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Abstract

Background: Computational analysis of cDNA sequences from multiple organisms suggests that a large portion of
transcribed DNA does not code for a functional protein. In mammals, noncoding transcription is abundant, and often results
in functional RNA molecules that do not appear to encode proteins. Many long noncoding RNAs (lncRNAs) appear to have
epigenetic regulatory function in humans, including HOTAIR and XIST. While epigenetic gene regulation is clearly an
essential mechanism in plants, relatively little is known about the presence or function of lncRNAs in plants.

Methodology/Principal Findings: To explore the connection between lncRNA and epigenetic regulation of gene
expression in plants, a computational pipeline using the programming language Python has been developed and applied to
maize full length cDNA sequences to identify, classify, and localize potential lncRNAs. The pipeline was used in parallel with
an SVM tool for identifying ncRNAs to identify the maximal number of ncRNAs in the dataset. Although the available library
of sequences was small and potentially biased toward protein coding transcripts, 15% of the sequences were predicted to
be noncoding. Approximately 60% of these sequences appear to act as precursors for small RNA molecules and may
function to regulate gene expression via a small RNA dependent mechanism. ncRNAs were predicted to originate from both
genic and intergenic loci. Of the lncRNAs that originated from genic loci, ,20% were antisense to the host gene loci.

Conclusions/Significance: Consistent with similar studies in other organisms, noncoding transcription appears to be
widespread in the maize genome. Computational predictions indicate that maize lncRNAs may function to regulate
expression of other genes through multiple RNA mediated mechanisms.
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Introduction

Expanding Roles for RNA in Eukaryotic Genomes
A narrow interpretation of the central dogma would dictate that

the ultimate contribution of RNA molecules to cellular function

and phenotype is dependent upon their translation into proteins.

Over recent decades, the central dogma has been extended to

encompass emerging roles of RNAs that are functional as RNA

molecules and are not known to be translated. Collectively, RNA

molecules that are not predicted to encode for a functional protein

are referred to as noncoding. Noncoding RNAs can include small

RNAs, generally under 200 base pairs in length, and longer

molecules, sometimes referred to as long noncoding RNAs

(lncRNAs). Some lncRNAs are likely precursor molecules that

are processed into small RNAs, while others function as intact,

long molecules that participate in a range of regulatory roles.

Long Noncoding RNAs in Mammalian Transcriptomes
Recent studies in mouse and human indicate that a substantial

portion of transcribed sequences may be non-protein coding [1–

4]. Notably, non-protein coding transcripts may represent a higher

percentage of predicted transcribed sequences than protein coding

transcripts in mammals. These findings have triggered discussion

about the role of non-coding RNAs (ncRNAs), and whether they

are functional molecules or indications of transcriptional noise.

The comparison of 3,122 mouse long noncoding RNAs with

orthologous sequences in human and rat revealed selective forces

acting on this set of noncoding transcripts similar to selective forces

acting on coding transcripts. This result led to the conclusion that

the noncoding transcripts investigated were likely functional [5].

However, while some noncoding sequences have distinctive

conservation, many characterized long noncoding RNAs lack

conservation, but have apparent functions in the genome [6,7].

Further analysis revealed that although small RNAs (miRNA and

snoRNAs) are conserved, long noncoding RNAs may not be under

the same selective pressure [7].

Long intergenic noncoding RNA (lincRNA) loci share similar

chromatin states with protein coding transcribed loci, and

a comparison of the codon substitution frequency of protein

coding regions to intergenic transcribed regions and intergenic

untranscribed regions showed similar levels of conservation for

protein coding and intergenic transcribed regions [8]. Together,

these results point to directed transcription of lincRNAs, as

opposed to indiscriminate transcriptional events. Further support
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for the functionality of long noncoding RNAs could come from

analysis of protein interactions with the RNA molecule. As several

known lncRNAs have an epigenetic role through their interaction

with chromatin remodeling complexes [9–13], an investigation

into the interaction of lincRNAs with chromatin remodeling

complexes was carried out. Approximately 3,000 lincRNAs were

identified in human cells using the methods already developed in

the mouse [8]. These lincRNAs were then analyzed for

interactions with chromatin remodeling complexes. It was found

that approximately 20 percent of the lincRNAs identified

interacted with the polycomb repressive complex 2 (PRC2), and

a smaller percentage with other chromatin remodeling complexes

[14]. This predicts a substantial percentage of noncoding RNA

with the potential to regulate chromatin structure.

Long Noncoding RNA and the Regulation of Gene
Expression
lncRNAs have the potential to regulate gene expression. This

regulation is frequently sequence homology dependent, and the

particular mechanism of regulation can be associated with

homology to different regions of the regulated gene. Recently,

a number of regulatory promoter associated lncRNAs have been

characterized whose transcription block the transcription of

proximal protein coding loci [15,16]. Conversely, transcription

of some promoter lncRNAs induce an open chromatin formation

that facilitates activator binding and transcription of the associated

protein coding gene [17].

Intronic lncRNA transcripts have also been implicated in

a variety of regulatory roles, including the regulation of splicing

events [18], and potential activity via small RNA regulatory

pathways [19,20]. An abundance of lncRNAs associated with the

39 UTR of protein coding genes was noted in the analysis of full-

length cDNAs in mouse [1], and an in depth study of 39 UTR

lncRNAs suggests a range of possible functional roles for these

transcripts [21]. A specific example in Drosophila is the 39 UTR of

an RNA transcript of the Oskar gene that is required for oogenesis

completion [22].

Long Noncoding RNA in Plants
A comparatively small amount of lncRNAs have been identified

in plants. One of the first was discovered in Medicago truncatula,

Enod40. Further investigation revealed two roles for the RNA: as

a peptide-encoding mRNA, and as a ncRNA molecule with

a functional secondary structure [23,24]. In addition, in Arabidopsis

thaliana, evidence suggests that lncRNAs transcribed from the

flowering locus C (FLC) are necessary for vernalization. One study

found an antisense transcript, COOLAIR, to FLC that blocks

transcription of the sense transcript [25]. Another study reported

an intronic lncRNA, COLDAIR, originating within FLC that

recruits PRC2 to epigenetically silence the locus [26].

While relatively few lncRNAs have been identified and

characterized in plants, plant genomes encode the homologs for

many chromatin remodeling proteins, including those known to

interact with some lncRNAs in mammals (www.chromdb.org).

Additionally, a distinctive pathway in plants utilizing noncoding

RNA in epigenetic regulation was recently discovered. This

pathway is RNA-directed DNA methylation (RdDM). Two RNA

polymerases unique to plants, RNA polymerase IV (pol IV) and

RNA polymerase V (pol V), are involved in the production of

siRNAs which target loci for cytosine methylation and transcrip-

tional regulation of effected loci. A substantive model for this

pathway has been proposed, based upon genetic and biochemical

data from model plant organisms like Arabidopsis and maize

(reviewed in [27]). The model predicts at least two different types

of lncRNAs, RNA pol IV and RNA pol V products, that may be

detected in plants cells with an active RdDM pathway.

RdDM is important for maintaining silencing of transposons

and repetitive elements [28,29]. There is also evidence that this

pathway is involved in flowering time in Arabidopsis through an

antisense noncoding RNA transcribed by pol IV at the Flowering

Locus C [30]. In maize, RNA-directed transcriptional silencing

has been implicated in paramutation through studies of the mutant

mediator of paramutation 1 (mop1). Mop1 is orthologous to the

Arabidopsis RNA dependent RNA polymerase that acts in

RdDM, and is necessary for the establishment and maintenance

of several examples of gene silencing [31–33].

Epigenomic analysis has been employed to characterize the

maize genome, and identified three major categories of small

RNAs, including predicted microRNAs (miRNAs), other predicted

short hairpin forming RNAs (shRNAs), and predicted small

interfering RNAs (siRNAs) [34]. According to current models,

each of these small RNA categories require longer RNA

precursors for their biogenesis. The shRNA category were

classified based on the potential of their predicted precursors to

form hairpin structures, and speculated to include currently

unidentified miRNAs.The siRNAs would be predicted to gener-

ated by RNA-dependent RNA polymerase requiring pathways,

including the RdDM pathway.

Collectively, these results suggest that noncoding RNAs may be

an essential element of epigenetic gene regulation in plants, but

relatively little is known about the abundance and activity of this

type of molecule in plants.

Computational Identification of Long Noncoding RNA
and its Limitations
Several studies in a variety of species analyzed transcript

sequence data with the intent to identify noncoding transcripts

using computational approaches [35–39]. Typical steps in the

computational identification of noncoding transcripts are to select

for transcripts that either lack a complete ORF or have only a short

ORF that lacks homology to known proteins. However,

distinguishing coding from noncoding transcripts is complex

[40,41], due to transcripts that are short and protein coding,

and functional long noncoding transcripts that contain long open

reading frames with homology to known proteins [41]. Some

noncoding transcripts in fact originate from protein coding loci

[22,24,42,43]. These challenges led to advances in computational

methods [44,45], and recent approaches have employed support

vector machines (SVM) to distinguish between coding and

noncoding transcripts [46,47]. The use of machine learning

algorithms, such as SVMs, has increased the accuracy of

identification of protein coding potential to over 90 percent.

A Computational Approach to Identifying Noncoding
RNA in Plants
Plants are reliant on epigenetic gene regulation for proper

growth and development, but little is known about the role of

lncRNAs in such regulatory events in plants. Computational

resources can be combined with existing genomic datasets to

estimate noncoding RNA levels and predict functionality. This

approach was applied to existing genomic data in the model crop

plant Zea mays, resulting in the identification and classification of

a collection of transcribed sequences in maize that do not appear

to have protein coding potential, and may act as regulatory,

noncoding RNAs.

lncRNAs in Maize
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Results and Discussion

Two different methods were used to identify transcribed

sequences that lack protein coding capacity. The first is

a computational pipeline written specifically for this project in

the programming language Python, and the second is a web-

based, publicly available tool that utilizes an SVM [46].

Developing and Optimizing a Python Pipeline
Three important criteria were used to discriminate noncoding

transcripts based on previous studies [35–39]: transcript length,

open reading frame (ORF) size, and homology with known

proteins. The parameters assigned to these criteria were based

upon empirical analysis of existing datasets and consideration of

known properties of the maize genome. A computational pipeline

was developed in the programming language Python and

optimized to sort maize transcripts based upon these features

(Figure 1).

Criterion 1: transcript length. For the characterization of

long noncoding RNA, transcript length is a defining feature.

Molecule length parameters are adjusted to include longer

molecules that may be processed into siRNAs, but exclude the

processed small RNAs themselves. The typical cutoff is 200 bp,

based primarily on the established transcript lengths for classes of

short RNAs such as micro (mi)RNAs [48], piwi interacting

(pi)RNAs [49], promoter associated RNAs (PASRs) and termina-

tor associated RNAs (TASRs) [36].

Criterion 2: Open reading frame length. It is expected

that some noncoding RNAs may coincidentally contain partial or

complete ORFs. It is impossible to completely discriminate

a functional ORF from a non-functional one without assaying

for the presence of the predicted protein, however, it is assumed

that a large, complete ORF is likely to be translated into a protein.

Therefore, the second step in the pipeline is to discard transcripts

with an ORF greater than a designated threshold value. The initial

value of 120 amino acids (aa) ORF selection size was based on the

sizes of complete ORFs in the sense direction of 14 known

lncRNAs (Table 1); only 3 have an ORF greater than 120 aa.

Empirical testing was used to further refine this value. Simple

statistical analysis of ORF sizes was performed on a well annotated

group of maize protein coding transcripts downloaded from The

Chromatin Database (www.ChromDB.org) [50]. This set of

protein coding transcripts has been manually curated and is

supported with experimental evidence, serving as a useful control

in the analysis.

Figure 1. Python pipeline results on 18, 668 full-length cDNAs. The starting data set for the pipeline are 18,668 full-length cDNA sequences.
The sequences are sequentially analyzed for protein coding potential using ORF length and homology of predicted protein with known proteins as
indications of coding potential. The full-length cDNA sequences that pass through are designated as noncoding RNAs (ncRNAs) and are contained in
Dataset S1 (supplementary data).
doi:10.1371/journal.pone.0043047.g001

lncRNAs in Maize
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ORF size varied between 103 aa and 2,199 aa, with a mean of

381 aa in this protein coding data set (Figure S1). Fifteen protein

coding transcripts fell below 120 aa in ORF size, all of which with

an ORF size of 103 aa. To exclude these protein coding transcripts

at this point in the pipeline, the amino acid size selection for the

ORF would need to be 102. Considering the ORF results for

known lncRNAs (Table 1), a size selection reduced to 102 aa

would exclude 3 of the 14 transcripts.

To determine the effect of changing the ORF size parameter,11

known lncRNAs with ORFs smaller than 120 amino acids were

analyzed by a script that selected for specific ORF sizes in

a stepwise manner. When the size of ORF selection is decreased,

the number of lncRNAs that pass through selection is reduced

(Figure S2). Therefore, to maintain a significant level of stringency

without losing an excessive number of possible lncRNA tran-

scripts, the 120 aa cut off was selected, with the assumption that

later steps in the pipeline would further refine the dataset by

selecting against conserved protein coding transcripts with ORFs

lower than 120 aa.

Criterion 3: Homology with known proteins. The pres-

ence of an ORF does not necessarily indicate that a transcript is

translated, so homology with known proteins was used as another

indication of protein coding potential. Transcripts were aligned to

the Swissprot database [51], a manually annotated non-redundant

database of experimentally supported protein sequences. The

Swissprot database was used to avoid false positive scoring due to

translations of unsupported pseudogenes present in other protein

databases.

Comparison of the Python Pipeline and Coding Potential
Calculator on Test Data Sets
The Coding Potential Calculator (CPC) is a Support Vector

Machine (SVM) that classifies transcripts into coding and

noncoding groups based on 6 criteria of the input sequence

[46]. These criteria are used to assess the quality, completeness,

and homology of the ORF to proteins in UniProt Knowledgebase

[51]. This tool was used in parallel with the described

computational pipeline to identify the most inclusive set of

noncoding RNAs.

To validate the Python pipeline and compare it with CPC, a set

of 199 lncRNAs from www.lncrnadb.com and the set of 248

protein coding transcripts from ChromDB were run through each

method of noncoding RNA detection. The Python pipeline

identified 121 of 199 lncRNAs as noncoding, equivalent to an

accuracy of 61 percent. The Coding Potential Calculator

identified 189 of 199 lncRNAs as noncoding, equivalent to an

accuracy of 95 percent (Figure S3). The 10 lncRNAs identified as

coding by CPC were also identified as coding by the Python

pipeline. This result suggests that each method is able to

discriminate some, but not all, noncoding transcripts. For some

experiments, more stringent identification may be desirable. In

such cases, it would be appropriate to focus exclusively on those

RNAs designated as noncoding by both approaches.

The protein coding transcript set was also analyzed with both

computational tools. The Python pipeline identified all 248

transcripts as coding. The Coding Potential Calculator identified

198 of 248 as coding, equivalent to an accuracy of 80 percent

(Figure S4).

These two tests convey the difficulty in distinguishing between

coding and noncoding transcripts, which stems from the

complexity of the transcripts themselves. For example, both

methods were unable to identify p53 as noncoding. The lncRNA

p53 is a long transcript (2,586 bp) with a long complete ORF (393

aa). It is therefore clear that a number of noncoding RNA

transcripts will require laboratory bench experimental techniques,

or a more sophisticated computational analysis, to verify their

coding capacity.

Identification of Maize ncRNAs
To identify potential noncoding RNAs in maize, a set of

sequences from the maize full length cDNA sequencing project

[52] was analyzed. The starting dataset included 18,668

transcripts, and was analyzed in parallel with the Python pipeline

and CPC. Of the original 18,668 full-length cDNA from maize,

1,802 were designated as noncoding by the Python pipeline

(Figure 1). The largest number of transcripts were excluded at the

ORF size step, reinforcing the importance of this parameter.

Using CPC, 1,913 full length cDNAs from maize were identified

as noncoding (Figure 2).

Combination of the Python Pipeline and CPC Datasets
Among the potential lncRNAs identified by the Python pipeline

and CPC, 1,223 were in common. These 1,223 potential lncRNAs

may represent the most stringently selected dataset, and may be

the most appropriate for intensive laboratory follow up. For our

bioinformatic approach, we wanted to create a comprehensive set

of potential lncRNAs for further analysis, so the two sets were

combined, resulting in 2,492 lncRNA candidates (Figure 2).

The 2,492 lncRNA candidates represent 13.3 percent of the

total number of starting sequences. This value is relatively low

compared to the number of noncoding transcripts identified in the

analysis of 25,159 FANTOM 2 full-length cDNAs in mouse [1], at

48.7 percent. This relatively low number could reflect different

biological requirements for lncRNAs in maize compared to

mammals, or it could be a reflection of limitations in the starting

dataset. For example, the mouse full-length cDNA sequences were

based on analysis of 246 different libraries comprised of over 30

different tissues at different time points in development. Relatively

few full length cDNA libraries have been sequenced from maize,

and this analysis included two different libraries representing 27

different tissue types and stress treatments. This would exclude

noncoding transcripts expressed in other tissue types or de-

velopmental stages. The analysis in mouse was also able to capture

Table 1. Known lncRNAs with ORF size in amino acids.

lncRNA ORF in aa

enod40 0

COLDAIR 34

COOLAIR_short 38

COOLAIR_long 43

linc1257 68

NRON 71

HOTTIP 86

NEAT1 97

RepA 105

HOTAIR 106

AIR 112

XIST 136

TSIX 151

KCNQ1QT 289

doi:10.1371/journal.pone.0043047.t001

lncRNAs in Maize
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very long transcripts (over 4 kb) and rare transcripts, which would

facilitate the identification of some lncRNAs. Another factor is the

construction of full-length cDNA libraries being dependent on the

presence of a poly-A tail at the 39 end of the transcripts [52], which

is likely to enrich for RNA polymerase II (pol II) transcripts. In

Arabidopsis thaliana, two additional polymerases, RNA polymerase

IV and V, transcribe noncoding sequences involved in gene

silencing via siRNA production, and pol V transcripts are

apparently not polyadenylated (reviewed by [27,53,54]).

Classification of Maize lncRNAs as sRNA Precursors
In plants, small RNAs 20–25 nucleotides in length are an

important class of noncoding RNA for the regulation of gene

expression, and can originate from longer transcripts that are

processed by endonucleases like Dicer. These small RNAs can

influence gene expression at both the transcriptional and post-

transcriptional level, and are produced via distinct pathways in

plants (reviewed by [55]). One anticipated fate of the lncRNA

candidates would be to serve as precursor molecules that are

processed into small RNAs. The 2,492 lncRNA candidates were

characterized for small RNA precursor potential (Figure S5,

Dataset S4, S5, S6, and S7), based upon homology with known

small RNA sequences in maize.

Published small RNA sequences were compiled and used to

populate databases for sequence alignments with the identified

lncRNAs. One data set of smRNA sequences included the

smRNA transcriptome [34], which includes predicted microRNAs

(miRNAs), other predicted short hairpin forming RNAs (shRNAs),

and predicted small interfering RNAs (siRNAs). Three separate

databases were created for these categories to align with candidate

lncRNAs. Maize miRNA sequences provided by miRBase [56,57]

and miRNAs from the small RNA transcriptome database [34]

were combined into one miRNA dataset and queried with the

ncRNA dataset.

The 2,492 lncRNA candidates identified with CPC and the

Python pipeline were sequentially aligned to the small RNA

databases and classified according to the results (Figure 3). Twenty
of the ncRNAs had homology with a miRNA sequence. Eighteen

of these also aligned to an existing maize miRNA precursor in the

non-redundant nucleotide database with varying levels of coverage

and percent identity (Table 2), one had no significant homology

with any other sequence, and one aligned to a maize protein

coding mRNA. The ncRNA in this group that aligned to a maize

protein coding gene was classified as a genic siRNA precursor, the

remaining 19 were considered likely miRNA precursors.

By alignment to the other small RNA databases, the remaining

RNAs were classified as either small RNA precursors or lncRNAs.

In total, 237 ncRNAs were classified as shRNA precursors, and

1,225 as siRNA precursors. The remaining 1,011 ncRNAs were

classified as lncRNAs that are likely to function as longer

molecules.

A total of 1,481 transcripts contained a small RNA sequence,

which is equivalent to 59.4 percent of the total number of ncRNAs

identified. This may reflect that small RNAs are important and

abundant regulatory molecules in plants. While it may also be

indicative of biased datasets, with over-representation of these

types of ncRNAs, only miRNAs are known to be predominantly

dependent upon pol II transcription in plants. Thus, we anticipate

that any bias in the current dataset would underrepresent small

RNA precursors due to the exclusion of non-polyadenylated

molecules.

Figure 2. Combination of the Python Pipeline and CPC results. The Python Pipeline and CPC were used to identify noncoding RNAs, the
number of transcripts identified as noncoding by each method is indicated. A subset were classified as noncoding by both methods, others were
identified exclusively by one set or the other. The sequences identified as noncoding by either method were combined into one comprehensive set
(Combined ncRNA). Datasets for ncRNAs identified by the Python pipeline, CPC, and the combined set were designated Dataset S1, S2, and S3
respectively (supplementary data).
doi:10.1371/journal.pone.0043047.g002

lncRNAs in Maize
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Due to the understood mechanisms of biogenesis, siRNAs are

expected to derive from a longer molecule cleaved into multiple

small RNAs by specific endonuclease activity. To determine if

multiple small RNAs derived from miRNA, shRNA, and siRNA

precursor ncRNAs, small RNAs were mapped to individual

ncRNA molecules. Many small RNA precursor ncRNAs had

homology to multiple small RNAs (Table 3). In many cases,

ncRNAs had homology with multiple types of small RNAs (data

not shown), suggestive of overlap between small RNA biogenesis

pathways at many loci. In plants, there is evidence for overlapping

epigenetic regulatory pathways (reviewed by [58,59]). These

results may indicate that some ncRNAs are processed into

multiple types of small RNAs in maize and potentially act in

multiple regulatory pathways.

Genome Wide Localization of Long NoncodingRNAs
The region of homology between a regulatory RNA and its

target gene is frequently predictive of the associated regulatory

mechanism. ncRNAs with homology to the promoter region are

frequently associated with transcriptional silencing mechanisms,

while homology in coding regions may be indicative of post-

transcriptional events, including mRNA degradation. The

lncRNAs that are not precursors for small RNAs may function

intact in regulatory capacities. Several of the characterized

lncRNAs are transcribed from within a protein coding locus,

and regulate the host gene via a variety of mechanisms. These

regulatory lncRNAs thus share homology with their target genes in

exonic, promoter, intronic, or other untranslated regions of genes.

The maize lncRNAs were localized within the genome relative

to predicted protein coding genes (Figure S6, Dataset S8, S9, S10,

S11, S12, S13, S14, and S15). First, the transcripts were sorted

into two groups. The first group consisted of transcripts located

within a gene model (genic) based upon alignment within a gene

model from the maize protein evidence-based computationally

predicted genes taken from the Filtered Gene Set (FGS) [60], the

second group consisted of those transcripts located outside of these

gene models (intergenic). For this analysis, a gene model consists of

the untranslated regions (UTRs), exons, introns, and 500 bp up

and downstream of these features.

Approximately 62% of the 1,481 small RNA precursor

molecules were intergenic (Figure 4). This was consistent with

the anticipated origin of these ncRNAs, because miRNA

precursors tend to exist as a distinct gene in the genome that

target protein coding genes after processing [55], while other

categories of small RNAs are frequently associated with silencing

of repetitive elements in intergenic regions [28,29]. miRNA and

shRNA precursors were particularly enriched for intergenic

localization, with 85% and 75% of these sequences, respectively,

mapping to intergenic regions. The few genic miRNA and shRNA

precursors could represent intronic transcripts with regulatory

roles, which have been detected in other studies [20]. The genic

siRNA precursors represented a slightly higher percentage of the

total siRNA precursors (41%), and this type of regulatory molecule

might share sequence homology with one of several genic features

depending on the type of regulation it is associated with

[19,61,62].

The lncRNAs that do not appear to be small RNA precursors

had homology with genic and intergenic loci in the genome,

although slightly more (57%) appeared to be genic in origin. These

genic lncRNAs could represent noncoding RNAs that negatively

affect the transcription of their associated gene through transcrip-

tional interference, as exemplified by COOLAIR in Arabidopsis

thaliana [25]. Another possibility would be a noncoding transcript

that recruits a chromatin modifying complex, such as PRC2, to

their respective gene locus to establish silencing, like the intronic

noncoding RNA COLDAIR, also identified in Arabidopsis [26].

This type of regulation is not restricted to an intronic region,

however, and could be the result of a lncRNA associated with its

gene host in any location, with varying mechanisms [63]. The

intergenic loci might act as trans-acting RNAs to mediate

expression of other loci, or could represent scaffolding transcripts

associated with RdDM and heterochromatin formation in

intergenic regions.

Genic transcripts were further localized within genes to gain

insight into possible regulatory roles they may have on the

Figure 3. Results for the classification of combined noncoding
RNA datasets (ncRNAs) based on small RNA precursor
potential. Long noncoding RNA candidates identified above were
classified into four different subsets based on alignment with small RNA
databases including microRNA sequences (miRNA), short hairpin
forming RNA sequences (shRNA),small interfering RNA sequences
(siRNA), and those without homology to small RNA sequences, classified
as long noncoding RNAs (lncRNA).
doi:10.1371/journal.pone.0043047.g003

lncRNAs in Maize
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associated FGS gene. The locations of the ncRNAs were based on

the highest alignment score within the gene, and sorted further

into the following categories: spliced over a gene, spans a gene

from both the up and downstream region, spans a gene from both

the 59 and 39 UTR, within 500 bp up or downstream of a gene,

within a UTR, within an intron, and within the coding sequence

of a gene (Figure S7). In addition, a distinction between the

directionality of the ncRNA relative to its respective gene model,

sense or antisense, was made.

To understand the relationship between ncRNAs and the

associated filtered gene set gene models, the ncRNAs were

separated into three groups based upon their subgenic localization

and percent of gene model covered. The first group contained 541

noncoding transcripts that covered more than 98 percent of a gene

model and those that are spliced over a gene; the former may span

from the upstream to the downstream or from the 59 to 39 UTRs,

the latter was not localized further. The second group contained

118 noncoding transcripts that covered a gene model between 50

and 98 percent; with this group it was determined whether the

lncRNA candidates spanned to include a particular region. The

third group included 481 ncRNAs with less than 50 percent

coverage over a gene model; with this group a distinction was

made between the lncRNA candidates located completely within

a specific feature from those that spanned more than one feature.

This analysis detected 470 sense transcripts with over 98 percent

coverage of a predicted protein coding gene in the filtered gene set

(Figure 5). Ten of these were randomly selected and manually

analyzed. All ten of these gene models consisted of a single exon

and had ORFs less than 120 aa with no significant homology to

known proteins (data not shown). It is therefore likely that these

transcripts have been mischaracterized as protein coding genes by

genome annotation efforts. Spliced transcripts in the sense

direction may also be associated with mischaracterized protein

coding gene models. Both the high-coverage and spliced lncRNA

candidates could therefore be intergenic functional lncRNAs.

There is an established precedent for spliced, functional, lncRNAs.

The long noncoding RNA database lists 40 of 178 lncRNAs as

spliced transcripts, and two different search parameters to select

for spliced and non-spliced transcripts on NRED (ncRNA

Expression Database) revealed roughly 50 percent of the

transcripts in the database as spliced [64,65].

Table 2. Homology of miRNA precursors with previously classified miRNA precursor sequences.

Full-length cDNA ID Sequence with highest scoring alignment % coverage % identity direction

Z27kG1_18025 gb|GQ905509.1| Zea mays clone zma-miR159a-2 precursor 99% 100% sense

Z27kG1_17060 gb|GQ905546.1| Zea mays clone zma-miR168b precursor 90% 99% sense

Z27kG1_17126 b|GQ905514.1| Zea mays clone zma-miR160a precursor 82% 100% sense

Z27kG1_06696 gb|GQ905605.1| Zea mays clone zma-miR394b-2 precursor 71% 99% sense

Z27kG1_12681 gb|GQ905528.1| Zea mays clone zma-miR166b-2 precursor 59% 100% sense

Z27kG1_16032 gb|GQ905515.1| Zea mays clone zma-miR160b precursor 57% 100% sense

Z27kG1_17306 gb|GQ905546.1| Zea mays clone zma-miR168b precursor 49% 99% sense

Z27kG1_09597 b|GQ905553.1| Zea mays clone zma-miR169c precursor 47% 100% sense

Z27kG1_08877 gb|GQ905563.1| Zea mays clone zma-miR169j-4 precursor 46% 100% antisense

Z27kG1_22830 gb|GQ905563.1| Zea mays clone zma-miR169j-4 precursor 36% 100% antisense

Z27kG1_23905 gb|GQ905575.1| Zea mays clone zma-miR171j_5prime-1 precursor 27% 100% sense

Z27kG1_15711 gb|GQ905520.1| Zea mays clone zma-miR162-2 precursor 21% 100% sense

Z27kG1_02106 gb|GQ905557.1| Zea mays clone zma-miR169h_3prime precursor 18% 100% antisense

Z27kG1_02804 gb|GQ905543.1| Zea mays clone zma-miR167g_5prime precursor 17% 100% sense

Z27kG1_08524 gb|GQ905590.1| Zea mays clone zma-miR319b_5prime-1 precursor 16% 100% sense

Z27kG1_22328 gb|GQ905572.1| Zea mays clone zma-miR171f_3prime-1 precursor 12% 99% sense

Z27kG1_19659 gb|GQ905533.1| Zea mays clone zma-miR166k/m precursor 10% 83% sense

Z27kG1_02711 gb|GQ905546.1| Zea mays clone zma-miR168b precursor 7% 94% sense

Z27kG1_09008 No hit to precursor n/a n/a n/a

Z27kG1_07922 Zea mays indeterminate spikelet 1 (ids1) mRNA 92% 99% sense

doi:10.1371/journal.pone.0043047.t002

Table 3. ncRNAs with homology to multiple small RNAs.

ncRNA type No. transcripts
No. transcripts with homology to more than one small
RNA

miRNA precursor 19 14

shRNA precursor 237 207

siRNA precursor 1225 724

doi:10.1371/journal.pone.0043047.t003
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Of the 118 ncRNAs with 50–98% coverage of the associated

gene model, 76 are sense transcripts which span the gene model to

include either the 59 or 39 UTR (Figure 6). Several of these

lncRNAs are associated with gene models that have long ORFs

with significant homology to known proteins, yet themselves lack

a complete ORF, leading to their classification as noncoding.

These lncRNAs could be incomplete cDNAs that made it past the

library screening and sequencing methods, or the result of

transcription from an alternative start site within the gene model

producing a lncRNA with a regulatory role within that gene locus.

A study of noncoding RNAs that interact with the polycomb

repressive complex 2 (PRC2) in human stem cells using a RIP-seq

technique identified 4,446 RNAs that are sense, and 3,106 RNAs

that are antisense, to annotated transcripts in the UCSC genome

browser [66]. This result suggests that thousands of genic lncRNAs

in the sense and antisense direction are functional and may act to

recruit PRC2 to their gene locus for silencing in humans. PRC

orthologs have been identified in Arabidopsis and maize [67,68],

and there is evidence that the polycomb group proteins contribute

to gene regulation to control a variety of mechanisms in plants

[69]. It is therefore possible that a subset of these lncRNA

Figure 4. Results of genic vs. intergenic localization. Each subgroup of ncRNA was localized to either a genic or intergenic region in the maize
genome. The number of genic and intergenic transcripts for each class of ncRNA are indicated.
doi:10.1371/journal.pone.0043047.g004

Figure 5. Results of genic localization for ncRNAs covering.98% of a gene model and spliced. A total of 541 ncRNAs were either spliced
or had homology with filtered gene set genes over 98% of the gene model. This homology spanned different genic features (A). The number of
sequences that aligned with a specific genic feature is indicated for each group of ncRNAs (B).
doi:10.1371/journal.pone.0043047.g005
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candidates function to regulate gene expression through their

interaction with polycomb group proteins.

There were 481 ncRNAs with less than 50 percent coverage

over their associated gene model (Figure 7). Of these, a total of 236

mapped to the 39 UTR alone or in combination with a 39 UTR

adjacent region in a protein coding gene model. There is evidence

for functions of 39 UTR associated lncRNAs in other species

[21,22], and many lncRNAs are associated with 39UTRs in mice

[1]. Gene regulation associated with 39UTRs is not well un-

derstood, but this result suggests that there might be multiple

examples of RNA-associated regulation of genes associated with

39UTRs in maize.

There were 15 predicted lncRNA transcripts with ,50% gene

model coverage that mapped to the CDS of a gene model. Of

these, 14 were antisense to the gene model. Antisense transcripts

can mediate gene silencing via transcriptional or post-transcrip-

tional mechanisms, with the latter involving mRNA degradation.

Antisense -mediated mRNA degradation would likely generate

siRNAs, and these were not detected in the available datasets. It is

possible that these lncRNA candidates do in fact produce siRNAs

that were not represented in the datasets used to create the

databases for this study. Another function for these lncRNAs could

be interference with or activation of pol II transcription along the

gene in the sense direction, either through transcriptional in-

terference, promoter mediated transcriptional silencing events or

local changes in chromatin structure that inhibit or facilitate sense

transcription.

RdDM Related ncRNAs in Maize
One potential mechanism for small RNA biogenesis in plants is

the RdDM pathway. Mop1 is a maize ortholog of Arabidopsis

RDR2, an RNA-dependent RNA polymerase required for RdDM

function. Mop1 is required for 24 nucleotide siRNA biogenesis in

maize [70], and is thought to polymerize the complement of single

stranded pol IV transcripts that are then processed into 24 nt

siRNAs [27]. To determine if the ncRNAs detected by this study

included any siRNA precursors associated with this gene silencing

pathway, small RNA precursor ncRNAs were compared with

a published dataset of Mop1-sensitive siRNAs [71]. A total of 282

ncRNAs were observed to include Mop1-sensitive siRNA

sequences, of which 73 were genic and 209 intergenic in origin

(Table 4). This is consistent with RdDM regulating the expression

of repetitive intergenic elements and a subset of genes in the maize

genome, which is in accord with genome wide expression profiles

of maize Mop1 mutants [71]. Of the 73 genic ncRNAs with

homology to Mop1-sensitive siRNAs, 46 were predicted siRNA

precursors, 26 predicted shRNA precursors, and 1 a predicted

miRNA precursor. Of the 209 intergenic ncRNAs with homology

to Mop1-sensitive siRNAs, 110 were siRNA precursors, 97 shRNA

precursors, and 2 miRNA precursors. Although some miRNAs

appear to be dependent upon Mop1 activity [72] most are

believed to be processed via mechanisms independent of RNA

dependent RNA polymerase activity. The high percentage of

mop1-sensitive small RNAs sharing homology with siRNA and

shRNA precursors is therefore consistent with the current model of

Mop1 activity in RdDM, and supports the idea that at least

a portion of the shRNA precursors may not be unidentified

miRNAs as originally predicted [34]. If the biogenesis of small

RNAs from these molecules requires the activity of an RNA

dependent RNA polymerase, any small hairpins formed by these

molecules may not be required for processing into duplex small

RNA molecules.

Figure 6. Results of genic localization for ncRNAs covering 50–98% of a gene model. A total of 118 ncRNAs were had homology with
filtered gene set genes that covered 50–98% of the gene model. This homology spanned different genic features (A). The number of sequences that
aligned with a specific genic feature is indicated for each groupof ncRNAs (B).
doi:10.1371/journal.pone.0043047.g006

lncRNAs in Maize

PLOS ONE | www.plosone.org 9 August 2012 | Volume 7 | Issue 8 | e43047



These results suggest that the ncRNAs detected by this study

include ncRNAs generated by plant specific RNA polymerases

involved in RdDM. Further analysis will be required to elucidate if

these ncRNAs mediate transcriptional gene silencing events via

a maize RdDM-like pathway.

Sequence Composition of Maize lncRNAs
Another approach to gain insight into the possible functions of

an RNA molecule is through analysis of its sequence character-

istics. The length and base composition of an RNA molecule may

provide insight about its overall structure, mechanism of bio-

genesis, or protein interactions. To further characterize lncRNAs

in maize, sequences were analyzed to detect patterns in various

sequence features. Transcript length and GC content were

Figure 7. Results of genic localization for ncRNAs covering,50% of a gene model. A total of 472 ncRNAs were had homology with filtered
gene set genes that covered less than 50% of the gene model. This homology spanned different genic features (A). (A). The number of sequences
that aligned with a specific genic feature is indicated for each groupof ncRNAs (B). Some lncRNAs covered more than one feature of the gene (C).
Within this group, those that include the upstream or downstream regions were reported separately.
doi:10.1371/journal.pone.0043047.g007

Table 4. ncRNAs with homology to Mop1-sensitive siRNAs.

ncRNA type No. transcripts with homology to Mop1-sensitive siRNAs

Genic miRNA precursor 1

Genic shRNA precursor 26

Genic siRNA precursor 46

Intergenic miRNA precursor 2

Intergenic shRNA precursor 97

Integenic siRNA precursor 110

doi:10.1371/journal.pone.0043047.t004
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compared, no notable patterns exclusively associated with any

category of RNA were detected by this analysis (data not shown).

Repetitive Element Content of ncRNAs Based on Class
and Location
Each group of lncRNA candidates based on class and location

were run through Repeat Masker (www.repeatmasker.org) for

repetitive element content analysis (Tables 5 and 6). The

ChromDB protein coding set was analyzed again as a control

for comparison; only 1.26 percent of this transcript set was masked

as repetitive elements.

Within the genic set of ncRNAs, the shRNA precursors had the

highest repetitive sequence content, with over 12 percent of the

total sequences masked as repetitive elements (Table 5). The

repetitive element content was generally low for miRNA

precursors and lncRNAs that were localized to genic regions, at

3.49% and 2.62%, respectively (Table 5). This is also consistent

with miRNAs originating from a unique miRNA precursor gene,

and suggests that at least a subset of the shRNAs are not likely to

represent currently unidentified miRNAs, although the shRNAs

were originally classified on their potential to form miRNA-like

hairpin structures [34].

The most abundant category of repetitive elements for genic

and intergenic shRNA and siRNA precursors were annotated as

long terminal repeat retrotransposons (LTRs) by RepeatMasker

(Tables 5 and 6). LTRs have been demonstrated to be associated

with pol V activity in Arabidopsis [54], which would be consistent

with epigenetic regulation of these loci by RNA-mediated

mechanisms. Long interspersed retrotranspons elements (LINEs)

and DNA transposons were also abundant repetitive elements

across this dataset. Generally, transposons are believed to be

sources of ncRNAs that are important mediators of gene silencing

(reviewed by [73]), and the DNA transposon-related sequences

detected in this study may reflect this type of gene silencing

mechanism in the maize genome.

The general trends were similar in the sequences that mapped

to genic and intergenic regions (Tables 5 and 6), but the repetitive

element content was higher for all categories of ncRNAs in the

sequences that mapped to intergenic regions (Table 6). This is

consistent with the structure of the maize genome, where repetitive

elements are frequently associated with gene rich intervals but not

typically within the gene models themselves [74]. Consistent with

prior reports of a higher GC content within coding region DNA

sequences [75], the intergenic lncRNAs also have a slightly lower

GC content than the genic lncRNAs. This provides some

additional evidence that these transcripts are indeed noncoding.

Sequence Motifs of ncRNAs Based on Class and Location
Many regulatory events in the cell require the ability of nucleic

acid polymers to bind to one another and with proteins in

a sequence dependent manner. Transcription factors and chro-

matin modifying proteins are examples of this type of recognition.

In many cases, a common sequence element can be associated

with such interactions. In some cases, shared sequence motifs

between different regulatory targets can also be detected, including

those loci thought to be regulated by ncRNAs [76]. The maize

ncRNAs detected in this study were analyzed to determine if there

was evidence of sequence motifs that might be indicative of

regulatory mechanisms.

Using Discriminative DNA Motif Discovery (DREME) [77],

motifs were identified for the maize ncRNAs identified. DREME

was developed specifically for the identification of transcription

factor binding motifs from ChIP-seq data, and limits its search to

motifs 8 base pairs in size to increase the speed of detection. No

motifs were identified for miRNA precursors, possibly due to the

small number of input sequences (2 genic, 17 intergenic), and only

6 were identified for the genic shRNA group (Figure S8). The

ChromDB set of protein coding genes was analyzed as a control

group to distinguish those motifs unique to the noncoding set. This

analysis did not reveal specific motifs associated with ncRNA

Table 5. Repetitive element content of genic lncRNA candidates by class.

miRNA shRNA siRNA lncRNA

Sequences 3 60 505 572

Total length (bp)* 4013 72968 511621 476532

GC level 49.84% 53.52% 53.14% 54.73%

Base pairs masked
(% of total)

140 (3.49%) 9464 (12.97%) 28070 (5.49%) 12458 (2.61%)

# elements (bases masked) # elements (bases masked) # elements (bases masked) # elements (bases masked)

SINEs 0 (0) 0 (0) 3 (238) 3 (354)

LINEs 0 (0) 2 (659) 2 (599) 3 (1098)

LTRs 0 (0) 20 (5750) 52 (13320) 9 (1431)

DNA transposons 0 (0) 10 (1957) 34 (6013) 8 (1484)

Unclassified 0 (0) 1 (60) 8 (1100) 4 (563)

Small RNA 0 (0) 0 (0) 3 (238) 3 (354)

Satellites 0 (0) 0 (0) 0 (0) 0 (0)

Simple repeats 4 (115) 11 (418) 88 (4237) 81 (4100)

Low complexity 1 (25) 16 (620) 68 (2563) 112 (3248)

Bases masked (% of total) Bases masked (% of total) Bases masked (% of total) Bases masked (% of total)

Total interspersed
repeats

0 (0) 8426 (11.6) 21270 (4.2) 4930 (1)

*Total length, in base pairs, of all sequences analyzed.
doi:10.1371/journal.pone.0043047.t005
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subgroups in this study, and most of the detected motifs were

present in multiple classes of ncRNAs. In most groups of ncRNAs,

motifs were identified that appeared similar to two motif types–

a GAGA repeat like motif, and a CCACCA repeat like motif.

To distinguish motifs associated with repetitive elements,

masked files were created for each class and location of lncRNA

candidates and analyzed separately. Only 3 motifs were found in

the genic shRNA candidate group with this analysis (Figure S8).

The reduction of motifs in the masked sequences for shRNA

candidates could be a result of the high level of repetitive element

content in this class. The ten most significant motifs are reported

for the other groups. When repetitive elements are masked, the

CCACCA repeat like motif can be detected in all groups of

ncRNAs. The functional significance of these motifs is not clear,

and further analysis will be required to determine if these regions

are involved in any protein-RNA or protein-DNA interactions.

Materials and Methods

The Starting Dataset
Full-length cDNA sequences were downloaded from www.

maizecdna.org. The Unique Transcripts (UniTrans) from the 27 k

strict PAVE assembly set were used, consisting of 24,467

transcripts of 2,294 contigs and 22,173 singletons [52]. Using

a filter available on www.maizecdna.org, only transcripts that

mapped to the genome at least once were downloaded, resulting in

18,669 sequences. Twenty potential contaminating sequences

were identified during the analysis of the full-length cDNAs. These

20 sequences were also downloaded from www.maizecdna.org.

Using a Python script, the 20 contaminating sequences were

compared to the 18,669 sequences from the set that mapped to the

genome. Only 1 contaminating sequence was present in the

dataset and was removed. The remaining 18,668 sequences were

used in this study.

Designing the Python Pipeline
Open reading frame sizes for the 14 known lncRNAs were

determined using Ugene (http://ugene.unipro.ru/) with the

following parameters selected: Strand=Direct, Min length,

bp= 363, Must terminate within region= true, must start with

init codon= true. These settings selected for complete ORFs

within each sequence in the forward strand. The longest ORF was

reported.

The 248 well annotated protein coding genes in maize were

taken from www.chromdb.org. A list of protein sequences for

‘‘confirmed’’ ChromDB genes was exported as a FASTA file using

tools available on the website. The protein sequences in the

FASTA file were then analyzed using Python scripts to determine

ORF characteristics.

The validation of the ORF 120 amino acids (aa) cut by reducing

the ORF cut size to 100 aa, 80 aa, and 40 aa, was performed using

a combination of Ugene to determine ORF sizes and a Python

script to select transcripts of the specified ORF size for the cut off.

The Python Pipeline
A Python script was written that selected for transcripts greater

than or equal to 200 bp in length, and generated a FASTA file of

the results. These transcripts were then analyzed using Ugene for

ORF status as described above. Another Python script was written

to select transcripts with an ORF less than or equal to 120 aa and

then compare these transcripts to protein sequences in the

Swissprot database. The NcbiblastxCommandline wrapper from

Bio.Blast.Applications was used in this script to BLASTX [78]

each transcript against the Swissprot protein database with the

following parameters: strand= ‘‘plus’’, db= ‘‘swissprot’’, max_tar-

get_seqs = 1, num_threads = 4, evalue = 0.001. The parameters for

BLASTX were set to use only translations in the forward (‘‘plus’’)

strand in the search. The transcripts with a translated region

aligning with a protein sequence in the Swissprot database with an

Table 6. Repetitive element content of intergenic lncRNA candidates by class.

miRNA shRNA siRNA lncRNA

Sequences 16 177 720 439

Total length (bp)* 25993 258071 928982 434240

GC level 46.84% 51.6% 50.73% 51.39%

Bases masked
(% of total)

2065 (7.94%) 88239 (34.19%) 117546 (12.65%) 16876 (3.89%)

# elements (bases masked) # elements (bases masked) # elements (bases masked) # elements (bases masked)

SINEs 0 (0) 1 (96) 2 (125) 2 (241)

LINEs 2 (204) 3 (344) 25 (9950) 9 (1377)

LTRs 4 (1325) 124 (70873) 174 (70266) 23 (5325)

DNA transposons 2 (350) 43 (10507) 115 (25314) 18 (3739)

Unclassified 0 (0) 12 (1016) 21 (5302) 9 (995)

Small RNA 0 (0) 5 (3431) 2 (125) 2 (241)

Satellites 0 (0) 0 (0) 10 (1453) 2 (156)

Simple repeats 5 (186) 23 (1088) 78 (4041) 57 (2410)

Low complexity 0 (0) 29 (980) 82 (3218) 78 (2633)

Bases masked (% of total) Bases masked (% of total) Bases masked (% of total) Bases masked (% of total)

Total interspersed
repeats

1879 (7.23%) 82836 (32.1%) 110957 (11.9%) 11677 (2.7%)

*Total length, in base pairs, of all sequences analyzed.
doi:10.1371/journal.pone.0043047.t006
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e-value above 0.001 were selected for and written to a new FASTA

file.

The Coding Potential Calculator
Full-length cDNA sequences greater than or equal to 200 bp

(18,655) were uploaded to the CPC website (http://cpc.cbi.pku.

edu.cn) for analysis. Parameters for the website were set to use only

the forward strand. The output data was analyzed, and a list of the

transcript IDs described as ‘‘noncoding’’ and ‘‘weakly noncoding’’

was created. A Python script was written to grab the transcript

sequences associated with these IDs and write these transcripts to

a new FASTA file.

Small RNA Database Creation
Small RNA sequences were downloaded as FASTA files from

NCBI under the series GSE15286 (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc =GSE15286 ) [34]. The files for both root

and shoot for each group (known_miRNA, shRNA, and siRNA)

were combined into a single FASTA file. Using a Python script,

the smRNA sequences in the FASTA file for each group were

separated based on length into new FASTA files. For example, for

the miRNA sequences, a separate FASTA file was created that

contained all miRNA sequences 18 bp in length, another file for

19 bp miRNAs, another for 20 bp, 21 bp, 22 bp, and 23 bp. For

the shRNA and siRNA sequences, the range in sizes was from 18

to 30 bp in length, a separate FASTA file created for each size.

This separation based on size facilitated the mapping of the

smRNAs to the lncRNA candidates using BLAST in a second

Python script designed for this purpose (see below). NCBI-

BLAST+ executables, version 2.2.23, was downloaded from the

NCBI website for local use. Using the makeblastdb command

available through the BLAST+ executables, BLAST nucleotide

databases were created for the FASTA files described above.

Python Script to Map smRNA Sequences to lncRNA
A Python script was created to BLAST the lncRNA candidates

against each group of smRNAs (Program Script S1). The

NcbiblastnCommandline wrapper from Bio.Blast.Applications

was again used in this script. The parameters for BLASTN within

the wrapper were set for a short DNA sequence match

(dust = ‘‘no’’, perc_identity = 100, evalue = 1000, word-size = 7),

with a script following to select for lncRNA candidates with an

exact match to the complete smRNA sequence.

The miRNA precursors were analyzed further through a manual

BLASTN of each sequence against the nucleotide collection (nr/

nt) to look for similarity with characterized miRNA precursors in

the database. The Program Selection was set to optimize for highly

similar sequences (megablast); all other parameters were set at the

default values.

Genic vs. Intergenic Localization
Two BLAST databases were created for this analysis. The first

consisted of genes from the Filtered Gene Set (FGS) of maize with

protein evidence [60]. The Second database consisted of all

chromosome assemblies for RefGen v2 of the B73 cultivar of

maize. A FASTA file of gene models in the FGS that included

500 bp of sequence up and downstream of the gene

(ZmB73_5b_FGS_genes_500.fasta.gz) was downloaded from mai-

zesequence.org (http://ftp.maizesequence.org/current/filtered-

set/). A Python script was written to pull out sequences from

this file listed as having protein evidence in the info file available

from the same website (ZmB73_5b_FGS_info.txt). This FASTA

file was converted to a BLAST database using the mkblastdb

command. To create the database of all the chromosome

assemblies for maize, each chromosome assembly in FASTA

format was downloaded from http://ftp.maizesequence.org/

current/assembly/and combined into a single FASTA file. This

FASTA file was converted to a BLAST database using the

mkblastdb command. Both databases described above were used

in the Python script written to localize lncRNA candidates in the

genome (Program Script S2). Each group of lncRNA candidates

(miRNA, shRNA, siRNA, and lncRNA) were analyzed separately

using this script.

Sub-genic Localization
For the sub-genic localization analysis, several BLAST data-

bases were required containing specific regions of the FGS models.

FASTA files for the databases were downloaded from maizese-

quence.org, except for the 59 and 39 UTR databases. For the

intron database, the lower case lettering for introns within the pre-

mRNA FASTA file (ZmB73_5b_FGS_pre_mrna.fasta.gz) was

used to extract these sequences using a python script. A Python

script was also written to extract the 500 bp regions up and

downstream of gene models using the file including these regions

(ZmB73_5b_FGS_genes_500.fasta). The FASTA files for the

UTR databases were generated using BioMart available through

GRAMENE (www.gramene.org/biomart). The BLAST databases

created from these FASTA files were used in a Python script

written to map lncRNA candidates within their associated FGS

loci (Program Script S3). Each group of genic lncRNA candidates

(miRNA, shRNA, siRNA, and lncRNA) were analyzed separately

using this script.

Sequence Analysis of lncRNA Candidates Based on Class
and Location
A Python script was used to calculate the average length and the

base pair content of lncRNA candidates for each class and

location. The website www.repeatmasker.org was used to analyze

the repetitive element content of the lncRNA candidates. The

search engine used was abblast. The Speed/Sensitivity was set at

default. The DNA source selected was Panicoid (maize, sugar

cane, sorghum, millet). All other Advanced Options were set to the

default parameters.

The DREME website was used to determine motifs in the

lncRNA candidates (http://meme.sdsc.edu/meme/cgi-bin/

dreme.cgi). The default parameters for all options were used in

the search.

Supporting Information

Figure S1 Open reading frame sizes for 248 protein
coding genes in Maize. Open reading frame sizes are plotted

for the set of 248 protein coding genes. The number of transcripts

(y-axis) which had an ORF within each size range (x-axis) is

depicted here.

(TIF)

Figure S2 Validation of ORF size parameter. Known

lncRNAs with ORFs smaller than 120 amino acids were

sequentially sorted by decreasing ORF size. The transcripts

excluded by each amino acid cutoff (aa) is indicated.

(TIF)

Figure S3 Known lncRNA test of the Python pipeline
and CPC. To test the accuracy of both methods in detecting

coding vs. noncoding transcripts, a set of known lncRNAs were

passed through each method individually (A). The results of both
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methods can be combined to identify the maximal number of

noncoding RNAs (B).

(TIFF)

Figure S4 Known protein coding test of the Python
pipeline and CPC. To test the accuracy of both methods in

detecting coding vs. noncoding transcripts, a set of known protein

coding mRNA transcripts were passed through each method

individually (A). The results of both methods can be combined to

identify the maximal number of protein coding RNAs (B).

(TIFF)

Figure S5 Overview of the classification of combined
noncoding RNA datasets (ncRNAs) based on small RNA
precursor potential. Strategy for identifying small RNA

precursor potential in ncRNA dataset. A script was written and

executed (Program Script S1), to parse transcript sequences from

the ncRNA dataset into separate datasets designated as Dataset

S4, S5, S6, and S7 (supplementary data), based upon small RNA

precursor potential.

(TIF)

Figure S6 Overview of the localization of ncRNAs.
ncRNA sequences were mapped to filtered gene set (FGS) to

identify sequences that do (genic) or do not (intergenic) align with

gene models in the FGS using a script developed for this analysis

(Program Script S2). Genic and intergenic transcripts form each

ncRNA category were grouped into separate datasets, designated

as Dataset S8, S9, S10, S11, S12, S13, S14, and S15

(supplementary information).

(TIFF)

Figure S7 Possible Locations of genic lncRNA candi-
dates within a gene locus. A script was developed and

executed to determine the percent coverage and sub-genic location

of ncRNA in protein coding loci (Program Script S3, supplemental

information). Some genic transcripts covered a gene more than

98% or covered a smaller portion and were spliced (A). Other

genic transcripts covered the gene model between 50 and 98% and

could span one or more features within the gene, including

untranslated regions (UTR), introns or exons (B). Still other genic

ncRNAs covered less than 50% of a gene model; with this group

a distinction was made between the lncRNA candidates located

completely within a specific feature from those that spanned more

than one feature and those that were contained within the coding

sequence (CDS) (C).

(TIF)

Figure S8 Sequence motifs identified for lncRNAs. Most

common sequence motifs found by DREME analysis of all

ncRNAs (A). Most common sequence motifs found by DREME

analysis of Repeat Masked ncRNAs (B). Motifs with similarity to

two sequences that appeared to be shared between many detected

ncRNAs are denoted with a * and ** respectively.

(TIFF)

Program Script S1 Python script written to map small
RNA sequences within lncRNA candidates using BLAST.

(PY)

Program Script S2 Python script written to localize
lncRNA candidates in the genome, either genic (within
a gene model) or intergenic (outside of a gene model).

(PY)

Program Script S3 Python script writtin to localize genic
lncRNAs within a gene locus.

(PY)

Dataset S1 The set of noncoding RNAs identified using
the Python pipeline.

(FASTA)

Dataset S2 The set of noncoding RNAs identified using
the Coding Potential Calculator.

(FASTA)

Dataset S3 The set of noncoding RNAs identified using
both the Python pipeline and the Coding Potential
Calculator.

(FASTA)

Dataset S4 The set of noncoding RNAs that contain
a miRNA sequence.

(FASTA)

Dataset S5 The set of noncoding RNAs that contain an
shRNA sequence.

(FASTA)

Dataset S6 The set of noncoding RNAs that contain an
siRNA sequence.

(FASTA)

Dataset S7 The set of noncoding RNAs that do not
contain a small RNA sequence from our database.

(FASTA)

Dataset S8 The set of noncoding RNAs that contain
a miRNA sequence and map to a gene locus.

(FASTA)

Dataset S9 The set of noncoding RNAs that contain
a miRNA sequence and map outside of a gene locus.

(FASTA)

Dataset S10 The set of noncoding RNAs that contain an
shRNA sequence and map to a gene locus.

(FASTA)

Dataset S11 The set of noncoding RNAs that contain an
shRNA sequence and map outside of a gene locus.

(FASTA)

Dataset S12 The set of noncoding RNAs that contain an
siRNA sequence and map to a gene locus.

(FASTA)

Dataset S13 The set of noncoding RNAs that contain an
siRNA sequence and map outside of a gene locus.

(FASTA)

Dataset S14 The set of noncoding RNAs that do not
contain a small RNA sequence from our database and
map to a gene locus.

(FASTA)

Dataset S15 The set of noncoding RNAs that do not
contain a small RNA sequence from our database and
map outside of a gene locus.

(FASTA)

Acknowledgments

The authors gratefully acknowledge Dr. Brian Chadwick, Dr. Henry W.

Bass, and Dr. Jonathan H. Dennis for helpful suggestions regarding this

work.

lncRNAs in Maize

PLOS ONE | www.plosone.org 14 August 2012 | Volume 7 | Issue 8 | e43047



Author Contributions

Conceived and designed the experiments: SB KMM. Performed the

experiments: SB. Analyzed the data: SB KMM. Wrote the paper: SB

KMM.

References

1. Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, et al. (2002) Analysis of

the mouse transcriptome based on functional annotation of 60,770 full-length

cDNAs. Nature 420: 563–573.

2. Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, et al. (2004) Global

identification of human transcribed sequences with genome tiling arrays. Science

306: 2242–2246.

3. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, et al. (2005) The

transcriptional landscape of the mammalian genome. Science 309: 1559–1563.

4. Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, et al. (2002)

Large-scale transcriptional activity in chromosomes 21 and 22. Science 296:

916–919.

5. Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise?

Evidence for selection within long noncoding RNAs. Genome Res 17: 556–565.

6. Wang J, Zhang J, Zheng H, Li J, Liu D, et al. (2004) Mouse transcriptome:

neutral evolution of ‘non-coding’ complementary DNAs. Nature 431:

1 p following 757; discussion following 757.

7. Pang KC, Frith MC, Mattick JS (2006) Rapid evolution of noncoding RNAs:

lack of conservation does not mean lack of function. Trends Genet 22: 1–5.

8. Guttman M, Amit I, Garber M, French C, Lin MF, et al. (2009) Chromatin

signature reveals over a thousand highly conserved large non-coding RNAs in

mammals. Nature 458: 223–227.

9. Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, et al. (2003)

Role of histone H3 lysine 27 methylation in X inactivation. Science 300: 131–

135.

10. Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, et al. (2008)

The Air noncoding RNA epigenetically silences transcription by targeting G9a

to chromatin. Science 322: 1717–1720.

11. Redrup L, Branco MR, Perdeaux ER, Krueger C, Lewis A, et al. (2009) The

long noncoding RNA Kcnq1ot1 organises a lineage-specific nuclear domain for

epigenetic gene silencing. Development 136: 525–530.

12. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, et al. (2010) Long

noncoding RNA as modular scaffold of histone modification complexes. Science

329: 689–693.

13. Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, et al. (2011) Long non-

coding RNA ANRIL is required for the PRC2 recruitment to and silencing of

p15(INK4B) tumor suppressor gene. Oncogene 30: 1956–1962.

14. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, et al. (2009) Many

human large intergenic noncoding RNAs associate with chromatin-modifying

complexes and affect gene expression. Proc Natl Acad Sci U S A 106: 11667–

11672.

15. Martens JA, Laprade L, Winston F (2004) Intergenic transcription is required to

repress the Saccharomyces cerevisiae SER3 gene. Nature 429: 571–574.

16. Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A (2007)

Repression of the human dihydrofolate reductase gene by a non-coding

interfering transcript. Nature 445: 666–670.

17. Hirota K, Miyoshi T, Kugou K, Hoffman CS, Shibata T, et al. (2008) Stepwise

chromatin remodelling by a cascade of transcription initiation of non-coding

RNAs. Nature 456: 130–134.

18. Beltran M, Puig I, Pena C, Garcia JM, Alvarez AB, et al. (2008) A natural

antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced

epithelial-mesenchymal transition. Genes Dev 22: 756–769.

19. Chen D, Meng Y, Yuan C, Bai L, Huang D, et al. (2011) Plant siRNAs from

introns mediate DNA methylation of host genes. RNA 17: 1012–1024.

20. Meng Y, Shao C (2012) Large-scale identification of mirtrons in Arabidopsis and

rice. PLoS One 7: e31163.

21. Mercer TR, Dinger ME, Bracken CP, Kolle G, Szubert JM, et al. (2010)

Regulated post-transcriptional RNA cleavage diversifies the eukaryotic tran-

scriptome. Genome Res 20: 1639–1650.

22. Jenny A, Hachet O, Zavorszky P, Cyrklaff A, Weston MD, et al. (2006) A

translation-independent role of oskar RNA in early Drosophila oogenesis.

Development 133: 2827–2833.

23. Campalans A, Kondorosi A, Crespi M (2004) Enod40, a short open reading

frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA

binding protein in Medicago truncatula. Plant Cell 16: 1047–1059.

24. Bardou F, Merchan F, Ariel F, Crespi M (2011) Dual RNAs in plants. Biochimie

93: 1950–1954.

25. Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long

antisense transcripts of an Arabidopsis Polycomb target. Nature 462: 799–802.

26. Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long

intronic noncoding RNA. Science 331: 76–79.

27. Haag JR, Pikaard CS (2011) Multisubunit RNA polymerases IV and V:

purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol

12: 483–492.

28. Zhang X, Henderson IR, Lu C, Green PJ, Jacobsen SE (2007) Role of RNA

polymerase IV in plant small RNA metabolism. Proc Natl Acad Sci U S A 104:

4536–4541.

29. Pikaard CS, Haag JR, Ream T, Wierzbicki AT (2008) Roles of RNA polymerase

IV in gene silencing. Trends Plant Sci 13: 390–397.

30. Swiezewski S, Crevillen P, Liu F, Ecker JR, Jerzmanowski A, et al. (2007) Small

RNA-mediated chromatin silencing directed to the 39 region of the Arabidopsis

gene encoding the developmental regulator, FLC. Proc Natl Acad Sci U S A

104: 3633–3638.

31. Alleman M, Sidorenko L, McGinnis K, Seshadri V, Dorweiler JE, et al. (2006)

An RNA-dependent RNA polymerase is required for paramutation in maize.

Nature 442: 295–298.

32. Dorweiler JE, Carey CC, Kubo KM, Hollick JB, Kermicle JL, et al. (2000)

mediator of paramutation1 is required for establishment and maintenance of

paramutation at multiple maize loci. Plant Cell 12: 2101–2118.

33. McGinnis KM, Springer C, Lin Y, Carey CC, Chandler V (2006)

Transcriptionally silenced transgenes in maize are activated by three mutations

defective in paramutation. Genetics 173: 1637–1647.

34. Wang X, Elling AA, Li X, Li N, Peng Z, et al. (2009) Genome-wide and organ-

specific landscapes of epigenetic modifications and their relationships to mRNA

and small RNA transcriptomes in maize. Plant Cell 21: 1053–1069.

35. Tupy JL, Bailey AM, Dailey G, Evans-Holm M, Siebel CW, et al. (2005)

Identification of putative noncoding polyadenylated transcripts in Drosophila

melanogaster. Proc Natl Acad Sci U S A 102: 5495–5500.

36. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, et al. (2007) RNA maps

reveal new RNA classes and a possible function for pervasive transcription.

Science 316: 1484–1488.

37. Wen J, Parker BJ, Weiller GF (2007) In Silico identification and characterization

of mRNA-like noncoding transcripts in Medicago truncatula. In Silico Biol 7:

485–505.

38. Voss B, Georg J, Schon V, Ude S, Hess WR (2009) Biocomputational prediction

of non-coding RNAs in model cyanobacteria. BMC Genomics 10: 123.

39. Ben Amor B, Wirth S, Merchan F, Laporte P, d’Aubenton-Carafa Y, et al.

(2009) Novel long non-protein coding RNAs involved in Arabidopsis

differentiation and stress responses. Genome Res 19: 57–69.

40. Clamp M, Fry B, Kamal M, Xie X, Cuff J, et al. (2007) Distinguishing protein-

coding and noncoding genes in the human genome. Proc Natl Acad Sci U S A

104: 19428–19433.

41. Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, et al. (2008) Long

noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation.

Genome Res 18: 1433–1445.

42. Chooniedass-Kothari S, Emberley E, Hamedani MK, Troup S, Wang X, et al.

(2004) The steroid receptor RNA activator is the first functional RNA encoding

a protein. FEBS Lett 566: 43–47.

43. Kloc M, Wilk K, Vargas D, Shirato Y, Bilinski S, et al. (2005) Potential

structural role of non-coding and coding RNAs in the organization of the

cytoskeleton at the vegetal cortex of Xenopus oocytes. Development 132: 3445–

3457.

44. Badger JH, Olsen GJ (1999) CRITICA: coding region identification tool

invoking comparative analysis. Mol Biol Evol 16: 512–524.

45. Castrignano T, Canali A, Grillo G, Liuni S, Mignone F, et al. (2004) CSTminer:

a web tool for the identification of coding and noncoding conserved sequence

tags through cross-species genome comparison. Nucleic Acids Res 32: W624–

627.

46. Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, et al. (2007) CPC: assess the

protein-coding potential of transcripts using sequence features and support

vector machine. Nucleic Acids Res 35: W345–349.

47. Lin MF, Jungreis I, Kellis M (2011) PhyloCSF: a comparative genomics method

to distinguish protein coding and non-coding regions. Bioinformatics 27: i275–

282.

48. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their

regulatory roles in plants. Annu Rev Plant Biol 57: 19–53.

49. Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, et al. (2006)

Characterization of the piRNA complex from rat testes. Science 313: 363–367.

50. Gendler K, Paulsen T, Napoli C (2008) ChromDB: the chromatin database.

Nucleic Acids Res 36: D298–302.

51. UniProt C (2011) Ongoing and future developments at the Universal Protein

Resource. Nucleic Acids Res 39: D214–219.

52. Soderlund C, Descour A, Kudrna D, Bomhoff M, Boyd L, et al. (2009)

Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs. PLoS

Genet 5: e1000740.

53. Wierzbicki AT, Ream TS, Haag JR, Pikaard CS (2009) RNA polymerase V

transcription guides ARGONAUTE4 to chromatin. Nat Genet 41: 630–634.

lncRNAs in Maize

PLOS ONE | www.plosone.org 15 August 2012 | Volume 7 | Issue 8 | e43047



54. Wierzbicki AT, Haag JR, Pikaard CS (2008) Noncoding transcription by RNA

polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and
adjacent genes. Cell 135: 635–648.

55. Chen X (2009) Small RNAs and their roles in plant development. Annu Rev

Cell Dev Biol 25: 21–44.
56. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for

microRNA genomics. Nucleic Acids Res 36: D154–158.
57. Zhang L, Chia JM, Kumari S, Stein JC, Liu Z, et al. (2009) A genome-wide

characterization of microRNA genes in maize. PLoS Genet 5: e1000716.

58. Zhang X (2008) The epigenetic landscape of plants. Science 320: 489–492.
59. Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic

regulation of the genome. Nat Rev Genet 8: 272–285.
60. Liang C, Mao L, Ware D, Stein L (2009) Evidence-based gene predictions in

plant genomes. Genome Res 19: 1912–1923.
61. Faghihi MA, Wahlestedt C (2009) Regulatory roles of natural antisense

transcripts. Nat Rev Mol Cell Biol 10: 637–643.

62. Henderson IR, Jacobsen SE (2008) Tandem repeats upstream of the Arabidopsis
endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading.

Genes Dev 22: 1597–1606.
63. Simon JA, Kingston RE (2009) Mechanisms of polycomb gene silencing: knowns

and unknowns. Nat Rev Mol Cell Biol 10: 697–708.

64. Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS (2011)
lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids

Res 39: D146–151.
65. Dinger ME, Amaral PP, Mercer TR, Mattick JS (2009) Pervasive transcription

of the eukaryotic genome: functional indices and conceptual implications. Brief
Funct Genomic Proteomic 8: 407–423.

66. Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, et al. (2010) Genome-wide

identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40: 939–953.
67. Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz EM, et al. (1997) A

Polycomb-group gene regulates homeotic gene expression in Arabidopsis.
Nature 386: 44–51.

68. Haun WJ, Laoueille-Duprat S, O’Connell MJ, Spillane C, Grossniklaus U, et al.

(2007) Genomic imprinting, methylation and molecular evolution of maize

Enhancer of zeste (Mez) homologs. Plant J 49: 325–337.

69. Hennig L, Derkacheva M (2009) Diversity of Polycomb group complexes in

plants: same rules, different players? Trends Genet 25: 414–423.

70. Nobuta K, Lu C, Shrivastava R, Pillay M, De Paoli E, et al. (2008) Distinct size

distribution of endogeneous siRNAs in maize: Evidence from deep sequencing in

the mop1-1 mutant. Proc Natl Acad Sci U S A 105: 14958–14963.

71. Jia Y, Lisch DR, Ohtsu K, Scanlon MJ, Nettleton D, et al. (2009) Loss of RNA-

dependent RNA polymerase 2 (RDR2) function causes widespread and

unexpected changes in the expression of transposons, genes, and 24-nt small

RNAs. PLoS Genet 5: e1000737.

72. Arteaga-Vazquez M, Sidorenko L, Rabanal FA, Shrivistava R, Nobuta K, et al.

(2010) RNA-mediated trans-communication can establish paramutation at the

b1 locus in maize. Proc Natl Acad Sci U S A 107: 12986–12991.

73. Zaratiegui M, Irvine DV, Martienssen RA (2007) Noncoding RNAs and gene

silencing. Cell 128: 763–776.

74. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, et al. (2009) The B73 maize

genome: complexity, diversity, and dynamics. Science 326: 1112–1115.

75. Alexandrov NN, Brover VV, Freidin S, Troukhan ME, Tatarinova TV, et al.

(2009) Insights into corn genes derived from large-scale cDNA sequencing. Plant

Mol Biol 69: 179–194.

76. Chu C, Qu K, Zhong FL, Artandi SE, Chang HY (2011) Genomic maps of long

noncoding RNA occupancy reveal principles of RNA-chromatin interactions.

Mol Cell 44: 667–678.

77. Bailey TL (2011) DREME: motif discovery in transcription factor ChIP-seq

data. Bioinformatics 27: 1653–1659.

78. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. J Mol Biol 215: 403–410.

lncRNAs in Maize

PLOS ONE | www.plosone.org 16 August 2012 | Volume 7 | Issue 8 | e43047


