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The cellular and molecular mechanisms that control lung

homeostasis and regeneration are still poorly understood.

It has been proposed that a population of cells exists in the

mouse lung with the potential to differentiate into all

major lung bronchioalveolar epithelium cell types in

homeostasis or in response to virus infection. A new

population of E-Cad/Lgr6þ putative stem cells has been

isolated, and indefinitely expanded from human lungs,

harbouring both, self-renewal capacity and the potency to

differentiate in vitro and in vivo. Recently, a putative

population of human lung stem cells has been proposed

as being c-Kitþ . Unlike Integrin-a6þ or c-Kitþ cells,

E-Cad/Lgr6þ single-cell injections in the kidney capsule

produce differentiated bronchioalveolar tissue, while

retaining self-renewal, as they can undergo serial trans-

plantations under the kidney capsule or in the lung. In

addition, a signalling network involving the p38a path-

way, the activation of p53 and the regulation of the

miR-17-92 cluster has been identified. Disruption of the

proper cross-regulation of this signalling axis might be

involved in the promotion of human lung diseases.
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Introduction

The existence of a population of lung cells that could be the

source of all main cell types of the lung bronchioalveolar

epithelium is controversial and has been the focus of many

recent investigations. Unlike in other tissues, the understand-

ing of the cellular and molecular mechanisms that maintain

adult lung homeostasis and may be involved in regeneration

is in its infancy (Morrisey and Hogan, 2010; Rock and Hogan,

2011; Weiss et al, 2011). Recently, a number of groups have

reported the existence of certain populations of putative stem

cells in mouse lungs (Giangreco et al, 2002; Kim et al, 2005;

Ventura et al, 2007; Teisanu et al, 2009; Chapman et al, 2011).

These cells have the potential to differentiate into the major

bronchiolar (Clara) and Alveolar type-1 (AT1) or type-2 (AT2)

cells. However, if the cellular hierarchy of the mouse alveolar

epithelium is still poorly known, the human lung biology has

been even more neglected. A putative population of human

lung stem cells (HLSCs) has been proposed as being c-Kitþ

(Kajstura et al, 2011). This population would have the

potential to differentiate not only into lung epithelial cells but

also into mesenchymal and endothelial tissues. Nevertheless,

this proposed cell type has been the subject of a much greater

controversy and its origin and defined profile remain unclear

(Anversa et al, 2011). Other stem cell markers have been

extensively used to detect and isolate stem cells from various

epithelial tissues (Kumar et al, 2011). Among the most specific

markers found to label epithelial stem cells are the members of

the family of leucine-rich repeat-containing G-protein-coupled

receptors (Lgr), and in particular Lgr5 and Lgr6 (Barker et al,

2007; Barker and Clevers, 2010; Snippert et al, 2010).

Several extracellular signals have been linked to the regula-

tion of embryonic lung stem cells during development (Que

et al, 2007; Lange et al, 2009; Morrisey and Hogan, 2010; Rock

et al, 2011). However, the intracellular mechanisms involved

in adult lung homeostasis and regeneration are still mostly

unknown. One intracellular signal involved in mouse lung

homeostasis is the MAPK p38a pathway (Ventura et al, 2007).

The activity of this kinase is necessary to maintain the

differentiation mechanisms and control the self-renewal of

mouse lung stem cells (Hui et al, 2007; Ventura et al, 2007; Liu

et al, 2008). p38a regulates transcription factors (e.g.,

C/EBPa) involved in lung differentiation (Efimova et al,

2002; Martis et al, 2006) and downregulates several factors

involved in stem/progenitor cell proliferation (Sugahara et al,

2001; Ventura et al, 2007). Nevertheless, the mediators and

cross-talking pathways that may be involved in maintaining

HLSCs homeostasis are not yet known.

Besides kinase pathways, the role of some microRNAs in

the regulation of lung development and cancer has been

reported (Qian et al, 2008). The miR-17-92 cluster has been

found to play roles in both processes (Mendell, 2008), with a

relevant function in the lung. The miR-17-92 cluster is

associated with a negative regulation of lung development

(Lu et al, 2007; Ventura et al, 2008) and a promotion of cancer

cell proliferation (Hayashita et al, 2005). One way to regulate

the activity of this cluster is by controlling its levels, and

miR-17-92 promoter activity can be suppressed by the

transcription factor p53, downregulating pri-miR-17-92

expression (Yan et al, 2009).

Understanding the mechanisms involved in the proper

function of HLSCs, and defining potential markers that

could be used to detect and isolate a specific and homoge-

nous population of lung stem cells are absolutely essential,

prior to considering any possible cellular or molecular

therapy involving stem cells in the human lung.
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Results

Isolation and characterization of a human alveolar

E-Cad/Lgr6 multipotent population

The lack of studies investigating adult lung homeostasis

prompted us to focus on the identification and isolation of a

population of putative HLSCs. Using a similar protocol as Kim

et al (2005) but CD34� (Ventura et al, 2007), cells have been

isolated from mouse lungs that could be indefinitely expanded

in vitro while retaining their self-renewal and differentiation

potential (Ventura et al, 2007). A similar, modified approach

was used in an attempt to detect and isolate HLSCs.

The stem cell marker Sca-1 was previously used to isolate

mouse stem cells (Ventura et al, 2007). However, it is not

present in humans, and other markers that might be

specifically expressed in human lung cells were investigated

(Holmes and Stanford, 2007). The expression, in human lungs,

of published putative epithelial and stem cell markers, which

may be suitable to be used as targets, such as E-Cadherin, c-Kit,

Integrin-a6, Lgr5 and Lgr6, was tested. Only Lgr6 was found to

be restricted to a discrete population of E-Cadherin-positive

cells (Figure 1A and B; Supplementary Figure S1A and B) that

did not express other lung differentiation markers. They loca-

lized mainly near small bronchioles (Figure 1A; Supplementary

Figure S1E) and endothelium (Supplementary Figure S1A and

D) and co-expressed Lgr5 (Supplementary Figure S1C). c-Kit

(Figure 1C) and Integrin-a6 (Figure 1D) were expressed in a

heterogeneous number of cell types, including haematopoietic

and endothelial lineages, and Lgr5 was also expressed in Clara

cells (Supplementary Figure S2D). Lgr6 and c-Kit did not co-

express (Figure 1C; Supplementary Figure S2A and B) labelling

distinct cells. Based on the previous results, several populations

were sorted using a preliminary negative selection to avoid

mesenchymal, endothelial or haematopoietic (Lin� ) contami-

nants (Figure 1E). Single cells (from four human lung samples)

from the different populations were used to test for clonal

capacity in serial dilution assays (Supplementary Figure S2E).

E-Cadþ/Lgr6� and c-Kitþ single cells failed to grow clonally

in vitro and only two clones (15%) of single Integrin-a6þ cells

grew after four passages (Figure 1F). However, 13 of 25 (52%)

E-Cad/Lgr6þ single-cell clones were successfully expanded

for 415 passages (Figure 1F). E-Cad/Lgr6þ cells expressed

Integrin-a6 (Figure 1D; Supplementary Figure S2C) and could

be considered as a sub-population within the lung Integrin-a6

heterogeneous population.

Clonally derived E-Cad/Lgr6þ cells (HLSCs) grew in vitro

forming aggregates that could be expanded for 450 passages

while expressing lung-specific (SP-C, CC-10, AQ-5), epithelial

(E-Cad) and stem cell markers (Sox9, Lgr5/6, Integrin-a6)

(Supplementary Figure S3). Although in-vivo E-Cad/Lgr6þ

cells did not express the AT2 (SP-C) and Clara (CC-10) cell

markers, the in-vitro aggregates were positive for these

lung markers (Figure 2A). In general, there was a reduction

of lung-specific and epithelial markers, and an increase

in mRNA expression of stem cell markers in the clonally

expanded (HLSCs) and the freshly isolated E-Cadþ/Lgr6þ

cells, compared to E-Cadþ/Lgr6� (Figure 2B; Supplementary

Figure S3). In vitro, HLSCs responded to matrices morphologi-

cally, forming monolayers, and molecularly, differentially ex-

pressing AT2 (SP-C) or Clara (CC-10) cell markers (Figure 2C).

HLSCs carrying an EGFP reporter under the control of the

CC-10 promoter maintained promoter activity and CC-10

protein levels in fibronectin but lost SP-C expression

(Figure 2D, upper). However, on laminin HLSCs shutdown the

CC-10 promoter but maintained the alveolar SP-C (Figure 2D,

lower) and AQ5 (Supplementary Figure S2F) expression.

Regenerative potential of E-Cad/Lgr6þ cells

Ex-vivo and in-vivo approaches were used to functionally test

the stem cell potential of E-Cad/Lgr6þ (double positive) cells

using a bleomycin-induced lung injury model (Aso et al,

1976). E-Cad/Lgr6þ or HLSCs carrying a PGK-EGFP reporter

were injected into human lung explants that had been treated

with bleomycin in vitro (Supplementary Figures S4A and

S5B). The injected cells migrated from the site of injection

to the epithelium (Supplementary Figure S4B). HLSCs replen-

ished the dead cells at the damaged alveoli (Figure 3A). The

stem cells differentiated and acquired the morphology of AT1

or AT2 cells in the alveoli (Figure 3B). HLSCs were not only

migrated but they also got integrated into the endogenous

human tissue, mixed with the remaining surviving cells, and

differentiated into polygonal AT2 (SP-C positive), elongated

AT1 (AQ5), or cuboidal Clara (CC-10) cells, regenerating the

bronchioalveolar tissue (Figure 3C; Supplementary Figures

S4C and S5). Human lungs have a reduced proportion of

bronchiolar tissue compared to mouse, so the contribution to

Clara cell (CC-10 positive) differentiation was marginal.

An in-vivo model of bleomycin-induced lung injury

was further used to study the potential of E-Cad/Lgr6þ cells

to regenerate bronchioalveolar tissue. Bleomycin was injected

into the tail vein of nude mice prior to the injection of HLSCs.

Mouse tail vein injection (TVI) has been extensively used to

deliver cells to the lungs (Kennedy et al, 2003), allowing

HLSCs to migrate into the damaged alveolar epithelium

(Supplementary Figure S4D). After 10 days, the animals

were sacrificed and the lungs were histologically examined

by immunofluorescence or used to isolate the resident HLSCs.

EGFPþ HLSCs contributed to regenerate the damaged tissue

forming small bronchioles (Clara cells) or alveoli (AT1 and

AT2 cells), and the engrafted cells expressed specific bronch-

iolar (CC-10) or alveolar (SP-C, AQ5) markers (Supplementary

Figures S4E and S6). The human origin of the engrafted cells

was confirmed with a specific anti-human mitochondrial

antibody (Supplementary Figure S4F).

Single E-Cad/Lgr6þ cell ability to produce epithelium

and recruit a niche

The in-vivo stem cell potential of E-Cad/Lgr6þ cells was

further examined using kidney capsule engraftments, which

have been used to test other tissue stem cells (Eirew et al,

2008). Different dilutions of sorted E-Cadþ/Lgr6þ , E-Cadþ/

Lgr6� or clonal HLSCs were injected under the kidney

capsule, and the grafts were examined at different times,

showing dose- and time-dependent growth (Figure 4A;

Supplementary Figure S7A). The engrafted human E-Cadþ/

Lgr6þ cells were distinguishable from the mouse kidney

using a commercial specific human nuclear antibody

(Figure 4B). E-Cadþ/Lgr6þ and clonal HLSCs cells engrafted

in the kidney, even with single-cell injections, but E-Cadþ/

Lgr6� cells failed (Figure 4C). Only the single-cell injections

were carried out in matrigel to avoid the spillage of the

content. Injections of higher number of cells were performed

with the cells in PBS solutions. As shown in previous clonal

E-Cad/Lgr6þ population of human lung stem cells
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assays, comparative analysis showed a superior stem cell

potential of E-Cadþ/Lgr6þ cells over E-Cadþ/Lgr6� , c-Kitþ

or Integrin-a6þ cells in single-cell kidney grafts (Figure 4D).

Clonal EGFP expressing cells were used for further char-

acterization of the kidney grafts, allowing better tracking

of HLSCs differentiation (Supplementary Figure S7B). After

8 weeks, grafts from single EGFPþ HLSCs injections still

harboured small pools of Lgr6þ undifferentiated cells

(Figure 4E). Retention of self-renewal potential was demon-

strated with serial transplantation of sorted EGFPþ cells from

kidney engraftments or cross-transplantation with cells from

lung or kidney grafts (Figure 4F).
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Figure 1 Isolation, clonal expansion and in vitro characterization of human lung stem cells. (A) Confocal section, of a 3D image, showing
E-Cad/Lgr6þ cells nearby small bronchioles (SB) in the human lung. (B) E-Cad/Lgr6þ cells (yellow arrows) in the epithelium and E-Cadþ

epithelial cells (green arrows). (C) Immunofluorescent staining of human lung tissue with c-Kitþ (green) and Lgr6þ (red) labelling different
cells. (D) A small number of Integrin-a6þ cells (green) express Lgr6 (yellow) in the human lung bronchioalveolar epithelium. (E) Lung cells
isolated from human lung tissue (from three different patients), and then negative sorted for CD45, CD31, CD73 and CD34 (Lin� ) and positive
for E-Cad and Lgr6, c-Kit or Integrin-a6 and were used for functional assays or clonal expansion. (F) Clonogenicity assay of E-Cad/Lgr6þ ,
c-Kitþ or Integrin-a6þ single sorted cells. Cells from three different patients were used. Positive colonies (red) and total single cells seeded
(black). Images of E-Cad/Lgr6þ single cell first division at day 1 and clonal aggregate at day 7 (see also Supplementary Figure S1).
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EGFPþ HLSCs remained epithelial in the kidney grafts, but

were able to recruit connective and endothelial tissues to the

graft to generate a microenvironment (Supplementary Figure

S7C). The engrafted tissue resembled a bronchioalveolar

epithelium (Supplementary Figure S7D), with alveolar-like

(AT1 and AT2 cells) and bronchiolar-like (Clara cells) struc-

tures formed by cells with AT1 and AT2 or Clara cell

morphologies (Supplementary Figure S7E). Alveolar and

bronchiolar (AT2, AT1 or Clara) cells expressed the specific

markers SP-C, AQ5 and CC-10, respectively (Figure 4G;

Supplementary Figures S7F and S8A). The human origin of

the engrafted epithelium was confirmed with a specific

human nuclear DNA antibody (Supplementary Figure S8B).

p38a activity in HLSCs regulates miR-17-92 levels to

maintain homeostasis

p38aMAPK has been previously shown to regulate the homeo-

stasis of mouse lung stem cells (Ventura et al, 2007). However,

the intermediate molecules and cross-talking pathways

involved in this physiological control remain elusive. As it

was not possible to use the same genetic deletion strategy to

study human cells, RNAi was employed to dissect the

mechanisms involved in p38a regulation of HLSCs (WT

HLSCs carried a scrambled siRNA in all RNAi experiments).

Four siRNAs against p38a were tested in HLSCs

(Supplementary Figure S9A). Two siRNAs to generate

shp38a lentiviral constructs capable of stable p38a knock-

down in clonal HLSCs (SH2/SH3) (Figure 5A). These cells had

increased proliferation similar to p38a� /� mouse lung cells

(data not shown). Protein analysis showed that lack of p38a
in HLSCs disrupted the expression of both lung markers and

integrins (Figure 5B; Supplementary Figure S9C–E). However,

the stem cell marker Sox9 was expressed at higher levels.

Possible mediators and pathways potentially involved in

p38a function were then investigated. One focus of interest

was the miR-17-92 cluster of microRNAs, as it has been

reported to have an opposing role to p38a, acting as a

suppressor of lung differentiation while promoting lung cell

proliferation (Hayashita et al, 2005; Qian et al, 2008; Ventura

et al, 2008). Analysis of RNA showed upregulation of this

cluster in HLSCs lacking p38a (Figure 5C). A potential cross-

talk between these two signals was then investigated.

Interestingly, it has been reported that p53 may repress miR-

17-92 expression (Yan et al, 2009). Furthermore, it is also

known that the downstream p38a target MK2 (MAPKAPK-2)

(Stokoe et al, 1992) can phosphorylate p53 (Ser20), switching

on p53 transcriptional activity (She et al, 2002; Hsu et al, 2011).

A similar RNAi strategy was used to study MK2, and its

expression was downregulated by specific siRNAs (Supple-

mentary Figure S9B). Knockdown of MK2 in HLSCs resulted in

the loss of p53 Ser20 phosphorylation (Figure 5D). Either lack

of MK2 (Figure 5E) or inhibition of p53 transcriptional activity

(Figure 5F) correlated with increased pri-miR-17-92 levels.

Direct repression by p53 was confirmed using a luciferase

reporter vector controlled by the human miR-17-92 promoter

containing a p53-binding site that has been linked to miR-17-

92 repression (Yan et al, 2009). Chemical inhibition of p53

transcriptional activity in HLSCs induced miR-17-92 promoter

activity, which was already constitutively active in SH3

(Figure 5G). All mature miR-17-92 components were upregu-

lated in SH3 cells (Figure 5H). This demonstrated a cross-talk

between the p38a pathway and a microRNA cluster in HLSCs.

miR-17-92 regulates lung transcription factors

and HLSCs differentiation

Having demonstrated a negative regulation of miR-17-92 ex-

pression by p38a, the cellular and physiological consequences

of that cross-talk were investigated. RNAi was used to study the

downstream mediators of miR-17-92. Downregulation of this

microRNA cluster and p38a with shRNAs allowed further

examination of the role of miR-17-92 in HLSCs (Figure 5E

and H). As has been previously shown in mouse lung, p38a
deficiency is accompanied by reduced expression of lung

differentiation factors, although the mechanism supporting

this correlation was still unknown (Ventura et al, 2007).

Interestingly, among the predicted targets for miR-17-92 found

in public databases (TargetScan Human5.1, PicTar) are several

lung differentiation transcription factors, including C/EBPa and

GATA6. C/EBPa is downregulated in the lungs of p38a� /�

mice (Ventura et al, 2007). C/EBPa and GATA6 were found to be

downregulated in SH3 cells in a miR-17-92-dependent manner,

as normal protein and mRNA levels could be rescued following
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the concurrent knockdown of miR-17-92 (Figure 6A and B).

miR-17-92 did not regulate other non-target lung differentiation

transcription factors, such as TTF-1 (Figure 6A and B). Direct

repression of C/EBPa and GATA6 by miR-17-92 was confirmed

using luciferase reporters carrying the 30-UTR of each gene

containing the putative target site for miR-92, a member of the

miR-17-92 cluster. Luciferase activity was downregulated in

SH3 cells, but not in a 30-UTR carrying a non-binding mutated

target sequence, and that activity was restored by concomitant

knocking down of miR-17-92 (Figure 6C). Conversely,

the TTF-1 30-UTR was not sensitive to miR-17-92 levels

(Figure 6C). Downregulation and rescue of these transcrip-

tion factors levels correlated with changes in the expression

of lung-specific markers and stem cell markers (Figure 6D),

together with misexpression of integrins (Figure 6E;

Supplementary Figure S9F).

To assess the functional role of the p38a/miR-17-92

network in HLSCs, their in-vivo stem cell potential was
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examined using kidney capsule engraftments. SH3 cell

injections failed to produce kidney engraftments

(Figure 7C). The inability of SH3 to form kidney grafts

was further confirmed by co-injecting a mix of HLSCs, WT

(EGFP) and SH3 (H2B-cherry) cells (Figure 7A). Only WT,

but not SH3 cells differentiated and produced alveolar-like

tissue (Figure 7A). The involvement of the miR-17-92

cluster mediating the functional role of p38a was examined

using p38a/miR-17-92 concomitant knockdown cells

(SH3/miR). Restoration of miR-17-92 levels to normal in

SH3 cells rescued the potential to produce lung-like

epithelium in kidney grafts (Figure 7B). The stem cell poten-

tial of HLSCs to differentiate in vivo was controlled by

p38a and miR-17-92 in a coordinated way (Figure 7C). It

could be concluded that p38a repressed miR-17-92, via

p53 activation, in order to maintain the proper balance

between differentiation and self-renewal potential in HLSCs

(Figure 7D).
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encircled) or Clara (CC-10 encircled) cells in alveoli or bronchiole structures, respectively. A representative image of 3–5 independent
experiments is shown (see also Supplementary Figure S5).

E-Cad/Lgr6þ population of human lung stem cells
F Oeztuerk-Winder et al

3436 The EMBO Journal VOL 31 | NO 16 | 2012 &2012 European Molecular Biology Organization



Discussion

There have been extensive efforts and reports in the search

for common stem/progenitors of the adult lung bronchioal-

veolar epithelium. However, adult lung stem cell research is

still in its infancy and most previous studies have focused on

the proximal airways (Johnson and Hubbs, 1990; Engelhardt

et al, 1995; Hong et al, 2004) or isolated cells of an uncertain

origin and controversial stem cell potential (Fujino et al, 2011;

Kajstura et al, 2011). In particular, the knowledge about

cell hierarchy in human lungs is still very limited. Here,

we show the existence of a distinct population of human

alveolar stem cells, with a defined signature, that can be

isolated and clonally expanded in culture while maintaining

their potential to differentiate. This population could be

considered as a sub-population of the number of Integrin-

a6þ cells in the human lung. They harbour self-renewal,

shown by in-vitro indefinite expansion and in-vivo serial

transplantation experiments and differentiation capacity, as

would be expected from a stem cell. The in-vitro and in-vivo

stem cell potential of this population has been demonstrated

with some of the most commonly used techniques to test

tissue stem cells, including kidney capsule or lung injury

engraftments. Unlike other reported putative HLSCs (Kajstura

et al, 2011), our HLSC population has an epithelial origin and

does not differentiate into mesenchymal or endothelial cells.

E-Cad/Lgr6þ but not c-Kitþ , single-cell injections produce

lung epithelium in the kidney, and they did not require an

extra-stromal compartment like the reported Integrin-a6/b4

mouse lung cells (Chapman et al, 2011). This comparative
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study has shown the superior stem cell potential of human

lung E-Cad/Lgr6þ cells. Indefinite expansion of lung E-Cad/

Lgr6þ cells brings new possibilities, such as their use in

pharmacological screenings, generation of disease models or

genetic manipulation to repair defective mutations.

In addition, it could be demonstrated that regulation of

HLSCs relies on an integrated network involving p38a and the

miR-17-92 cluster. Both signals have been previously related

to lung differentiation and proliferation, but the molecular

insights of this function remained unknown. A negative

regulation of miR-17-92 expression has been discovered

through the transcriptional activation of p53 by the p38a
pathway. Defects in the fine-tuning between these two signal-

ling pathways may result in disease (e.g., cancer) or defective

regeneration (e.g., lung fibrosis) (Hayashita et al, 2005;

Mendell, 2008). p38a deficiency produces an unbalanced

increase of miR17-92 levels that downregulate lung-specific

transcription factors and results in misexpression of integrins.

Integrins are involved in the response of stem cells to

extracellular matrix-directed terminal differentiation (Watt,

2002). Thus, the p38a/miR-17-92 axis regulates the

intracellular machinery and the response to extracellular

signals involved in lung stem cell fate decision. Disruption

of this network in p38a-deficient cells causes loss of the

potential of HLSCs to engraft and differentiate in the kidney

capsule. HLSCs differentiate into epithelium, but they can also

recruit endothelium and connective tissue to create a proper

microenvironment. The contribution of differentiation factors

and/or integrins in establishing a lung stem cell niche it is

still unclear. Delineation of the molecular mediators

and functional effectors in this network may contribute to

a better understanding of the regulation of HLSCs in

homeostasis and disease.

The E-Cad/Lgr6þ population adds pieces to the cellular

puzzle regulating lung homeostasis and the regenerative

response to injury. This population appears to have a larger

stem cell potential, ranking higher in the lung bronchioalveo-

lar hierarchy than other of the previously reported cell types,

although the existence of cells of a higher stemness in the

bronchioalveolar epithelium cannot be discounted (as it is in

the haematopoietic system).

It highlights new molecular targets that may help to easy

detection and isolation of human lung bronchioalveolar

multipotent cells. Overall, our work provides a reliable

model for in-vitro studies, a more complete understanding

of the cellular mechanisms regulating lung cell fate decision,

and a leap forward in the search for potential lung cellular

and molecular targets for regenerative therapies.

Materials and methods

Isolation and culture of human lung progenitor cells
Human lung tissue was obtained from patients undergoing lung
resection (Papworth Hospital, UK). This study was approved by the
Ethics Committee at Cambridge University and the Papworth
Hospital. All subjects gave informed consent. All samples collected
were healthy lung tissue biopsies from cancer patients, used in the
clinic as a control. No samples from patients with COPD or other
inflammatory diseases were used to isolate stem cells.

Normal lung was used for cell isolation and histological evalua-
tion. After pleura was separated bluntly, lung specimens were
finely minced and resuspended in collagenase (0.5–3 mg/ml,
Whorthington)/dispase (1 mg/ml, Invitrogen) containing DMEM
(Invitrogen) and incubated for 30–45 min at 371C in a shaking
incubator. The suspension was spun for 5 min at 1200 r.p.m. and
the supernatant removed. The pellet was resuspended in fresh
DMEM containing 0.1 mg/ml DNase (optional) and incubated for
further 5–10 min. The suspension was washed with PBS, filtered
through cell strainers (100, 70 mm, BD) and treated with red blood
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cell lysis buffer (Roche Applied Science). Following further filtration
(40 mm mesh) and centrifugation (5 min at 1200 r.p.m.), the isolated
cells were cultured in RH-B (Stem Cell Science) medium containing
2% FCS, with additional insulin (5mg/ml, Pepro Tech), EGF (10 ng/
ml, Pepro Tech) and FGF2 (20 ng/ml, Pepro Tech) for 2 days. This
was then was replaced with fresh, serum-free medium containing
growth factors (371C in a 7% humidified CO2 incubator).

Lentiviral vector preparation
The lentiviral vector pSINPGKEGFP was used to generate
pSINhCC10EGFP, containing the human CC10 promoter. Lentiviral
particles were produced by co-transfecting 293T cells with
pSINPGKEGFP or pSINhCC10EGFP, pCMVD8.9 and pMD.G (encod-
ing VSV-G), as previously described (Naldini et al, 1996; Capowski
et al, 2007).

Four siRNAs (Thermo Scientific) were tested to knockdown p38a
shRNA n.3 was cloned into the PLKO.1-TRC (Sigma) lentiviral
vector to generate a p38a knockdown construct (SH3). Infectious
virus was added to cells in the presence of 8 mg/ml polybrene
(hexadimethrine bromide, Sigma) and incubated for 6 h.

A commercial (Applied Biosystems) siRNA was used to knock-
down the pri-miR-17-92: sense-GGAGAGCUCAAUCUGCACAtt.

Luciferase assays
To test miR-17-92 promoter activity and transcription factors
30-UTRs processing, pGL3 reporter vectors containing the firefly
luciferase were used (with a pGL3 basic for the promoter and the
pGL3-Vector control for the 30-UTR as activity controls). As a control

of the transfection efficiency a vector expressing the Renilla lucifer-
ase was used.

The 0.5 and 0.7 kb fragments of the miR-17-92 promoter were
obtained by PCR using specific primers (see Supplementary data),
and cloned in the promoterless pGL3 basic vector after NheI/XhoI
restriction digestion. The 30-UTRs of the C/EBPa, GATA6 and TTF1
genes were obtained by PCR using specific primers (see
Supplementary data) and cloned in the pGL3-Vector control after
XbaI digestion.

Mutant 30-UTRs were created introducing a mutation in the
miR-92a target sequence of the C/EBPa and GATA 6 30-UTRs using
the appropriate oligos (see Supplementary data).

In-vitro assessment of differentiation potential
Cells were grown to low confluence on 10mg/ml fibronectin-
(Millipore) or laminin- (in PBS, Sigma) coated tissue culture dishes
(24- or 6-well plates). All differentiation cultures were maintained for
10–15 days, medium (containing 2–5% FCS) being renewed every 72h.

Immunofluorescent staining
Cultured cytospin (800 g, 3 min) cells were fixed with 4% parafor-
maldehyde (PFA) for 15–20 min at RT. The remaining human tissues
were also fixed with 4% PFA for 24 h and embedded in paraffin or
OCT compound (Sakura, UK) after 30% sucrose treatment (at 41C
for 24 h). Samples were blocked and permeabilized with 0.1%
Triton-X/4% goat serum/PBS for 60 min at RT. Cells were incubated
with primary antibodies overnight at 41C and then washed three
times with PBS at room temperature (5 min per wash). Secondary
antibody (Alexa Fluor 488 and/or Alexa Fluor 594 secondary
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antibodies, Invitrogen) incubation took place for 1 h at RT. Cells
were visualized following DAPI (4’,6-Diamidino-2-phenylindole)
counterstaining. Images were collected using a Leica SP5 confocal
microscope.

Mouse experiments
All mouse experiments were performed according to UK Home
Office Regulations. CD-1s nude mice (Charles River) were main-
tained under standard pathogen-free conditions.

Kidney capsule engraftments
Six- to eight-week-old mice were anaesthetized with isofluorane
(0.5–2%). Cells were disassociated with accutase to generate a
single-cell suspension (1–1�106 cells in 20ml PBS) and this suspen-
sion was injected under the kidney capsule. Mice were killed 2, 4, 6
and 8 weeks later and the kidneys harvested to examine in-vivo
differentiation of the injected cells. The engraftments were removed
and prepared for immunofluorescent microscopy.

For transplantations experiments, the GFP engrafted cells were
sorted prior to be injected into kidney capsule or use for TVI for
lung co-transplantations.

Bleomycin treatment of mice and lung stem cell
transplantation
Six- to eight-week-old mice were given one tail vein (t.v.) injection of
5 U/kg of bleomycin in 100ml PBS. Control animals were given an
equivalent volume of PBS. Control groups received PBS and experi-
mental groups received bleomycin. Forty-eight hours later, the experi-
mental group received the stem cells (t.v.). Each group had six mice
(repeated three times), which were analysed 10 days post bleomycin/
progenitor cell injection. Lungs were fixed overnight with buffered
neutral formalin 10% (VWR) or 4% PFA at room temperature. Tissues
were then processed for paraffin embedding or for cryosectioning.
Slides were stained in Mason’s Trichrome stain (Fisher Scientific) and
H&E (Dako), according to manufacturer’s instructions. Cryosections
were analysed for the presence of human lung cells by microscopy.
For co-transplantation experiments, the GFP cells engaged in mouse
lungs were sorted prior to be used for further injections.

Bleomycin treatment of mice and human lung explants ex vivo
Human or adult mouse lungs were cultured as slices (200–800mm
thickness) and exposed to bleomycin (3 days) in vitro. After injury,
EGFP-labelled HLSCs were microinjected into the lungs and cul-
tured for 7–10 days. Lungs were fixed overnight with buffered
neutral formalin 10% (VWR) or 4% PFA at room temperature.
Tissues were then processed for paraffin embedding or for cryo-
sectioning for the presence and differentiation of the HLSCs.

Colony assays
To isolate and expand clonogenic cells, cells were dissociated with
Accutase (PAA). Single cells that were seeded into 96-well plates by
limited dilutions. The cells were maintained in stem cell restricted
medium RH-B (Stem Cell Science) containing 2% FCS, with addi-
tional insulin (5mg/ml, Pepro Tech), EGF (10 ng/ml, Pepro Tech) and
FGF2 (20 ng/ml, Pepro Tech) for 2 days. This was then was replaced
with fresh, serum-free medium containing growth factors (371C in a
7% humidified CO2 incubator). After 14 days, the number of wells
with colonies was counted. Every assay was repeated four times.

Total RNA isolation and quantitative RT–PCR
Total RNA was extracted using TRIzol (Invitrogen) and was DNAse I
(Promega) treated. In all, 1mg RNA was reverse transcribed
per sample (Bio-Rad), according to manufacturer’s instructions.
Quantitative Real-Time PCR (qPCR) was used to determine the
expression levels of the different genes using human-specific primer
pairs (Eppendorf, Realplex2). Reaction conditions for amplification
were as follows: first step of 951C 20 s, then 40 cycles of three-step
951C 3 s, 601C 30 s and 681C 20 s with 2ml of cDNA per reaction in
10ml SYBR Green PCR Master Mix (Applied Biosystems). Specificity of

PCR products was tested by dissociation curves. Threshold cycles of
primer probes were normalized to a housekeeping gene (GAPDH or
HPRT) and relative values calculated (Livak and Schmittgen, 2001).

Pri-miR-17-92 expression was quantified by TaqMan qPCR and
normalized to GAPDH-expression (see Supplementary data). In all,
2ml of cDNA was used per 10 ml of Taqman Fast Universal PCR
Master Mix (2� ). The cycles were first step of 951C 20 s, then 40
cycles two-step 951C for 1 s and 601C 20 s (default set-up in StepOne
machine). VIC-labelled human GAPDH from Applied Biosystems
was used as internal control.

Immunoblot analysis
Proteins were extracted and analysed as previously described
(Ventura et al, 2007), to confirm that observed changes in mRNA
expression were reflected in the amount of protein present.

Antibodies

For western blotting and immunohistochemistry. Anti-human
CC-10 (Santa Cruz, SC-25554), anti-human SPC (Santa Cruz,
SC-7705), anti-human AQP-5 (Santa Cruz, SC-28628), anti-human
LGR6 (Santa Cruz, SC-48236), anti-human LGR5 (Santa Cruz,
SC-68580), anti-human LGR5 (Sigma, HPA012530), anti-human
Integrina6 (Santa Cruz, SC-10730), anti-human C-Kit (Dako,
A4502), anti-human Sox-9 (Millipore, AB5535), anti-human mito-
chondrial Ab (Thermo, MAS-12017), mouse anti-human nuclei Ab
(Millipore, MAB1281), TTF-1 (Abcam, ab 40880), a-tubulin (Sigma,
T9026), p38a (Cell Signaling, 9228), MAPKAPK2 (Cell Signaling,
3042), P-MAPKAPK2 (Cell Signaling, 3007), p-53 (Cell Signaling,
2524), p-p53 (Cell Signaling, 9287), C/EBPa (Santa Cruz, sc-61),
Integrin b-1 (Santa Cruz, sc-6622).

For flow cytometry and immunofluorescence. Single-cell FACS was
performed (MoFlo, Dako) following incubation with anti-human
LGR6 (Santa Cruz, SC-99123), anti-E-cadherin (CD324, Biolegend,
50-3249), anti-Integrina6 (CD49f, Biolegend; 12-0495), anti-aSMA
(Sigma, F3777), anti-CD31 (Biolegend, 303104), anti-CD34
(Biolegend, 316410), anti-C-Kit (CD117, Biolegend, Cat: 323416),
anti-C-Kit (CD117, Biolegend, Cat: 313202), anti-CD73 (Abcam,
ab54217), anti-CD45 (Biolegend, 304006), anti-human CD105
(Biolegend, 323204), anti-CD117 (Biolegend, 313202), and anti-
human e-cadherin (AbCam, Ab53033) antibodies.

Secondary antibodies. All the corresponding secondary antibodies
(mouse, rabbit, goat, rat, 488, 555, 594, 647) were Alexa Fluor from
Invitrogen and PE from Santa Cruz.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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