burdyga et al., 2002), while vagal afferent
neurons possess functionally active leptin receptors (Buyse
et al., 2001).

Ghrelin
This orexigenic (appetite-stimulating) signal from the
stomach is an endogenous ligand for the growth hormone
secretagogue (GHS) receptor (Inui, 2001; Date et al., 2002).
Ghrelin has been shown to be located exclusively in endo-
crine X/A-cells (now designated Gr cells), with the highest
concentrations found in the oxyntic glands of the gastric
fundus and to a lesser extent the gastric antrum (Date et al.,
2000). Ghrelin is secreted from gastric endocrine cells into
the circulation, and while the exact stimulus for ghrelin
release is not known, there are many stimuli that can inhibit
the process. At least part of ghrelin signalling from the
stomach is mediated via an ascending neural network
through the vagus nerve and brainstem nuclei that ultimately
reaches the hypothalamus (Asakawa et al., 2001; Date et al.,
2002). We have shown that peripheral vagal afferent endings
in the stomach are found in close apposition to ghrelin con-
taining epithelial cells (Kentish et al., 2011) GHS receptors are
localized to vagal afferents that project to the rat stomach and
we have shown GHS receptor expression in the mouse nodose
ganglia (Page et al., 2007). There is some controversy around
the role of the vagus nerve in the orexic effects of ghrelin.
Date and colleagues (Date et al., 2002) showed that either
truncal or selective gastric vagotomy or perivagal capsaicin
abolished the action of ghrelin when given intravenously in
rats. Findings of Asakawa and colleagues (Asakawa et al.,
2001) support this view, showing that ghrelin inhibits the
resting discharge in whole vagal nerve recordings and that
lesioning vagal afferent fibres inhibits the appetite-
stimulating actions of ghrelin. In contrast, Arnold and col-
leagues (Arnold et al., 2006) showed no effect of vagotomy on
the acute effects of ghrelin administered intraperitoneally.
We have reported that ghrelin inhibits the mechanosensitiv-
ity of gastric tension receptors but not mucosal receptors
(Page et al., 2007). After chronic consumption of a HFD or
acute food restriction, this selective inhibition of gastric
tension receptors is extended to include gastric mucosal
receptors (Kentish et al., 2011). Since gastric mucosal recep-
tors are considered to be important in detecting particulate

Figure 2
Release of mediators from different regions and effects on food
intake. Red indicates inhibition of food intake; green is promotion.
Although many mediators act via vagal pathways, some may
instead/in addition directly in the brain. See text for details.
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content, which reduces gastric emptying and food intake
(McIntyre et al., 1997; Tuleu et al., 1999), ghrelin is likely to
reduce this satiety signal during fasting and in obesity. In
fasted healthy volunteers, ghrelin administration has been
shown to increase the rate of gastric emptying in addition to
elevating hunger ratings (Falken et al., 2010); this may be a
consequence of the decreased mechanosensitivity of gastric
mucosal receptors by ghrelin. Together, these data indicate
marked plasticity in the mechanism of action of ghrelin
under different feeding states.

Neuropeptide W (NPW)
Neuropeptide W is a recently discovered peptide that acti-
vates the orphan G-protein-coupled receptors GPR7 and
GPR8 (Tanaka et al., 2003). NPW has been suggested to exert
a modulatory role in the control of food intake in the brain
since central administration of human NPW in rats stimu-
lated food intake (Shimomura et al., 2002; Levine et al.,
2005). However, NPW has also been shown to be present in
antral epithelial gastrin (G) cells of rat, mouse and human
stomach (Mondal et al., 2006). It is known that these cells
respond to dietary amino acids via the G-protein-coupled
calcium sensing receptor, which induces excitation via phos-
pholipase C (Buchan et al., 2001). Gastric mucosal expression

of NPW mRNA in fasted or food restricted animal models is
reduced and normalized upon refeeding (Caminos et al.,
2008). In addition, GPR7 knockout mice were shown to be
hyperphagic and became obese (Ishii et al., 2003). Together,
this suggests an anorectic role for gastric NPW (Mondal et al.,
2003). However, preliminary studies within our laboratory
indicate that NPW reduces the mechanosensitivity of gastric
vagal afferents and thus, like ghrelin, has a peripheral orexi-
genic effect (Li et al., 2011). This NPW-induced reduction in
vagal afferent mechanosensitivity is lost after chronic con-
sumption of a HFD (Li et al., 2011) possibly as a protective
mechanism as a result of an energy imbalance.

Orexin
Orexins are neuropeptides first localized in neurons within
the lateral hypothalamus (Nambu et al., 1999; Takahashi
et al., 1999). They are involved in feeding behaviour by
stimulating appetite and food consumption (Wolf, 1998).
Two types of orexins have been identified, orexin A and B
(Sakurai et al., 1998), derived from a common precursor. Early
reports suggested that orexins were restricted to the hypo-
thalamus, however, subsequently, it has been shown that a
subset of neurons and endocrine cells of the GI tract also
contain orexin A and express functional receptors (Kirchgess-

Figure 3
Release mechanism and activation of enteroendocrine cells. Nutrient (diamonds) activate GPCR (blue) on enteroendocrine cell (pink), which via
G-proteins (red) activate mediator release on to receptors (blue) on vagal afferents (yellow). Fluorescence micrograph inset shows cell in human
colonic epithelium activated in vitro by lauric acid [phosphorylated extracellular-regulated kinase (pERK) immunohistochemistry, unpublished],
Nerve recording insets show direct and modulatory effects on vagal afferents of released mediators. Data from Page et al. (2002), Kentish et al.
(2011) and unpublished. Recordings are from gastric mucosal afferents in mice. Square waves indicate timing of mechanical stimuli. Note that
ghrelin is probably constitutively released rather than induced by nutrient receptors.
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ner and Liu, 1999). Orexin A immunoreactivity has been
found in endocrine cells in gastric pyloric glands of rodents,
where a subset co-localizes with gastrin, in addition to endo-
crine cells in the human stomach (Kirchgessner and Liu,
1999; De Miguel and Burrell, 2002; Nakabayashi et al., 2003).
Orexin-1 receptor has also been localized in vagal afferent
neurons of humans and rats, while orexin A has been shown
to inhibit jejunal vagal afferent responses to CCK (see later
Burdyga et al., 2003; 2010). Although not directly investi-
gated, it is possible that orexin A released from gastric endo-
crine cells could modulate the response of gastric vagal
afferents to mechanical stimulation, thereby influencing
gastric vagal afferent signalling of satiety.

Non-peptide transmitters such as endocannabinoids and
nitric oxide have also been implicated in satiety signalling.
There is substantial evidence for the role of nitric oxide in
feeding behaviour in the hypothalamus (Czech, 1996;
Yamada et al., 1996; Czech, 1998; Czech et al., 1998; Calapai
et al., 1999; Morley et al., 1999) but little is known about its
role in satiety signalling in the periphery. Studies have shown
that nitric oxide is important in the actions of many appetite
control peptides including ghrelin, neuropeptide Y, orexin A
and leptin (Morley et al., 1999; Gaskin et al., 2003; Farr et al.,
2005). For example, the effect of the peptides CCK, neuropep-
tide Y and ghrelin on food intake is lacking in nitric oxide
synthase knockout mice (Morley et al., 2011). Indeed, we
have recently reported a role for endogenous nitric oxide as a
peripheral modulator of gastro-oesophageal sensory function
(Page et al., 2009). Nitric oxide synthase containing cells
located within the gastric mucosa are an endogenous source
of nitric oxide, which are in close proximity to vagal afferent
endings (Page et al., 2009). Therefore, there is a peripheral
nitric oxide-vagal afferent pathway that may be involved in
appetite regulation. Preliminary data from our laboratory
further indicate that there is a switch in the effect of endog-
enous nitric oxide on vagal afferent mechanosensitivity –
from inhibitory in fed animals to excitatory in fasted animals
(Elliott et al., 2011). This switch is due to signal transduction
via alternate second messenger pathways in response to nitric
oxide.

Intestinal vagal afferent satiety signals

The intestine, the major site of macronutrient breakdown
and nutrient absorption, is extensively innervated by vagal
afferents with peak density in the duodenum and lower
density in the ileum and distal intestine (Jagger et al., 1997).
Intestinal vagal afferents that terminate within muscle layers
are directly responsive to mechanical stimuli (Clarke and
Davison, 1978), similar to those innervating muscle layers of
the stomach. Mucosal vagal afferents, however, are likely to
respond directly to chemical signals from primary sense cells
within the intestinal mucosa (Figure 3). In support of a para-
crine action of enteroendocrine cells, subsets of intestinal
vagal afferents are known to express receptors for a number of
key hormones released by gut epithelial cells, including those
released in response to luminal nutrients (Kakei et al., 2002;
Raybould et al., 2003; Nakagawa et al., 2004; Vahl et al., 2007;
Bucinskaite et al., 2009); a number of these important signal
mediators are discussed below.

Intestinal vagal afferents are responsive to a wide array of
luminal stimuli, including hyperosmotic and hypo-osmotic
solutions, acids and bases, and breakdown products of carbo-
hydrates, proteins and fats (Clarke and Davison, 1978; Mei,
1978; Mei and Garnier, 1986; Lal et al., 2001). Intestinal per-
fusion with water, for example, has been shown to specifi-
cally activate subsets of intestinal vagal afferents in cats and
rats (Mei and Garnier, 1986; Zhu et al., 2001). Infusions of
hyperosmotic solutions exceeding 500 mosM also directly
activate nodose ganglion neurons in rats, and significantly
inhibit food intake in pigs (Houpt et al., 1983; Zhu et al.,
2001). This osmolarity is within the normal postprandial
range of ingesta within the intestine and indicates that non-
nutritive characteristics of ingesta contribute to the intestinal
satiety signal, and signal largely via vagal pathways. Intestinal
nutrients exert powerful effects on food intake and satiety via
vagal pathways. Subdiaphragmatic vagotomy or abdominal
afferent denervation using the neurotoxin capsaicin largely
or completely blocks the inhibition of food intake following
intestinal infusion of carbohydrates or fatty acids (Yox and
Ritter, 1988; Walls et al., 1995). Correspondingly, expression
of the immediate early gene product, c-fos, in vagal brainstem
nuclei, closely follows intraduodenal infusion of these nutri-
ents (Phifer and Berthoud, 1998). Together, these data high-
light the critical role of intestinal vagus signals in satiety, and
the rationale of targeting the vagus in managing obesity.
There are also many examples of intestinal nutrient infusion
slowing gastric emptying via vagal reflex pathways in animals
and humans (Wilkinson and Johnston, 1973; Roze et al.,
1977; Raybould and Holzer, 1992; Schwartz et al., 1993). In
healthy humans, this rate is slowed to 1–3 kcal·min-1, a rate
matched to the absorptive capacity of the small intestine
(Brener et al., 1983; Raybould, 1998). However, it is important
to appreciate that while slowing of gastric emptying may
interact with intestinal satiety signalling, the suppression of
food intake by intestinal signals per se does not require gastric
emptying to be slowed.

Glucagon-like peptide-1
Much research effort has been focussed on intestinal L-cells
due to their ability to broadly detect digestion products of
carbohydrates, fats and proteins, and in response, secrete the
incretin hormone GLP-1. L-cells are distributed throughout
the GI tract, with greatest density in the distal intestine
(ileum, colon); yet not insignificant numbers are present in
the proximal small intestine in most species (Bryant et al.,
1983; Eissele et al., 1992). These cells use alternative post-
translational processing of proglucagon to produce the bio-
active peptides GLP-1, GLP-2 and oxyntomodulin, although
most attention has focussed on the actions of GLP-1 (Holst,
2007). GLP-1 is released rapidly in proportion to caloric load
and to the length of small intestine exposed to nutrient, and
acts to increase satiation, stimulate insulin release, suppress
glucagon secretion and slow gastric emptying (Schirra and
Goke, 2005; Horowitz and Nauck, 2006; Little et al., 2006). In
addition, complex carbohydrates that reach the distal intes-
tine may be fermented to short-chain fatty acids, which can
also interact with L-cells via other nutrient sensors (Holst,
2007; Reimann, 2010). While these distal L-cell mechanisms
can powerfully influence GI motility and food intake (as the
ileal and colonic brake mechanisms), they may not be signifi-
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cantly recruited under normal GI transit due to effective
upper gut absorption; they are also less likely to signal via a
vagal pathway.

Our own work has shown that a subset of proximal intes-
tine L-cells in both mice and humans express GPCRs for sweet
taste (Sutherland et al., 2007; Young et al., 2010). Sweet taste
receptors are under dynamic luminal and metabolic control,
and link the luminal presence of a broad range of sweet
tastants, including sweeteners, to the intestinal release of
GLP-1 (for review, see Young, 2011). In L-cell-based systems,
and recently in human intestine, it has been shown that
blockade of sweet taste receptors reduces glucose-stimulated
GLP-1 [and peptide YY (PYY)] release, while mice that are
deficient in sweet taste molecule expression show dysregu-
lated glucose-stimulated GLP-1 release (Jang et al., 2007; Mar-
golskee et al., 2007; Gerspach et al., 2011). Sweet taste
receptors provide one example, among others, of sensors
expressed on L-cells, which may transduce luminal carbohy-
drate signals (Tolhurst et al., 2009). A similarly diverse list of
candidate GPCRs in the intestine respond to breakdown
products of amino and fatty acids leading to the release of
GLP; these have been reviewed by others [see Table 1 (Little
and Feinle-Bisset, 2011b; Reimann, 2010)].

The functional importance of GLP-1 in food intake
control is now well established – genetic variation around the
GLP-1 allele strongly correlates with total food volume in
mice strains (Kumar et al., 2008), while mice deficient in
GLP-1 receptors are partially resistant to HFD-induced obesity
(Hansotia et al., 2007). Evidence indicates that effects of gut-
released GLP-1 on food intake are mediated largely via a vagal
pathway arising from the proximal intestine (Hayes et al.,
2011). Subdiaphragmatic vagotomy completely blocks the
satiating effect of intraperitoneal GLP-1 infusion (targeting
intestinal vagal afferents) in rats, indicating that these effects
are dependent on vagal afferent activation (Punjabi et al.,
2011). Indeed, GLP-1 receptors have been localized on
abdominal vagal afferents, on nodose ganglion neurons and
in brainstem neurons (notably within the dorsal vagal
complex) (Drucker and Asa, 1988; Goke et al., 1995; Imeryuz
et al., 1997; Merchenthaler et al., 1999; Kakei et al., 2002;
Nakagawa et al., 2004). While GLP-1 has also been shown to
excite vagal afferents directly, effects on satiety and gastric
emptying were long considered to involve endocrine actions
at central sites within brainstem and hypothalamic nuclei
(Imeryuz et al., 1997; Kakei et al., 2002; Nagell et al., 2006;
Nakade et al., 2006; Bucinskaite et al., 2009; Holmes et al.,
2009). However, the relative importance of central site of
action for gut-released GLP-1 is uncertain as GLP-1 undergoes
rapid degradation within minutes at the site of peripheral
release and within the circulation and liver by the ubiquitous
enzyme dipeptidyl peptidase-IV (DPP-IV), with less than 10%
reaching systemic circulation in intact form (Deacon et al.,
1996; Holst, 2007). Moreover, circulating levels of active
GLP-1 do not significantly rise after regular chow meals in
non-anaesthetized rats (Punjabi et al., 2011), suggesting that
the normal signalling mode of gut-derived GLP-1 is predomi-
nantly paracrine (vagal), rather than endocrine. It should be
noted, however, that GLP-1 is also produced centrally within
autonomic neurons of the ventrolateral and caudal nuclei of
the solitary tract, which project to various hypothalamic
nuclei, and direct activation of GLP-1 receptors within the

caudal brainstem is capable of reducing food intake (Merch-
enthaler et al., 1999; Vrang et al., 2007; Hayes et al., 2008;
Llewellyn-Smith et al., 2011). However, blockade of central
GLP-1 receptors does not block the anorexia induced by intra-
peritoneal GLP-1 in rats, whereas peripheral GLP-1 receptor
blockade led to increased light phase food intake in rats
(Williams et al., 2009), arguing against a prominent role of
central GLP-1 in intestinal vagal afferent-mediated satiety. In
summary, it appears that gut-derived GLP-1 is the primary
satiety signal triggered upon food intake, and that vagal pro-
cessing is sufficient to exert this effect.

It is also well established that the peripheral administra-
tion of GLP-1 or GLP-1 analogues (e.g. exenatide, liraglutide)
dose dependently reduce food intake leading to weight loss in
animal models of obesity and in lean and obese humans (for
review, see Hayes et al., 2010). In rats, this reduced food
intake with liraglutide is due to combined actions at GLP-1
receptors on peripheral vagal afferents of the intestine (or
hepatic portal region) and centrally (Kanoski et al., 2011).
Peripheral GLP-1 also directs energy balance on both a short-
and long-term basis via interaction with leptin, which is
hypothesized to increase intestinal vagal afferent sensitivity
to GLP-1, as occurs for another anorexigenic peptide, CCK.
Thus, a satiating effect of GLP-1 in fasted mice is revealed by
co-administration with leptin, and GLP-1 is ineffective in
reducing food intake in leptin receptor-deficient mice. Both
CNS and peripheral sites of action appear plausible for this
action (for review, see Barrera et al., 2011).

Glucose-dependent insulinotropic
peptide (GIP)
GIP-secreting K-cells are located within the proximal small
intestine, and are responsive to digestion products of carbo-
hydrates and fat, as well as certain amino acids (Baggio and
Drucker, 2007). GIP is rapidly released postprandially in pro-
portion to calorific load (Pilichiewicz et al., 2007a), and acts
to stimulate insulin release and promote lipid storage in adi-
pocytes, the latter an emerging role that may link overnutri-
tion to obesity (Yip et al., 1998; Baggio and Drucker, 2007;
Kim et al., 2007). There is recent interest in GIP in the obesity
setting, given that GIP knockout mice are resistant to diet-
induced obesity (Miyawaki et al., 2002). Indeed, it has been
proposed that part of the benefits of Roux-en-Y gastric bypass
in obesity management may be due to surgical removal of
intestinal K-cells (for review, see Paschetta et al., 2011).
However, in contrast to GLP-1, exogenous GIP does not alter
the rate of gastric emptying in response to intestinal carbo-
hydrates, and correspondingly, vagal afferents in rodents lack
receptors and functional responses to GIP (Nishizawa et al.,
1996; Meier et al., 2004; Nakagawa et al., 2004). Moreover,
while the density of intestinal K-cells may increase in obesity,
GIP has no direct effects on hunger, desire to eat, satiety or
prospective consumption in humans (Cho and Kieffer, 2011;
Edholm et al., 2011). It should be noted that K-cells co-secrete
the peptide xenin, which exerts satiating effects at a periph-
eral and/or central site of action, the latter which may occur
independent of known hypothalamic satiety centres (Leck-
strom et al., 2009; Taylor et al., 2011). It remains to be estab-
lished whether a peripheral vagal pathway is involved in this
action of xenin.
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Peptide YY
PYY is produced within L-cells that co-secrete GLP-1 in both
the proximal and distal intestine, and is released in response
to fatty acids, carbohydrates and to a lesser extent, amino
acids (for review, see Holst, 2007). PYY release is in proportion
to caloric load and acts to both increase satiation and slow
gastric emptying (Batterham et al., 2006; Pilichiewicz et al.,
2007b; Helou et al., 2008). Two endogenous forms mediate
these effects, with PYY3–36 – the predominant circulating form
– produced following cleavage of PYY1–36 in circulation by the
ubiquitous enzyme DPP-IV (Karra et al., 2009). Along with
other members of this peptide family (neuropeptide Y, pan-
creatic polypeptide), PYY peptides interact with specific
GPCRs Y1, 2, 4, 5 and 6 with differential specificity; PYY1–36

binds to all Y-class receptors, while PYY3–36 shows high affinity
for Y2 receptors, and lower affinity for Y1 and Y5 receptors.
Intraperitoneal administration of PYY3–36 in rodents was
shown to exert a dose-dependent anorectic effect on food
intake (Batterham et al., 2002), which could be completely
blocked by subdiaphragmatic vagotomy (Abbott et al., 2005).
Indeed, Y2 receptors have been identified on both intestinal
vagal afferents and within the hypothalamus (arcuate
nucleus) indicating that anorectic effects of Y2 receptor acti-
vation may be achieved via paracrine activation of intestinal
vagal afferents, via direct central activation by circulating
PYY3–36, or by both pathways (Zhang et al., 1997; Fetissov
et al., 2004; Koda et al., 2005). Like GLP-1, PYY has complex
effects on food intake upon central administration in rodents.
Direct administration to the hypothalamic arcuate nucleus
inhibits food intake via a Y2 receptor-dependent manner,
while i.c.v. administration exerts orexigenic effects in the
hypothalamic paraventricular nucleus via a Y1 and Y5
receptor-dependent manner (for review, see Cummings and
Overduin, 2007). Together, these findings highlight the
complex role of Y2 receptors in both vagal and central path-
ways regulating satiety.

Vagal expression of Y2 receptors is known to be modified
by feeding status in rats, and in association with prevailing
levels of the gut hormone CCK. Thus, Y2 receptor levels are
low in fasted mice and high in fed mice, or in fasted mice
infused with CCK (Burdyga et al., 2008). This action of CCK is
mediated via release of the vagal afferent neuronal peptide
derived from cocaine- and amphetamine-regulated transcript
(CART), which acts in an autocrine manner to increase Y2
receptor levels (De Lartigue et al., 2011; reviewed in Dockray
and Burdyga, 2011). Pharmacological blockade of Y2 recep-
tors in rats has been shown to abolish feeding inhibition by
PYY3–36, while germline knockout mice deficient in Y2 recep-
tors are hyperphagic and develop obesity (Batterham et al.,
2002; Scott et al., 2005); similar findings have been revealed
in a PYY-specific knockout mouse (Naveilhan et al., 1999).
Thus, there is ample evidence to suggest that vagal Y2 recep-
tors are an important satiety-signalling mechanism.

Cholecystokinin
CCK-secreting I-cells are located largely within the proximal
small intestine and are more responsive to digestion products
of fatty and amino acids than to carbohydrates (Rehfeld,
1978; Cummings and Overduin, 2007). It is well established
that CCK release occurs in proportion to caloric load, but
independent of the length of small intestine exposed (Liddle

et al., 1985; Little et al., 2006). Release of CCK by fatty acids is
critically dependent on acyl chain length, with only fatty
acids �12 carbon atoms able to trigger release, and subse-
quent suppression of food intake (Hunt and Knox, 1968;
McLaughlin et al., 1999; Feltrin et al., 2004). Short-chain fatty
acids, in contrast, engage specific nutrient detectors in the
distal intestine, which may influence satiety via non-vagal
pathways as part of the ileal or colonic brake mechanisms (for
review, see Kaemmerer et al., 2010). Activation of intestinal
vagal afferents by fat involves the packaging of fatty acids
within enterocytes into chylomicrons, followed by the pro-
duction and basolateral release of apolipoprotein A-IV; apo-
lipoprotein A-IV then triggers CCK release, activating CCK1

receptors on adjacent vagal afferent endings (Glatzle et al.,
2003; Whited et al., 2006; Lo et al., 2007). An alternate signal
pathway for CCK-dependent activation of vagal afferents has
also been proposed for oleoylethanolamine, a lipid amide
that also triggers intestinal release of apolipoprotein A-IV in a
manner dependent on the activation of peroxisome
proliferator-activated receptor alpha (Fu et al., 2003).
However, much less is known of how CCK is released by
proteins to activate intestinal vagal afferents. Evidence so far
has revealed that the proton-coupled oligopeptide trans-
porter PepT1 (peptide transporter 1) is indirectly involved via
a CCK-dependent pathway (Darcel et al., 2005; Matsumura
et al., 2005; Liou et al., 2011).

There is abundant evidence from our laboratory, and
others, that intestinal vagal afferents express the CCK1 recep-
tor, and are responsive to CCK (Cottrell and Iggo, 1984a;
Moran et al., 1987; Blackshaw and Grundy, 1990; Broberger
et al., 2001; Lal et al., 2001; Partosoedarso et al., 2001). Exog-
enous administration of CCK potently suppresses food intake
and slows gastric emptying in rats and humans – effects
blocked by vagotomy in rats (Smith et al., 1985; Schwartz
et al., 1993; Sullivan et al., 2007; Brennan et al., 2008). In a
similar manner, pharmacological blockade of CCK1 receptors
dose dependently inhibits food intake and gastric emptying
effects of exogenous and endogenous CCK in rats and
humans (Fried et al., 1991; Moran et al., 1992; 1994; Yox
et al., 1992; Beglinger et al., 2001). Genetic polymorphisms
around the CCK (and leptin) allele in humans have also been
shown to associate with specific eating patterns and meal size
(de Krom et al., 2007), supporting a specific role for CCK in
human satiety signalling. Despite strong evidence of a
peripheral site of action, a central site for CCK satiety has
been shown, based on expression and function of CCK recep-
tors in hypothalamic satiety centres, and evidence that
blood–brain barrier permeant CCK1 receptor antagonists
modify food intake in vagotomized rats (Schick et al., 1990;
Honda et al., 1993; Reidelberger et al., 2004). A recent and
elegant magnetic resonance study in humans, however, has
revealed that activation of brain regions upon intestinal
exposure to intralipid was consistent with activation via a
vagal pathway, and could be abolished by pharmacological
blockade of CCK1 receptors (Lassman et al., 2010). Satiation
in humans in response to long-chain fatty acids, and gastric
emptying of hexose sugars are also reported to be blocked by
the CCK1 receptor antagonist loxiglumide (Matzinger et al.,
2000; Little et al., 2010), highlighting the importance of CCK
satiety signals in response to a range of dietary macronutri-
ents. Levels of CCK1 receptors in vagal afferents do not show
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significant nutritional plasticity in health, but serve as trig-
gers to modulate levels of other anorexic and orexigenic
receptors with feed status (for review, see (Dockray and
Burdyga, 2011). CCK activation of vagal afferents and satiety
signalling, though, is inhibited by orexigenic hormones
including ghrelin, orexin A and the endogenous cannabinoid
receptor agonist, anandamide (Burdyga et al., 2006a; 2010;
2006b; De Lartigue et al., 2011). In contrast, CCK activation
of a subset of CCK1 receptor expressing vagal afferents is likely
to be potentiated by anorectic actions of melaninocortin-
4 receptor agonists (such as a-melanocyte-stimulating
hormone) acting via a central presynaptic mechanism (Wan
et al., 2008; Gautron et al., 2010), as well as by leptin.

CCK acts predominantly as a short-term satiety signal, as
long-term administration in animals and humans does not
alter body weight, as reduced meal size is effectively offset by
increased meal frequency. In fact, the satiating actions of
intraperitoneal CCK administration are lost as early as 24 h in
rodents (Crawley and Beinfeld, 1983; West et al., 1984).
However, anorectic effects of CCK are augmented by the
long-term satiety hormone leptin, when CCK responses are
potentiated at the level of vagal afferents, the brainstem and
hypothalamus (for review, see Strader and Woods, 2005;
Dockray and Burdyga, 2011). Accordingly, the adiposity of an
individual, which is tightly linked to circulating leptin levels,
is likely to sculpt responsiveness to short-term CCK signals.
For example, anorectic effects of CCK would likely be
decreased in both lean individuals and in leptin-resistant
states, such as obesity. It is also important to note that rats
deficient in CCK1 receptor expression are obese and hyperph-
agic, while mice lacking CCK1 receptors are lean, but become
obese following a HFD (Schwartz et al., 1999; Bi et al., 2007);
variable effects of a HFD have been reported in CCK knockout
mice (Lacourse et al., 1999; Lo et al., 2011). Together, these
data indicate that CCK exerts acute anorectic effects on meal
size and timing, but exerts these actions predominantly via
peripheral vagal actions to control food intake.

Serotonin (5-HT)
Serotonin-secreting enterochromaffin (EC) cells are a promi-
nent enteroendocrine cell type distributed throughout the GI
tract. EC cells release 5-HT in response to a wide array of
chemical and mechanical cues, including acids, bases, carbo-
hydrates, long- and short-chain fatty acids, as well as follow-
ing distension or exposure to high-osmolarity stimuli (for
reviews, see Grundy, 2006; 2008; Blackshaw et al., 2007; Ber-
trand, 2009; Raybould, 2009; Bertrand and Bertrand, 2010).
Vagal afferents in rats and humans are known to express the
5-HT3 receptor, while in rats, both 5-HT3A and 5-HT3B subtypes
are expressed and may form homomeric or heteromeric
receptors each with different agonist sensitivity (Glatzle et al.,
2002; Morales and Wang, 2002; Lang and Grafe, 2007). Fol-
lowing GI release, 5-HT exerts paracrine effects via activation
of 5-HT receptors present on enteric nerves and vagal nerve
endings within the mucosa; circulating 5-HT levels are kept
low due to specific uptake into platelets. A number of other
bioactive compounds have been identified in EC cell popu-
lations, including chromogranin A, melatonin, ATP, GABA,
uroguanylin and dynorphin although less is known of their
actions in the GI tract (see Bertrand and Bertrand, 2010).

While parenteral 5-HT administration has been shown to
reduce meal size and duration in rats, vagotomy appears to
increase this effect (Fletcher and Burton, 1985; 1986). Addi-
tionally, outcomes of studies using 5-HT3 receptor antagonists
to influence satiety in animals and humans have generally
been inconsistent, raising questions for a peripheral role of
5-HT in food intake regulation (for review, see Aja, 2006).
Indeed, most attention has been focussed on central sites of
satiety actions of 5-HT acting on 5-HT1 and 5-HT2 receptor
subtypes (for review, see Atkinson, 2008). Despite this, evi-
dence in rodents has indicated a role of peripheral 5-HT3

receptors in vagal pathways activated by carbohydrate, fatty
acids and hyperosmolar stimuli leading to suppression of
food intake, slowing of gastric emptying and pancreatic secre-
tion (Li et al., 2000; Zhu et al., 2001; Raybould et al., 2003;
Savastano et al., 2005; 2007; Wu et al., 2005). It has also been
suggested that similar populations of intestinal vagal affer-
ents activated by CCK in rats are responsive to 5-HT (Li et al.,
2004); this could potentiate satiety signal arising in this
common pool of vagal afferents, particularly in the presence
of mixed meal components. A similar mechanism has been
shown for gastric vagal afferent mechanosensitivity, which is
augmented by both CCK and 5-HT and has been suggested is
the primary peripheral satiety action of peripheral 5-HT
(Bozkurt et al., 1999; Daughters et al., 2001; Hayes et al.,
2006). Additional experiments are required to ascertain the
precise role of peripheral GI release of 5-HT and vagal 5-HT3

receptors in food intake regulation, although this contribu-
tion is likely to be less than other direct vagal mediators of
satiety.

Intestinal vagal afferent signals
in obesity

Studies in rodents following a HFD, or in diet-induced obesity
consistently show reduced suppressive effects of intestinal
nutrients on food intake compared to control animals
(Covasa et al., 2001; Little and Feinle-Bisset, 2011b). More-
over, the GI release of GLP-1 and PYY is reported to be
attenuated in diet-induced obesity in rodents, while CCK and
5-HT release is increased (Spannagel et al., 1996; Anini and
Brubaker, 2003; Batterham et al., 2006; Bertrand et al., 2011).
Satiety effects of exogenous (intraperitoneal) CCK, however,
are attenuated in rodents fed with a HFD (Covasa and Ritter,
1998; Nefti et al., 2009) as are nodose ganglion levels of CCK1

receptor expression, changes that mirror those reported in
vagal afferents following injury or nerve damage (Zhang
et al., 1996; Broberger et al., 2001). In contrast, anorectic
effects of exogenous PYY and GLP-1 appear to be preserved in
rodent models of diet-induced or genetic obesity (Neary et al.,
2005; Renshaw and Batterham, 2005; Vrang et al., 2006;
Madsen et al., 2011; Tomas et al., 2011). A recent study in
mice directly tested intestinal afferent function in diet-
induced obesity and showed reduced sensitivity of jejunal
afferents (primarily vagal) to low-level distension and
reduced excitability of identified jejunal vagal afferents
within the nodose ganglion to CCK and 5-HT exposure (Daly
et al., 2011). Corresponding reductions in vagal afferent
expression of receptors for CCK, 5-HT and other anorexic GI

BJPPeripheral neural targets in obesity

British Journal of Pharmacology (2012) 166 1537–1558 1547



peptides have been reported in the nodose ganglion of mice
subjected to short- and long-term HFDs, along with reduced
brainstem expression of c-fos following a meal stimulus
(Donovan et al., 2009; Nefti et al., 2009).

In humans, reports indicate that both fasting and post-
prandial levels of circulating PYY and GLP-1 are also lower in
obese, compared to lean individuals (Batterham et al., 2003;
le Roux et al., 2006; Little and Feinle-Bisset, 2011a). CCK
levels, in contrast, are either increased (Baranowska et al.,
2000) or normal in obese individuals (Lieverse et al., 1994).
There are, however, a number of caveats in comparing many
of these human studies. One example is that the reduced
slowing of gastric emptying that occurs on a HFD (Cunning-
ham et al., 1991) would itself act to increase intestinal expo-
sure and increase GI peptide release. Despite this generalized
attenuation in GI peptide release, the anorectic effects of
exogenously administered CCK, PYY and GLP-1 appear to be
preserved in obese individuals (Flint et al., 2001; Batterham
et al., 2003). In summary, it appears that attenuated GI
peptide release and lower sensitivity of intestinal vagal path-
ways can both contribute to reduced signalling of satiety and
reduced suppression of food intake in obesity.

Conclusions

Together, these data indicate that sensing of mechanical and
nutrient cues within the wall of the GI tract, and signalling of
satiety by vagal pathways, represent a major regulatory inter-
face in the control of food intake and satiation. As such,
therapies that target such vagal mechanisms are likely to
yield effective new management strategies, and a viable target
to curb obesity and metabolic disease. Although a number of
mechanisms have already been implicated in these actions,
their precise mechanisms in the gut and mode of vagal sig-
nalling of satiety remain to be fully revealed. This is a prom-
ising new arena for clinical and translational research in
obesity management.
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