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A family-based association test to detect gene–gene
interactions in the presence of linkage

Lizzy De Lobel*,1, Lutgarde Thijs2, Tatiana Kouznetsova2, Jan A Staessen2,3 and Kristel Van Steen4,5

For many complex diseases, quantitative traits contain more information than dichotomous traits. One of the approaches used

to analyse these traits in family-based association studies is the quantitative transmission disequilibrium test (QTDT). The QTDT

is a regression-based approach that models simultaneously linkage and association. It splits up the association effect in a

between- and a within-family genetic component to adjust and test for population stratification and includes a variance

components method to model linkage. We extend this approach to detect gene–gene interactions between two unlinked QTLs by

adjusting the definition of the between- and within-family component and the variance components included in the model. We

simulate data to investigate the influence of the epistasis model, linkage disequilibrium patterns between the markers and the

QTLs, and allele frequencies on the power and type I error rates of the approach. Results show that for some of the investigated

settings, power gains are obtained in comparison with FAM-MDR. We conclude that our approach shows promising results for

candidate-gene studies where too few markers are available to correct for population stratification using standard methods

(for example EIGENSTRAT). The proposed method is applied to real-life data on hypertension from the FLEMENGHO study.
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INTRODUCTION

In order to disentangle the genetic basis of complex diseases, the initial
focus is usually on detecting associations between single SNPs and a
specific phenotype. Over time, it has become clear that only partial
information can be obtained by performing single marker analyses, for
example, due to the presence of epistasis or gene–gene interactions. To
test for gene–gene interactions in family data, both non-parametric
methods (MDR-PDT1) and parametric methods (FITF2 and FAM-
MDR3) exist. Some difficulties are encountered when opting for a
family design, one of which involves data collection. However, family-
based studies offer several advantages, including the possibility to use
tests that are robust to population stratification. The aforementioned
methods are not robust against population stratification. Also,
MDR-PDT and FAM-MDR only test for association and do not auto-
matically account for previously detected linkage signals. It is sug-
gested that this can increase type I error rates in specific settings, for
example, in the case of a rare private allele.4

The QTDT5 is a mixed model approach to test for association in the
presence of linkage in the family data for quantitative traits. In this
paper, we propose an extension of the QTDT approach (noted by
epiQTDT) that tests for gene–gene interactions in the presence of
linkage and at the same time is robust against population stratifica-
tion. It is applicable to pedigrees of any size. We perform an extensive
simulation study and show estimated power and type I error rates in
nuclear families with two offspring and with and without missingness
in all parental genotypes. Markers have differing minor allele frequen-
cies (MAF) and we consider several degrees of linkage disequilibrium
(LD) between the markers and the quantitative trait loci (QTLs).

We also apply the epiQTDT method to a real-life data set from
the Flemish Study on Environment, Genes and Health Outcomes
(FLEMENGHO) on hypertension.

MATERIALS AND METHODS

The model
Assume that two unlinked additive QTLs are influencing a trait Y. First, we

consider unrelated individuals and denote for an individual i the recoded

genotypes at the QTLs by G1i and G2i and the trait value by Yi. We use the

additive coding (�1, 0, 1) for the recoded genotypes. In the presence of a gene–

gene interaction between the two QTLs, we can model the mean trait value by:

E½YijG1i;G2i� ¼ m+a1G1i+a2G2i+a12G1iG2i ð1Þ
This model assumes that the individuals are independent and that the trait

values are normally distributed conditionally on the recoded genotypes. For

family designs, the assumption that the individuals are independent is not

valid. The variance–covariance matrix of the trait values of individuals j and k

from the same family i has the following expression:

Oijk ¼
s2

a1+s2
a2+s2

aa+s2
p+s2

e ðj ¼ kÞ
p1

ijks
2
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ijks
2
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2
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In (2), fijk is the coefficient of relationship between individual j and k (twice

the kinship coefficient), pijk
1 is the proportion of alleles-shared IBD between

individuals j and k at locus 1 (analogous for pijk
2) and # is the Hadamard

product (element-wise multiplication) between two matrices. We use the notation

sa1
2, sa2

2 and saa
2 for the additive genetic variance of the trait explained by locus

1, locus 2 and the interaction between the two loci, respectively. Furthermore in

(2), sp
2 is the polygenic variance and se

2 is the non-shared environmental

variance. This variance components model is based on Mitchell et al.6
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The mixed model that results from combining the expressions in (1) and (2)

can be fitted using likelihood theory (Restricted Maximum Likelihood (REML)

principles). It is important to realise that the model for the mean trait value still

suffers from phenomena like population stratification or population admix-

ture, which can lead to spurious associations.5 To deal with this issue when

targeting one QTL, we split the genetic effects into two orthogonal compo-

nents: a within- and a between-family component.5 Consider for instance a set

of N nuclear families and a locus Q. For the jth individual of the ith family,

Gij is the recoded genotype at Q, GMi and GFi are the recoded genotypes at Q

for the male and female founder, and Si is the set of full siblings. Further define

Gi as the set of genotyped individuals in family i. For the founders j of family i,

the between-family component bij is defined as the recoded genotype Gij. The

between-family component bi for a non-founder individual j of family i is then

defined as followed:

bi ¼

GFi
+GMi
2 if parental genotypes are observedP

k2Si\Gi

Gik

Si\Gij j otherwise

8><
>: ð3Þ

Hence, when all parental genotypes are known, the between-family component

is defined as the expected genotype for offspring j of family i conditional on the

parental genotypes.

The within-family component wij for individual j of family i is simply

defined as the difference between the recoded genotype and the between-family

component:

wij ¼ Gij � bij

The advantage of the split-up of the genotype information in two components

is that testing the within-family component for association is not influenced by

population stratification. This previously introduced decomposition can easily

be extended to larger pedigrees.7

When considering N nuclear families and using the decomposition for both

QTL 1 and 2, model (1) can be rephrased as:

E½Yijjw1ij; b1ij;w2ij; b2ij;w12ij; b12ij� ¼ m+a1w1ij+b1b1ij+a2w2ij+b2b2ij+a12w12ij+b12b12ij

ð4Þ
where w1, w2, b1 and b1 are the within-family and between-family components

for QTL 1 and 2, and w12 and b12 are the within-family and between-family

component of the product of the two recoded genotypes at locus 1 and 2.

Similar to (3), the between-family component of this product is defined as the

expected value of this product, given the parental genotypes. As the two QTLs

under study are assumed to be unlinked, this is the product of b1 and b2. The

within-family component w12 is then defined as the difference between the

product of the two recoded genotypes and the between-family component.

Again, those two components are orthogonal. In the Supplementary Material

(Supplementary Appendix A), we show that the estimated within-family

coefficient â12 of the gene–gene interaction is an unbiased estimator for the

interaction effect and calculate formulae for the bias of the estimated between-

family coefficient b̂12 of the gene–gene interaction in the presence of popula-

tion stratification. As we are looking at related individuals in model (4), we

model the covariance between two individuals again according to (2).

Amos8 observed that, when handling markers instead of unknown QTLs, the

additive variances in the variance–covariance structure (2) are influenced by the

recombination fractions between the markers and the QTLs. Therefore, we will

assume that each of the two markers is perfectly linked to one of the QTLs.

Under these assumptions, the model constructed above can still be used when

testing markers instead of QTLs for association. If we test for epistasis between

the two markers, we consequently test whether a12¼0 in model (4) and refer to

this test as ‘epiQTDT’. EpiQTDT tests for gene–gene interactions conditional

on main effects. We also construct a joint test of the main effects and

interaction effect by testing simultaneously.

FAM-MDR
We compare the performance of epiQTDT to FAM-MDR,3 a multifactor

dimensionality reduction (MDR) method that combines the features of

the genome-wide rapid association using mixed model and regression

(GRAMMAR9) approach with model based-MDR (MB-MDR10,11). First, we

fit a polygenic model, specifying a mean model containing an intercept and

possibly covariates. Second, we construct residuals based on this model, which

are assumed to be free of all correlations due to polygenic effects. Third, we

apply MB-MDR using these residuals as a new ‘family-corrected’ outcome.

Step down maxT12 is used to correct for multiple testing.

To obtain results that are comparable to the epiQTDT approach, we account

for main effects in the MB-MDR method.11 Both epiQTDT and FAM-MDR

will thus test for gene–gene interactions in family data conditional on any main

effects. We note that there are some differences between the two methods:

epiQTDT accounts for linkage signals and corrects for population stratification,

where FAM-MDR does not.

Testing for population stratification
In Supplementary Appendix A, we show the following properties for the

estimates of the coefficients in model (4) (for a simple linear regression):

fâ1 ¼ a1; b̂1 ¼ a1+bias; â2 ¼ a2; b̂2 ¼ a2+bias; â12 ¼ a12;

b̂12 ¼ a12+biasg
where a1, a2 and a12 are the coefficients of the regression model (1). The exact

formulae for the bias can be found in Supplementary Appendix A as well. We

can conclude from these properties that all within-family effects are different

from the between-family effects when population stratification is present.

Therefore, to test for population stratification, we use a joint test to test

whether (a1, a2, a12) is equal to (b1, b2, b12) or not in model (4). The properties

of this test are illustrated in the simulation study.

DATA SIMULATION

To assess results for type I error rates and power, we simulate genetic
data for two unlinked QTLs and two markers in LD with the QTLs.
We extend the LD between the markers and the QTLs from D¢¼0 to 1
by 0.1. D¢¼0 represents the situation for no LD between markers and
QTLs and thus no association between the trait and the marker
genotypes. We can assess type I error rates in these simulated settings.
The MAFs of the QTLs and the markers are assumed to be equal and
to vary from 0.1 to 0.3 and 0.5. For each setting, we simulate 1000 data
sets and 1020 offspring (in nuclear families). We simulate data with
nuclear families containing two offspring in the absence (Scenario 1)
and presence (Scenario 2) of population stratification.

Scenario 1: no population stratification
In the absence of population stratification, we simulate three settings.
In the first setting, the additive variance of the trait explained by each
of the QTLs is 1, and the additive variance of the trait explained by the
gene–gene interaction is 3. We add a (non-shared) environmental
variance of 65 and a polygenic variance of 30. These choices are
motivated by the work of Abecasis.5 The heritability of the trait is in
this setting thus 0.05. For the second setting, we double the additive
genetic variances of the trait explained by the QTLs and the gene–gene
interaction, leading to a heritability of the trait of 0.095. The third
setting sets the additive variance of the trait explained by each of the
QTLs equal to 0 and the additive variance of the trait explained by the
gene–gene interaction equal to 5. This setting includes no explicit
main effects of the QTLs but we know that simulating data according
to this scenario induces weak main effects.13 The heritability of the
trait for the third setting is 0.05. We can compare setting 1 and 3 to
compare a setting with explicit main effects with a setting without
explicit main effects. The heritability in both settings is the same.

The simulation of the trait values according to the specified variance
decompositions is based on drawing values from a multivariate
normal distribution; details about this can be found in Supplementary
Appendix B. We note that in the above-mentioned simulated settings,
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the additive effect of the gene–gene interaction is larger than the main
effects of the QTLs.

For these settings, we compare power and type I errors for
epiQTDT, the joint epiQTDT and FAM-MDR. We also investigate
data where all genetic information for the parents is missing to see
how well epiQTDT copes with missing parental genotypes. In this
case, we remove all other available information from the parents
before fitting the mixed models of the epiQTDT and joint epiQTDT.

Scenario 2: population stratification
In the presence of population stratification, we define the regression
coefficients in model (1) to simulate the trait values. This allows us to
measure the bias that is induced in the between-family coefficient
estimates and to check whether the within-family association esti-
mates are truly unbiased. We simulate two population strata, each
containing an equal number of nuclear families. For every simulated
nuclear family, both founders are drawn from the same stratum. We
do not consider population admixture. The two unlinked QTLs and
markers have MAF 0.5 in the first stratum and have MAFs 0.1, 0.3 or
0.4 in the second stratum. The population mean of the trait in the first
stratum is 10 and in the second stratum, the population mean is 1.

To simulate the trait values, we consider two different settings. First,
we assume that a1¼a2¼1.5 and a12¼2 in model (1) (setting 4). For
MAFs 0.1, 0.3, 0.4 and 0.5, the heritabilities of trait are, respectively,
0.015, 0.067, 0.097 and 0.12. We note that this setting represents a
simulation where the main effects of the QTLs are larger than the
interaction effect of the QTLs. In a second setting, we set a1¼a2¼�1.5
and a12¼3 in model (1) (setting 5). This results in a setting where the
additive genetic variance explained by both QTLs is smaller than the
additive epistatic genetic variance. For MAFs 0.1, 0.3, 0.4 and 0.5,
the corresponding heritabilities of the trait are 0.0061, 0.017, 0.029
and 0.045.

For both simulation settings, we compare power and type I error
rates of epiQTDT, joint epiQTDT and FAM-MDR, and measure the
bias in the estimates of the between-family component effects. We also
investigate the power of our test for population stratification.

RESULTS

Scenario 1: no population stratification
Type I error rates for some of the settings are available in Table 1. We
conclude that, when no population stratification is present, the type I
error rates are in general close to 0.05 and that both epiQTDT and
FAM-MDR tend to be conservative.

Figure 1 displays the power results for simulation setting 1. Setting 1
includes main effects for both QTLs and has a trait with a heritability
of 0.05. We conclude that the joint epiQTDT has the best perfor-
mance. As the joint epiQTDT is the only considered method that tests
for main effects and an interaction effect simultaneously, this is in line
with the expectations. Both epiQTDT and FAM-MDR try to detect
epistasis conditional on any main effects. In most settings where the
parental genotypes are not missing, FAM-MDR outperforms
epiQTDT. Only for low values of D¢, epiQTDT has equal or more
power than FAM-MDR. When the parental genotypes are all missing,
the epiQTDT shows better results. In summary, epiQTDT and FAM-
MDR have comparable power in setting 1. For MAFs 0.5 and 0.3,
epiQTDT does slightly better; for MAF 0.1, the opposite is true.

Figure 2 displays the power results for simulation setting 2.
Simulation setting 2 resembles setting 1, but includes a trait with a
heritability close to 0.1. In Figure 2, we observe similar patterns for
setting 2 than for setting 1. The power for all methods is higher, due to
the larger heritability of the trait.

Finally, Figure 3 shows the power results for simulation setting 3,
where the trait has a heritability of 0.05 (as in setting 1). Setting 3 does
not include explicit main effects of the QTLs. We observe that in this
case, the joint epiQTDT performs poorly, due to the absence of
explicit main effects of the QTLs. For epiQTDT and FAM-MDR, the
same observations as for Figures 1 and 2 hold.

Scenario 2: population stratification
Table 1 contains the type I error rates for FAM-MDR and the tests for
the within-family and between-family component of the gene–gene
interaction. The elevated type I errors of the test for the between-
family component are only clear when we mix MAF (for all markers
and QTLs) 0.1 in one of the strata with 0.5 in the other stratum. For
the other MAFs, the test for the between-family component of the
gene–gene interaction performs quite well. However, in these settings,
the test of the between-family component of the main effects in the
model have elevated type I errors (results not shown). For FAM-MDR
(that does not correct for population stratification) we observe the
same trends.

Figure 4 shows the power results for simulation setting 4 and 5 in
the presence of population stratification. In simulation setting 4, the
additive genetic variance of the trait due to both QTLs is larger than
the additive genetic epistatic variance. In simulation setting 5, the
additive genetic epistatic variance of the trait is larger than the additive
genetic variance of the trait explained by both QTLs. In Figure 4, we
have added some more information: power results for the test for
population stratification and power results for the test of the between-
family component of the gene–gene interaction (in addition to the
power of the test of the within-family component, so far referred to as
epiQTDT). When the population stratification is severe (mix of MAFs
0.1/0.5), then we clearly see in Figure 4 that the test for the between-
family component does not perform well (for both settings). When
the population stratification is less severe (mix of MAFs 0.4/0.5), the
power of the test for the within-family and between-family compo-
nent is more alike. When comparing the epiQTDT, joint epiQTDT

Table 1 Type I error rates for simulation setting 1a (h2¼0.05,

no population stratification, main effects present) and simulation

setting 4b (population stratification, main effects 4 interaction

effect) for nuclear families containing two offspring

Population

stratification

Missing

parents

MAF1/

MAF2

Type I error

epiQTDT c

(within-family)

Type I error

epiQTDT c

(between-family)

Type I error

FAM-MDRc

Noa No 0.5 0.034 0.047 0.038

0.3 0.043 0.051 0.044

0.1 0.047 0.050 0.037

Noa Yes 0.5 0.043 0.046 0.045

0.3 0.048 0.043 0.056

0.1 0.058 0.029 0.038

Yesb No 0.5/0.1 0.051 0.702 0.121

0.5/0.3 0.045 0.045 0.034

0.5/0.4 0.055 0.047 0.045

aData generated for a trait having a polygenic variance of 30 and a non-shared individual
variance of 65. Additive variance of the trait explained by each QTL is 1. The additive variance
of the trait explained by the gene–gene interaction is 3. Heritability of the trait is thus 0.05.
bData generated for a trait having a polygenic variance of 30 and a non-shared individual
variance of 65 according to the following model: E½YijjG1ij;G2ij� ¼ m+1:5G1ij+1:5G2ij+2G1ijG2ij: The
trait population mean in stratum 1 is 10 and in stratum 2 is 1.
cBold values indicate elevated type I errors. An elevated type I error is defined as a type I error

were 0.05 is smaller than the lower bound of the 95% confidence interval (p̂� 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05�0:95

1000

q
,

where p̂ is the estimated type I error).
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Figure 1 Power and type I error rates (simulation setting 1: h2¼0.05, no population stratification, main effects present) with and without (all) parental

genotypes missing as a function of the degree of LD between the markers and QTLs. D¢¼0 results in type I error rates.
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Figure 2 Power and type I error rates (simulation setting 2: h2E0.1, no population stratification, main effects present) with and without (all) parental

genotypes missing as a function of the degree of LD between the markers and QTLs. D¢¼0 results in type I error rates.
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Figure 3 Power and type I error rates (simulation setting 3: h2¼0.05, no population stratification, no explicit main effects) with and without (all) parental

genotypes missing as a function of the degree of LD between the markers and QTLs. D¢¼0 results in type I error rates.
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stratification, main effects o interaction effect) as a function of the degree of LD between the markers and the QTLs. D¢¼0 results in type I error rates.
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and FAM-MDR, we notice again that the joint epiQTDT has the best
performance, due to the large main effects of the QTLs that are present
in setting 4 and 5. When comparing FAM-MDR and epiQTDT, we
conclude now that epiQTDT outperforms FAM-MDR (in both
settings). The difference in performance is larger when the population
stratification is more severe. The inflation of the type I error rate of
FAM-MDR is more prominent in case of severe population stratifica-
tion. In addition, we observe in Figure 4 that the power for the test for
population stratification remains constant for varying values of D¢ and
decreases when the population stratification is less severe.

Finally, in Table 2 we show some results about the bias of the
estimates for the between-family components included in model (4).
We can clearly see that the estimates for all within-family components
are unbiased, whereas the estimates for the between-family compo-
nents are biased (when D¢¼1 and the markers coincide with the
QTLs). Table 2 also contains power results for the test for population
stratification. It shows that our proposed test has adequate power to
detect (severe) population stratification.

We note that detailed results of all simulations can be found in
Supplementary Appendix C.

APPLICATION TO HYPERTENSION DATA

To illustrate the performance of epiQTDTon a real-life data set, we use
a hypertension data set from the FLEMENGHO study. The FLEMEN-
GHO study is a collection of surveys with data on families in an area
of Northern Belgium between 1985 and 1999 (7501 subjects). We refer
to Staessen et al14 for more details about the study.

In Staessen et al14 and Li et al15, gene–gene interactions between
markers from the angiotensin-converting enzyme gene (ACE, chro-
mosome 17), the a-adducin gene (ADD1, chromosome 4) and the
aldosterone synthase gene (AS, chromosome 8) are published. The
purpose of our analysis is to identify these gene–gene interactions with
our new methodology and to investigate whether novel interactions
can be identified.

The genetic data from the FLEMENGHO study contain one marker
on each of these three genes (denoted by G_AS, G_ACE and
G_ADD1). The three markers are in Hardy–Weinberg equilibrium
(HWE) and have an MAF of 0.43 (G_AS), 0.49 (G_ACE) and 0.23
(G_ADD1). The observed outcomes are diastolic blood pressure (dbp)
and systolic blood pressure (sbp). Additional information is available
on age, sex, bmi and trt_ht (binary variable that indicates whether the
subject is under treatment for hypertension or not). Data preparation
for analysis includes Mendelian transmission checks. In addition, we
remove families where no genotype information is available for any of
the family members and eliminate families with one or two indivi-
duals only. The total number of retained subjects is 5714. This data
reduction does not influence our analysis, as the removed subjects do

not contribute to our test statistic (within-family component is 0).
The data reduction also speeds up the calculation of the IBD estimates.
To construct the IBD estimates, we use MERLIN16 and SIMWALK17 in
families where MERLIN was not able to estimate the IBD probabil-
ities. We obtain the IBD estimates independently (single-point estima-
tion) as the three genes are located on different chromosomes.

We test the three proposed gene–gene interactions with dbp as
outcome using epiQTDT and FAM-MDR. For epiQTDT, we perform
two tests: the first test is the application of epiQTDT using a mixed
model without covariates; the second test is based on a mixed model
where covariates are included. As there are a lot of missing data, we
apply ‘forward model building’ (with dbp as outcome) using the four
covariates to obtain an optimal model for the covariates. This leads to
the following model:

E½YijjSex; Bmi;Age;Trt ht� ¼m+c1Sex+c2Bmi+c3Age+c4Trt ht+c5Bmi

� Age+c6Bmi � Sex+c7Age � Trt ht

ð5Þ
For the second epiQTDT analysis, we add the within-family and
between-family component of the main effects and gene–gene inter-
action to this model and apply the test for the within-family
component of the gene–gene interaction. For both analyses, we use
a Bonferroni correction to correct for multiple testing.

For FAM-MDR, we also apply two different tests. In a first test, we
do not correct for covariates and apply FAM-MDR as before (and thus
again conditioning on main effects). In a second test, we correct for
covariates in the GRAMMAR procedure using model (5).

The results for the epiQTDT and FAM-MDR are shown in Table 3.
For FAM-MDR, we observe a significant gene–gene interaction
between G_AS and G_ADD1 (P-value: 0.024) when correcting for
covariates. Unfortunately, we do not know how reliable this result is,
as the GRAMMAR method did not converge when correcting for
covariates. We note that for FAM-MDR, all P-values are corrected for
multiple testing.

For the epiQTDT analysis, we notice two marginally significant
results: the gene–gene interaction between G_AS and G_ACE (P-value:
0.072 in the model with covariates) and the gene–gene interaction
between G_ACE and G_ADD1 (P-value: 0.087 in the model without
covariates). These results look promising but have to be interpreted
with care. For both detected gene–gene interactions, the results are not
consistent when looking at the models with and without covariates.
We detect a gene–gene interaction between G_ACE and G_ADD1
when we ignore covariates in the model. If we add covariates, the
gene–gene interaction disappears. A reason for this phenomenon
could be a gene–environment interaction between some of the
covariates and markers. If we investigate this further, we indeed find
a three-way interaction between G_ACE, G_ADD1 and sex (P-value:

Table 2 Bias in estimates for the between-family coefficients in model (4) when population stratification is present for nuclear families

containing two offspring (simulation setting 4)a

D¢b â1
c b̂1 â2 b̂2 â12 b̂12 Population stratificationd

0 53 (�0.01±0.7) 1000 (2.63±0.53) 42 (�0.03±0.7) 1000 (2.65±0.49) 51 (�0.04±0.7) 702 (�1.6±0.62) 999

0.5 148 (0.64±0.66) 999 (3.18±0.48) 177 (0.68±0.68) 999 (3.17±0.51) 141 (0.64±0.7) 226 (�0.8±0.62) 998

1 600 (1.48±0.66) 1000 (3.85±0.5) 604 (1.51±0.65) 1000 (3.88±0.5) 808 (2±0.71) 165 (0.64±0.61) 998

aData generated for a trait having a polygenic variance of 30 and a non-shared individual variance of 65 according to the following model: E½YijjG1ij;G2ij� ¼ m+1:5G1ij+1:5G2ij+2G1ijG2ij: The trait
population mean in stratum 1 is 10 and in stratum 2 is 1. The MAFs for all markers and QTLs are 0.5 in stratum 1 and 0.1 in stratum 2.
bD ¢ expresses the degree of LD between each of the markers and a QTL.
cPower results (on a total of 1000 replicates), mean and standard errors of the estimates corresponding to the model: E½Yijjw1ij; b1ij ;w2ij; b2ij;w12ij; b12ij� ¼ m+a1w1ij+b1b1ij+a2w2ij+b2b2ij+a12w12ij+b12b12ij
dPower results for the test for population stratification (on a total of 1000 replicates). The true main effects of the QTLs are 1.5 and the true epistasis effect is 2.
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0.0404). The opposite is observed for the gene–gene interaction
between G_AS and G_ACE. This interaction is not significant in the
model without covariates but becomes marginally significant after
inclusion of the covariates in the model (5).

DISCUSSION

In this paper, we propose a mixed model approach epiQTDT that tests
for gene–gene interactions in family data in the presence of linkage
while controlling for population stratification. It is applicable to any
type of family structure and can adjust for covariates.

In an extensive simulation study, we show that epiQTDT has good
power for traits with high and low heritabilities. When no population
stratification is present, we conclude from our simulation study that
FAM-MDR outperforms epiQTDT for most of the considered set-
tings. Only for low values of D¢ between the markers and the QTLs,
small power gains of epiQTDT are established. In this setting, the
power of epiQTDT is reduced as we correct for population stratifica-
tion that is not present. The split-up in within-family and between-
family information is not necessary. The power of epiQTDT is reduced
in this case because we split up the genotypic information. When all
parental genotypes are missing, epiQTDT and FAM-MDR show
comparable power results.

When comparing the joint epiQTDT to epiQTDT and FAM-MDR
in case of no population stratification, we observe that the joint
epiQTDT shows better results for simulation settings 1 and 2, where
both QTLs have a main and interaction effect on the trait (Figures 1
and 2). The joint epiQTDT is able to detect these main effects.
EpiQTDT and FAM-MDR only test for the interaction effect, thus
have less power in these settings. If the two QTLs only have a weak
main effect on the trait (simulation setting 3), epiQTDT and FAM-
MDR are more powerful than the joint epiQTDT. When all parental
genotypes are missing, the same trends are observed.

Finally, in Figure 4, we show that in the presence of population
stratification, epiQTDT outperforms FAM-MDR. The epiQTDT and
joint epiQTDT correctly address the population stratification and have
better power results than FAM-MDR.

The type I error rates of the epiQTDT and joint epiQTDT are always
close to 0.05 in the considered settings. We show that the test and
estimated effect of the within-family component of the gene–gene
interaction is unbiased in the presence of population stratification
(Tables 1 and 2). Several methods exist to test or control for

population stratification (eg, EIGENSTRAT18) but usually require a
lot (41000) of markers. If too few markers are available to use these
methods, epiQTDT offers a nice alternative.

Although the split up of the family information in a within-family
and between-family component guaranties unbiased results in the
presence of population stratification, there can still be a problem in
the covariance model. The IBD estimates can be biased by population
stratification when founder genotype data are missing.19 Another
problem in the covariance model is the use of the Hadamard product
of the IBD estimate matrices of the two loci. The product is only valid
when the two QTLs are unlinked (ie, on different chromosomes) or
when there is at least one informative marker between the QTLs in
case the latter are linked.20 At this point, it is not clear what the effect
of these issues on the performance of epiQTDT is, although we do not
observe elevated type I error rates in our simulated settings (eg, in the
presence of population stratification). We suspect that the influence
will be minor, as we are only correcting for linkage and not explicitly
testing for it.

Another important assumption of epiQTDT is the multivariate
normality assumption of the error terms in the applied mixed model.
If this assumption does not hold, conclusions can be biased. Several
solutions exist to solve this problem: for example, a permutation-
based solution,5 and in Diao and Lin21 a method is proposed that uses
an unspecified transformation function that is empirically estimated
from the data.

We conclude that epiQTDT shows promising results to detect gene–
gene interactions in the presence of linkage in particular in (candi-
date–gene) studies where too few markers are available to correct for
population stratification using standard methods. Supplementary
Information is available at the European Journal of Human Genetics’
website.
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