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Abstract
A monolayer of endothelial cells (ECs) lines the lumen 
of blood vessels and forms a multifunctional transduc-
ing organ that mediates a plethora of cardiovascular 
processes. The activation of ECs from as state of qui-
escence is, therefore, regarded among the early events 
leading to the onset and progression of potentially 
lethal diseases, such as hypertension, myocardial in-
farction, brain stroke, and tumor. Intracellular Ca2+ sig-
nals have long been know to play a central role in the 
complex network of signaling pathways regulating the 
endothelial functions. Notably, recent work has outlined 
how any change in the pattern of expression of endo-
thelial channels, transporters and pumps involved in the 
modulation of intracellular Ca2+ levels may dramatically 
affect whole body homeostasis. Vascular ECs may react 
to both mechanical and chemical stimuli by generating 
a variety of intracellular Ca2+ signals, ranging from brief, 
localized Ca2+ pulses to prolonged Ca2+ oscillations en-
gulfing the whole cytoplasm. The well-defined spatio-
temporal profile of the subcellular Ca2+ signals elicited 
in ECs by specific extracellular inputs depends on the 
interaction between Ca2+ releasing channels, which are 

located both on the plasma membrane and in a number 
of intracellular organelles, and Ca2+ removing systems. 
The present article aims to summarize both the past 
and recent literature in the field to provide a clear-cut 
picture of our current knowledge on the molecular na-
ture and the role played by the components of the Ca2+ 
machinery in vascular ECs under both physiological and 
pathological conditions.
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INTRODUCTION
It has long been known that an increase in intracellular 
Ca2+ concentration ([Ca2+]i) plays a key role in the intri-
cate network of  signal transduction pathways exploited 
by endothelial cells (ECs) to maintain cardiovascular ho-
meostasis[1]. Due to its strategic location at the interface 
between the vascular wall and bloodstream, the endothe-
lium is exposed to a myriad of  transmitters (released by 
autonomic and sensory nerves or platelets), circulating 
hormones, autacoids, cytokines, growth factors, and 
drugs, as well as to mechanical stimuli, such as pulsatile 
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stretch, shear stress, and changes in the local osmotic 
pressure[2,3]. Moreover, vascular ECs might serve as ther-
mosensors and modulate peripheral vasoconstriction 
or vasodilation depending on the environmental tem-
perature[4]. A remarkable blend of  membrane receptors, 
transporters, and ion channels, which are located both on 
the plasma membrane and within the intracellular Ca2+ 
reservoirs (namely, endoplasmic reticulum, lysosomes, 
and Golgi), may be utilized by ECs to detect and react 
selectively to the incoming stimulus with the most suit-
able Ca2+ signal[1,4-8]. A number of  excellent reviews have 
recently outlined features and activation mechanisms of  
Ca2+-permeable channels in vascular endothelium[1,7,8]. 
The present article will survey the Ca2+ signaling toolkit 
whereby ECs shape their Ca2+ responses to chemical 
and mechanical stimuli by summarizing the most recent 
developments in the field. Recent work has shown that 
endothelial progenitor cells (EPCs), a subpopulation of  
mononuclear cells that are mobilized from bone marrow 
upon an ischemic insult, impinge on Ca2+ signals to pro-
liferate, traffic to the injured tissue, and form capillary-
like structures. However, we refer to a recent review from 
our laboratory for an exhaustive description of  our cur-
rent knowledge about the functional role and the molecu-
lar underpinnings of  Ca2+ signalling in human EPCs[9].

Ca2+ SIGNALLING IN VASCULAR ECs
In resting, i.e., non-stimulated cells, [Ca2+]i is very low 
(around 100 nmol/L) due to the activity of  various ac-
tive mechanisms that remove Ca2+ out of  the cytosol[10]. 
More specifically, the plasma membrane Ca2+-ATPase 
(PMCA) and the sarco-endoplasmic reticulum Ca2+-
ATPase (SERCA) extrude Ca2+ by direct ATP hydrolysis, 
while the Na+/Ca2+ exchanger (NCX) clears cytosolic 
Ca2+ by exploiting the Na+ gradient across the plasma 
membrane[10]. An increase in [Ca2+]i up to 1 µmol/L is 
the key signal to activate vascular ECs following recruit-
ment of  either tyrosine-kinase linked receptors (TRKs) 
or G-protein coupled receptors (GPCRs) by growth fac-
tor and vasoactive agents, respectively[1,6,7,9,11,12]. The endo-
thelial Ca2+ response may comprise an initial Ca2+ spike, 
shaped by Ca2+ mobilization from the intracellular Ca2+ 
reservoir, followed by an intermediate plateau level due to 
Ca2+ entry across the plasma membrane[6,7,9]. However, at 
low-dose agonist stimulation, the Ca2+ signal may adopt 
an oscillatory pattern driven by the interplay between 
intracellular Ca2+ release and Ca2+ influx from the extra-
cellular space[1,6,13]. Responding cells with an intermedi-
ate behavior between the extremes described above can 
also be found. Accordingly, in most microvascular ECs, 
chemical stimulation does not elicit a remarkable Ca2+ 
inflow and results in either a transient Ca2+ spike or local-
ized, high frequency Ca2+ oscillations, which are attribut-
able to Ca2+ mobilization from the intracellular store[14-16]. 
Conversely, when the Ca2+ signal is uniquely modelled 
by Ca2+ entry, a sustained and monotonic increase in 
[Ca2+]i occurs[17,18]. Mechanical stimulation may also affect 

vascular endothelium by causing an elevation in [Ca2+]i. 
Indeed, exposure of  ECs to fluid shear stress, pulsatile 
stretch, and cell swelling may evoke both Ca2+ discharge 
from intracellular Ca2+ pools and Ca2+ inflow through 
mechanosensitive channels on the plasmalemma[4,7,19]. Re-
cent studies have argued that ion channels serve as direct 
sensor of  mechanical stimuli, but rather as a relay that is 
engaged by a yet to identify upstream receptor[19]. Unlike 
the Ca2+ response to extracellular ligands, mechanosensi-
tive Ca2+ signals normally lack the biphasic kinetics and 
exhibit either a transient[20,21] or an oscillatory pattern[21-25]. 
In a few cases, a dose-dependent stepwise elevation in 
[Ca2+]i was observed in cultured ECs exposed to laminar 
shear stress[24,26,27]. The contact between air microbubbles 
and cultured ECs may also result in an intracellular Ca2+ 
wave[28]. Finally, an increase in [Ca2+]i arises in vascular 
ECs upon contact with circulating leukocytes[29] or metas-
tatizing tumor cells[30,31].

Ca2+ release from intracellular 
stores
The endoplasmic reticulum (ER) houses the largest 
intracellular Ca2+ reservoir in ECs, amounting to ap-
proximately 75% of  the total cellular storage capacity[32]. 
A recent ultrastructural analysis has revealed that the 
endothelial ER consists of  tubulovesicular structures that 
are interconnected at various sites to form a widespread 
network within the ECs. In the periphery of  the cells, 
they lie immediately adjacent to the plasma membrane 
and the caveolae at the apical, lateral, and basal surfaces 
of  the cells and occasionally run closely parallel to the 
plasma membrane itself[33-35]. Intriguingly, the ER-plas-
malemma coupling is tighter (around 8 nm) in macrovas-
cular than in microvascular (around 87 nm) ECs[33]. As 
Ca2+ entry may be governed by the physical interaction 
between an ER Ca2+-sensor and the plasmalemmal Ca2+-
permeable channels (see below), this feature might help 
explain why microvascular ECs normally lack the plateau 
phase[33]. In the middle of  the cells, the tubulovesicular 
structures may be in close contact with the mitochondria, 
sometimes enveloping them[34-36], and are in continuity 
with the nuclear membrane[34]. Ca2+ is sequestered into 
the ER lumen, where it attains a concentration of  about 
100-500 µmol/L, by high-affinity (Km around 1 µmol/L) 
SERCA pumps, which can be inhibited by pharmaco-
logical agents, such as the marine toxin thapsigargin and 
cyclopiazonic acid (CPA)[37,38]. Inhibition of  the SERCA 
pump with either drug leads to Ca2+ store depletion, 
which indicates that ER membrane is constitutively leaky 
to Ca2+. Candidates to mediate the leak channel in a vari-
ety of  cell types include polycystin-2, presenilins, and the 
ribosome-translocon complex[37]. No study has, however, 
hitherto addressed the molecular underpinnings of  pas-
sive Ca2+ leak from ER in ECs[1]. Calreticulin represents 
the major Ca2+ buffer within the ER lumen in all non-
muscle cells[38], as well as in vascular endothelium[34,35]. 
Maintenance of  a constant luminal level of  Ca2+ in ECs 
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is also fulfilled by a number of  additional Ca2+-binding 
proteins, including calnexin, glucose-regulated protein 
(GRP)-78, and GRP-94[38]. All these Ca2+ buffers also 
serve as molecular chaperones and their protein folding 
activity is regulated by ER Ca2+ concentration ([Ca2+]ER)[38]. 
Monitoring of  intraluminal Ca2+ levels in ECs transiently 
transfected with a cameleon-based Ca2+ probe targeted 
to the ER, D1ER, has shown that, in the presence of  
extracellular Ca2+, extracellular autacoids do not induce 
a massive decline in [Ca2+]ER

[39-42]. Consequently, Ca2+-
dependent protein folding is largely maintained during 
physiological cell stimulation and does not activate any 
stress signaling pathway[38,42]. Conversely, a rapid drop 
in ER Ca2+ content occurs when ECs are stimulated 
in the absence of  extracellular Ca2+ entry[43]. Owing to 
the large electrochemical gradient existing between ER 
lumen and the cytosol, rapid release of  Ca2+ from the 
intracellular organelle occurs upon the opening of  two 
largely homologous receptor types on its membrane, 
which are named for their affinity for either the cell me-
tabolite inositol-1,4,5-trisphosphate (InsP3) or the plant 
alkaloid ryanodine[1,6,11]. Ryanodine receptors (RyRs), 
in particular, may be engaged by either a local increase 
in intracellular Ca2+ levels trough a process called Ca2+-
induced Ca2+ release (CICR) or the second messenger, 
cyclic ADPribose (cADPr)[44-48]. The remaining 25% of  
the total stored Ca2+ in ECs is loaded in non-ER intracel-
lular pools, mainly mitochondria, which contribute to 
agonists-induced intracellular Ca2+ signaling[32,36,40,41]. Ca2+ 
enters the organelles through a uniporter, present in the 
inner membrane, and can be exported via the stimulation 
of  a mitochondrial NCX (NCXmito)[36,41], thus creating a 
Ca2+ cycling system for the control of  mitochondrial Ca2+ 
concentration that, under resting conditions, is equal to 
around 200 nmol/L in ECs[49]. Mitochondria give rise to 
an impressive network in ECs, which is in tight apposi-
tion with either Ca2+ release channels on the ER or Ca2+-
permable pathways, mainly store-operated Ca2+ channels 
(SOCs), on the plasma membrane[34-36]. Acidic, lysosome-
like vesicles may also serve as Ca2+ storage organelles in 
vascular endothelium[50,51]. Unlike the large network that is 
the ER, lysosomes constitute relatively small, discrete and 
mobile vesicles with a limited Ca2+ content, which can be 
discharged by NAADP[50,51]. An attempt to quantify the 
relative lysosomal Ca2+ content suggested the latter to 
amount to around 79% of  the ER Ca2+ pool[52]. Such a 
value, which is at odds with a previous analysis of  the rel-
ative capacities of  intracellular Ca2+ storage organelles[32], 
does not truly reflect lysosomal Ca2+ levels. Indeed, unlike 
the large network that is the ER, lysosomes generally con-
stitute relatively small, discrete and mobile vesicles with a 
limited Ca2+ content[53]. However, such acidic stores may 
be situated very close to the Ca2+-releasing channels on 
ER. As a consequence, NAADP induces scattered, local 
Ca2+ signals that are capable of  generating a global Ca2+ 
wave only by triggering further Ca2+ mobilization from 
InsP3Rs and/or RyRs via the CICR mechanism[53] (see 
below). Along with InsP3, cADPr, and NAADP, ECs 

may liberate intracellular Ca2+ in response to other sec-
ond messengers, such as arachidonid acid (AA)[54], whose 
intracellular target remains to be elucidated, and reactive 
oxygen species (ROS), such as H2O2

[55,56] and superox-
ide anion (O2

.-), which directly evoke Ca2+ release from 
InsP3Rs[57]. As to the sphingolipid-derived messenger, 
sphingosine-1-phosphate (S1P), that may elicit intracellu-
lar Ca2+ release independently from InsP3Rs and RyRs[10], 
it has been shown that, when endogenously synthesized 
in autacoids-stimulated ECs, it modulates SOCs, but does 
not stimulate Ca2+ mobilization[58]. In blood vessels, how-
ever, plasma S1P may be produced and released by eryth-
rocytes and platelets and induce Ca2+ mobilization in ECs 
upon binding to the Gi protein-coupled S1P1 receptor[59]. 
The latter, in turn, recruits phospholipase C (PLC) to 
generate InsP3 and, thus, stimulates InsP3Rs and activates 
SOCs[60,61].

Phospholipase C, InsP3, and InsP3-receptors
The intracellular second messenger InsP3 liberates Ca2+ 
ions stored within the ER and, in ECs, is synthesized fol-
lowing activation of  either GPCRs or TRKs[1,6,11,62]. InsP3 
is a highly diffusible hydrophilic messenger that is pro-
duced by the cleavage of  phosphatidylinositol-4,5-bispho-
sphate (PIP2). This reaction is catalyzed by a family of  
PLC isozymes, which, depending on the subtype, can be 
activated by G-proteins (Gq/11), phosphorylation or Ca2+ 
itself[63,64]. The other product of  PIP2 hydrolysis is diacyl-
glycerol (DAG), which stays within the plasma membrane 
where it either activates protein kinase C (PKC) or gates 
members of  the transient receptor potential (TRP) ca-
nonical (TRPC) subfamily of  Ca2+-permeable channels[10]. 
The 13 mammalian PLC isozymes (excluding alterna-
tively spliced forms) identified to date are all single poly-
peptides and can be divided into five types: PLCβ (β1-4), 
PLCδ (δ1-4), PLCγ (γ1 and γ2), PLCε, PLCζ, and PLCη 
(η1 and η2)[63,64]. The amino acid sequences of  PLC iso-
zymes are relatively nonconserved with the exception of  
two regions, known as the X and Y domains, that form 
the catalytic core and are associated to various combina-
tions of  regulatory domains that are common to many 
other signalling proteins. In more detail, in γ-type iso-
zymes, this region contains two additional Src homology 
2 (SH2) domains and one SH3 domain, which bind phos-
phorylated tyrosine residues and proline-rich sequences, 
respectively[63,64]. All PLC isoforms, with the exception of  
PLCε, are endowed with at least one potential polyphos-
phoinositides binding site, the pleckstrin homology (PH) 
domain, which is located in the NH2-terminal region 
preceding the X domain[63,64]. Moreover, the COOH-
terminal region possesses a C2 domain which confers a 
strong Ca2+ sensitivity to the enzymatic activity of  PLC. 
The C2 domain is, however, absent in the γ-type[63,64]. In 
this view, four EF domains are located between the PH 
and X domains of  all PLC subclasses but their functional 
significance is yet to be fully elucidated[63,64]. PLCε, finally, 
exhibits a NH2-terminal Ras guanine nucleotide exchange 
factor (RasGEF)-like domain and at least one COOH-
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terminal Ras binding (RA) domains that are involved in 
its activation[63,64]. ECs express a variety of  PLC isoforms. 
PLCβ1 is enlisted following GPCR binding to their spe-
cific agonists, which include a plethora of  circulating au-
tacoids: acetylcholine, ATP, ADP, thrombin, bradykinin, 
serotonin, angiotensin II, and anandamide[1,7,65]. Receptor 
occupancy results in the activation of  the pertuxis toxin 
(PTX)-insensitive heterotrimeric Gq/11 protein family. As 
a consequence, the GTP-bound Gαq/11 subunit dissoci-
ates from the Gβγ dimer and activates the enzyme[1,7,63,64]. 
A remarkable exception is provided by the proteinase-ac-
tivated receptor 1, which utilizes both Gαq

[66,67] and Gαo
[68] 

to trigger Ca2+ signals in thrombin-stimulated ECs[69], 
albeit only the former leads to InsP3 production[70]. The 
Gαo-dependent activation is mediated by the Gβγ dimer[68], 
which may recruit all PLC-β subtypes with the exception 
of  the β4 isoform[63,64]. This mechanism is also involved 
in PLCβ engagement by the PTX-sensitive family of  Gi 
proteins[63,64], as observed in ECs exposed to S1P[59-61]. 
PLCγ1 is the main γ-type expressed in ECs[9], with PLCγ2 
being primarily restricted to cells of  the hematopoietic 
lineage[71]. PLCγ1 is the isozyme mediating the increase 
in [Ca2+]i elicited in vascular endothelium by growth fac-
tors, such as epidermal growth factor (EGF)[72], vascular 
endothelial growth factor (VEGF)[73-75], platelet-derived 
growth factor (PDGF)[76], and basic fibroblast growth 
factor (bFGF)[73,77]. Upon growth factor binding to its 
cognate receptor, PLC-γ1 is recruited to the activated 
receptors via SH2-domain-mediated phosphotyrosine 
interaction and then subjected to phosphorylation by re-
ceptor tyrosine kinase[63,64]. It has, however, been reported 
that PLC-γ1 may be also stimulated by GPCR in ECs. 
For instance, it may associate with the COOH-terminal 
intracellular domain of  the bradykinin BR receptor (B2), 
which results in a transient phosphorylation and InsP3 
production[78,79]. On the other hand, VEGF has been re-
cently shown to elicit PLCβ3 lipase activity upon binding 
to VEGFR-2 (KDR), which in turn physically interacts 
with Gq/11 proteins to induce Gβγ dissociation from Gα 
subunits[80]. Gβγ may thus stimulate PLCβ3 to generate 
InsP3 and trigger an intracellular Ca2+ wave[81]. PLCδ1 
has been so far detected in a limited number of  vascular 
beds, although its ability to evoke InsP3-dependent Ca2+ 
mobilization has been probed only in human umbilical 
vein ECs (HUVECs) transfected with PLCδ1-containing 
plasmids[82]. While there is no report of  PLCη expres-
sion in ECs and PLCζ is present almost exclusively in 
mammal sperms[6], PLCε may promote angiogenesis in 
a mouse model of  adenocarcinoma, but its role in Ca2+ 
signaling has not been explored[83]. It is, however, remark-
able that β2-adrenergic excitation results to InsP3-depen-
dent Ca2+ discharge upon recruitment of  the exchange 
protein activated by cAMP-1 (Epac-1)[84], which has long 
been known to stimulate PLCε[64]. In agreement with 
PLC activation by both GPCRs and TKRs, InsP3 produc-
tion has been evaluated in a variety of  stimulated ECs[1]. 
In [3H]myoinositol-labeled cultured cells, both thrombin 
and histamine-induced increases in InsP3 occurred in less 

than 15 s, and were temporally correlated with the Ca2+ 
signals[70,85-87]. Bradykinin and ATP also evoked an eleva-
tion in InsP3 concentration, which attained a peak value 
at 15 s after agonist application and then decayed to a 
plateau level with kinetics similar to those of  the ensuing 
Ca2+ signals[70,88,89]. The same methodology revealed that 
platelet activating factor (PAF)-induced InsP3 formation 
is maximal after 1 min of  stimulation[90]. Similarly, a ra-
dioreceptor assay of  InsP3 accumulation in ECs revealed 
that VEGF induced a rapid increase in InsP3 levels, which 
achieved a peak after 4 min of  exposure[91]. Due to the 
objective difficulties entailed by these pioneering mea-
surements, it is unlikely that they truly reflect the dynam-
ics of  agonists-induced InsP3 accumulation in vascular 
ECs. A more recent investigation, based on an innovative 
analytical method, revealed that InsP3 levels peak within 
< 1 s from ATP stimulation and then rapidly subside 
due to degradation to lower order inositol phosphates[92]. 
Besides agonist stimulation, InsP3 production in vascular 
ECs may be stimulated by reactive oxygen species (ROS), 
such as O2

.-[93] and H2O2
[94]. 

In addition to extracellular agonists, mechanical 
stimuli may induce InsP3 formation in vascular endothe-
lium. Cyclic strain was found to elicit a transient spike 
of  immunoreactive InsP3 in bovine aortic ECs (BAECs): 
peak levels occurred 10 s after the initiation of  strain and 
decayed to control values 25 s later[95]. Moreover, BAEC 
exposure to shear stress induced a biphasic increase in in-
tracellular InsP3 concentration, whereas a transient InsP3 
peak arising within the first 15 s was followed by a major 
peak observed at 15 min after the onset of  the stimulus. 
InsP3 levels returned to pre-shear stress level within the 
following 15 min[96]. Recent studies have demonstrated 
that the vascular system is endowed with mechanosensi-
tive GPCRs translating mechanical stimuli into an InsP3-
dependent Ca2+ mobilization[97]. Consistently, shear stress 
induces bradykinin B2 receptor to undergo a conforma-
tional transition that triggers the downstream signaling 
cascades, i.e., InsP3 and DAG production, even in the 
absence of  the agonist[97,98]. The kinetics of  InsP3 synthe-
sis under these conditions, however, has not been deter-
mined.

Once produced by PLC isozymes, InsP3 diffuses into 
the cytosol and evokes a short-lasting Ca2+ efflux from 
ER[99]. InsP3-induced Ca2+ mobilization from ER has been 
characterized both in saponin-permeabilized ECs loaded 
with Ca2+ and intact ECs perfused with caged InsP3 via a 
patch pipette[45,99-101]. The release of  Ca2+ by this second 
messenger displayed an EC50 around 1 µmol/L and was 
independent of  InsP3 metabolism[99,101]. InsP3 acts on a 
tetrameric receptor characterized by a very long cytosolic 
NH2-terminal tail that contains the InsP3-binding site, 
which has been crystallized recently[102]. Three InsP3 re-
ceptor subtypes have been identified that may assemble 
to form either homo- or hetero-tetrameric Ca2+-releasing 
channels. InsP3 binds to the very long cytosolic NH2-ter-
minal tail, while the proper Ca2+ channel is located in the 
COOH-terminal portion of  the molecule, which contains 
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the sixth transmembrane™ domain motif  and the loop 
connecting helices 5 and 6 folding back into the mem-
brane[102]. The molecular mass of  each InsP3R isoform 
is around 260 kDa[103,104], which indicates that the native 
protein is around 1 MDa[102]. The Hill coefficient for 
InsP3-elicited Ca2+ release is around 3.8 and suggests that 
InsP3 binding to all subunits is required to induce chan-
nel opening[99]. All InsP3R subtypes have been detected 
in ECs (Table 1), both under culture conditions[104-106] and 
in intact vessels[107,108]. The expression pattern of  InsP3R 
isoforms in both freshly isolated and cultured ECs is: In-
sP3R-3 > InsP3R-2 > InsP3R-1[106]. This feature becomes 
even more remarkable in proliferating cells, which sug-
gests that distinct isoforms may impact on different as-
pects of  EC physiology[106]. In this view, recent work has 
revealed that InsP3Rs forms mostly, albeit not exclusively, 
homotetramers in vascular ECs[109]. The subcellular local-
ization of  InsP3R subtypes may vary with cell isolation 
and culture. In cultured ECs, InsP3R-1 is mainly local-
ized to the ER, InsP3R-2 resides within the nucleus, and 
InsP3R-3 is detected at the perinuclear region[104], while, 
in the intact vascular wall, all isoforms are tightly associ-
ated to F-actin fibers and InsP3R-1 and InsP3R-2 lie along 
with InsP3R-3 near the edge of  the nucleus[107]. None of  
the three subtypes has been detected in close association 
with the plasma membrane[104,107], although some studies 
have reported a protein with high homology to the In-
sP3R-1 in endothelial caveolae via binding to F-actin[34,110]. 
Such plasmalemmal InsP3 might mediate the InsP3-gated 
Ca2+ entry originally described by Vaca and Kunze[111]. 
Moreover, InsP3R-1 may be associated to the EC side 
of  myoendothelial junctions in vivo and thus plays a key 
role in transmitting intracellular Ca2+ waves from vascular 
endothelium to the adjoining smooth muscle cell layer[108]. 
InsP3R expression may be altered under pathological con-
ditions, such as hypertension, whereas ECs isolated from 
spontaneously hypertensive rats display an increase in In-
sP3R-2 transcripts and a decrease in InsP3R-1 mRNA[112]. 
Moreover, InsP3R levels augment as a consequence of  

ethanol metabolism and oxidative stress[113]. InsP3R gat-
ing is regulated by both InsP3 and Ca2+. InsP3 is able to 
activate InsP3Rs when the surrounding Ca2+ is between 
50 nmol/L and 200 nmol/L, whereas higher Ca2+ levels 
inhibit Ca2+ release even at saturating InsP3 concentra-
tions[102]. Such a biphasic dependence on ambient Ca2+ is 
due to two independent Ca2+-binding sites that mediate 
channel activation or closure, respectively. More specifi-
cally, InsP3 tunes InsP3R sensitivity to cytosolic Ca2+: it 
favors Ca2+ binding to the stimulatory site, which is the 
trigger for pore opening, and inhibits Ca2+ binding to the 
inhibitory one[102,114]. Consistent with this model, InsP3-
induced Ca2+ mobilization is enhanced at lower (200 
nmol/L) than at higher (2 µmol/L) Ca2+ concentrations 
in saponin-permeabilized BAECs[99,115]. The large modu-
latory domain between the InsP3-binding site and the 
channel-forming region presents consensus sequences for 
numerous protein kinases, including PKC, protein kinase 
A (PKA), cGMP-dependent protein kinase (PKG), Akt 
kinase, calmodulin-dependent protein kinase II (CaMKII), 
tyrosine kinases, and cyclin-dependent kinase 1/cyclin 
B (cdc2/CyB) complex[102]. Additionally, InsP3R channel 
activity is sensitive to a variety of  modulators, includ-
ing ATP, redox balance, and luminal Ca2+, and interact-
ing proteins, such as calmodulin, Ca2+-binding proteins 
(CaBPs), chromogranins, InsP3R binding protein released 
with inositol-1,4,5-trisphosphate (IRBIT), RACK1 and 
Gβγ, ERp44, FKBP12, cytochrome C, Bcl-2 proteins, 
huntingtin, adapter proteins (ankyrin, homer, protein 
4.1N), and proteases (caspase-3 and calpain)[102]. As to 
vascular ECs, PKC and CaMKII block InsP3-dependent 
Ca2+ release via ATP-dependent phosphorylation of  
InsP3Rs[116-118]. Conversely, PKA and mammalian target 
of  rapamycin (mTOR) phosphorylate InsP3Rs to render 
them more sensitive to ligand binding and, thereby, in-
crease the velocity of  InsP3-dependent Ca2+ waves[118]. In 
addition, an InsP3R-ankyrin complex has been detected 
in cells exposed to hyaluronic acid (HA). Such stimula-
tion favors the ankyrin-mediated recruitment of  ER In-
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Table 1  Pattern of expression of InsP3Rs, RyRs and TPCs in vascular endothelial cells as detected by reverse transcription/
polymerase chain reaction, immunostaining for cultured cells, immunohistochemistry, Western blotting, and immunoprecipitation

InsP3R1 InsP3R 2 InsP3R 3 RyR1 RyR2 RyR3 TPCs1-2

Human brain microvascular ECs[113] +(RT-PCR, WB, IC)
Human umbilical vein ECs[106] +(RT-PCR)  +(RT-PCR)   +(RT-PCR)
Human microvascular dermal ECs[213] +(IP)
Human mesenteric artery ECs[127] +(RT-PCR) -(RT-PCR) -(RT-PCR) +(RT-PCR)
EA.hy926 cells[51,127] +(RT-PCR) -(RT-PCR) -(RT-PCR) +(RT-PCR) +(WB)
Mouse cremasteric ECs[108]        +(WB, IC)          +(WB, IC)          +(WB, IC)
Rat hippocampus ECs[413]    -(IHC)     +(IHC)      -(IHC)
Rat aortic ECs[106,107] +(RT-PCR, IC, IHC) +(RT-PCR, IC, IHC) +(RT-PCR, IC, IHC)
Rat mesenteric artery ECs[107] +(RT-PCR, IC, IHC) +(RT-PCR, IC, IHC) +(RT-PCR, IC, IHC)
Rat basilar artery ECs[107] +(RT-PCR, IC, IHC) +(RT-PCR, IC, IHC) +(RT-PCR, IC, IHC)
Rat adrenal medulla microvascular ECs[106] +(RT-PCR)   +(RT-PCR)   +(RT-PCR)
Rat splenic sinus ECs[35] -(IC) -(IC) +(IC)
Bovine aortic ECs[104,109]        +(WB, IC)          +(WB, IC)          +(WB, IC)
Ovine uterine artery ECs[414] +(IP)

RT-PCR: Reverse transcription/polymerase chain reaction; WB: Western blotting; IC: Immunostaining for cultured cells; IHC: Immunohistochemistry; ISH: 
In situ hybridization; IP: Immunoprecipitation; ECs: Endothelial cells.



sP3Rs into plasmalemmal caveolae; an event that triggers 
Ca2+ release independently on agonist binding[119]. InsP3R 
modulation in ECs may be further accomplished by the 
gasotransmitters, NO and H2S. While the former induces 
Ca2+ release likely via receptor S-nitrosylation[120,121], the 
latter inhibits InsP3-induced Ca2+ discharge probably 
through receptor S-sulfhydration[122,123]. An additional 
post-translational modification of  endothelial InsP3Rs is 
provided by S-glutathionylation, which might sensitize 
the receptor to the basal level of  InsP3

[124]. In this view, 
the InsP3R may be directly regulated by ROS, which may 
oxidize the two highly conserved thiol groups located in 
the COOH-tail of  the protein[102]. It has, indeed, been 
shown that Ca2+ release from endothelial InsP3Rs may be 
evoked by H2O2

[55-57], which may increase the sensitivity 
of  the intracellular Ca2+ pool to InsP3

[56]. 

RyRs and cADPr
Although InsP3R is the predominant ER Ca2+-releasing 
channels in ECs, RyR-dependent signalling has also been 
reported in vascular endothelium. Three RyR isoforms 
have been identified (RYR-1, RyR-2, RyR-3) which as-
semble as homo-tetrameric channels consisting of  four 
560-kDa polypeptides[125]. They possess a very large 
cytosolic NH2-domain comprising around 90% of  the 
receptor amino acid sequence. This region is part of  a 
macromolecular complex and serves as a scaffold for 
numerous regulatory or modulatory proteins, such as 
calmodulin, calstabin, sorcin, and presents binding sites 
for cytosolic ions and modulators, including Ca2+, Mg2+, 
and adenine nucleotides. RyRs may also be modulated 
PKA- and CamKII-mediated phosphorylation, may un-
dergo oxidative/nitrosative modifications, and are subject 
to pH modulation[126]. In addition, RyRs are modulated 
by SR luminal Ca2+ via a signaling pathway that includes 
calsequestrin (CSQ), triadin and junction[126]. Comparative 
studies carried out by either single-cell reverse transcrip-
tion/polymerase chain reaction (RT-PCR) or immuno-
cytochemistry have revealed that ECs mainly express 
RyR-3[34,127], but not RyR-1 and RyR-2 (Table 1) . Im-
munogold labeling with anti-RyR indicates that RyR-3 is 
located in the nuclear membranes, the ER tubulovesicular 
system, and the cristae membrane of  mitochondria[34]. In 
the light of  the ability of  RyRs to modulate sub-plasma-
lemmal Ca2+ signaling in ECs (see below), it is remark-
able that RyR-3 is largely expressed in the ER structures 
facing the plasma membrane[34]. Ca2+ release from RyRs 
in ECs, as well as in both excitable and non-excitable 
cells[126], is triggered by CICR[44,45], that occurs when 
1-10 µmol/L Ca2+ nearby the receptor and is prevented 
when Ca2+ is 1-10 mm[126]. RyRs may be pharmacologi-
cally activated by the methylxanthine derivative, caffeine, 
which sensitizes the receptor to resting Ca2+ levels, and 
by ryanodine, which binds to and locks the receptor in 
an open state[128]. In a number of  ECs from different vas-
cular districts, caffeine/ryanodine may evoke either fast 
Ca2+ transients[46,129,130] or slow Ca2+ release from ER[131,132]. 
Other studies, however, failed to report any increase in 

bulk [Ca2+]i in ECs exposed to either caffeine[72,130] or ry-
anodine[132,133]. Similarly, RyR contribution to agonists-in-
duced Ca2+ signals has been detected in some[44,47,132,134,135], 
but not all ECs[72,136,137]. RyR-dependent signaling might 
be masked by SERCA activity, so that Ca2+ ions liberated 
into the cytosol by RyR opening are immediately seques-
tered into the InsP3-sensitive region of  ER lumen by its 
Ca2+-ATPase[130]. In addition, monitoring of  subplasma-
lemmal and perinuclear Ca2+ levels revealed that RyR-
sensitive Ca2+ mobilization may selectively occur beneath 
the plasma membrane, but not in the bulk cytosol[133]. In-
deed, RyRs may be part of  a subplasmalemmal Ca2+ con-
trol unit (SCCU), as confirmed by their localization in the 
ER membrane facing the cytosolic leaflet of  the plasma 
membrane (see above). The SCCU enables a functional 
coupling between RyRs expressed on superficial ER and 
plasmalemmal NCX, so that Ca2+ released from RyRs is 
vectorially pumped out by NCX without affecting [Ca2+]i. 
Under these conditions, RyR contribution to endothe-
lial Ca2+ signaling may be appreciated only upon NCX 
inhibition[133,138,139] or by monitoring the local activation 
of  large conductance Ca2+-dependent K+ channels[140,141]. 
Besides CICR, RyRs may be stimulated by cADPr[10], a 
second messenger that can be generated in response to 
either agonist stimulation[142] or oxidative stress through 
the synthesis of  H2O2

[143,144]. The ADP ribosyl cyclase, 
CD38, which is located both on the cell surface and on 
intracellular membranes, catalyzes nicotinamide adenine 
dinucleotide (NAD) conversion into cADPr by a cycliza-
tion reaction occurring at neutral pH[142]. cADPr, in turn, 
acts by displacing the FK506 binding protein 12 (FKBP12 
or calstabin1) or its related isoform FKBP12.6 (FKBP12.6 
or calstabin2) from RyRs[48], which increases their open 
probability and leads to Ca2+ release[125]. A recent study 
has demonstrated that bradykinin induces Ca2+ release 
by stimulating cADPr synthesis and RyR activation in 
human coronary artery ECs[47]. Moreover, genetic abla-
tion of  FKBP12/12.6 from endothelial RyRs caused an 
intracellular Ca2+ leak associated with the impairment 
of  NO production and endothelial dysfunction[145,146]. 
It is, however, yet to demonstrate that cADPr triggers 
Ca2+ release by dissociating FKBP12/12.6 from RyRs in 
ECs. It should also be noticed that a number of  studies 
have failed to find direct activation of  RyRs by cADPr, 
as discussed previously[48]. For instance, cADPr has been 
reported to promote the activity of  the SERCA pump, 
thereby increasing the rate of  ER refilling and Ca2+ re-
lease via the luminal excitation of  RyRs[142]. Mechanical 
stimulation may also lead to RyR activation in vascular 
ECs. More specifically, shear stress may induce oscil-
lations in [Ca2+]i by stimulating the interplay between 
mechano-sensitive Ca2+ influx and RyRs through the 
CICR mechanism[25].

NAADP and two-pore channels
NAADP is the newest and most efficacious member of  
the family of  Ca2+-mobilizing messengers, being active al-
ready at nanomolar concentrations[53]. NAADP is synthe-
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sized from NADP by CD38 in a base-exchange reaction 
occurring at acidic pH and targets acidic organelles, such 
as the endolysosomal Ca2+ storage compartment[53,142], 
although other signaling pathways may control NAADP 
production[53]. Ca2+ is sequestered into lysosomal lumen 
by a putative Ca2+/H+ exchanger, which is driven by 
a vacuolar-H+ ATPase[53]. NAADP-gated Ca2+ release 
is mediated by TPC2, whose primary sequence places 
them in the superfamily of  voltage-gated cation chan-
nels. Hydropathy analysis has revealed that the full-length 
protein contains 12 putative TM (TM) α helices that are 
organized into two homologous domains of  six TM seg-
ments, each with a membrane re-entrant pore loop be-
tween the fifth and sixth segments. Although three TPCs 
have been identified (TRPC1-3), only TPC2 is endowed 
with both high (5 nmol/L) and low (10 µmol/L) affinity 
binding sites for NAADP and is selectively targeted to 
lysosomes[53]. Due to the limited amount of  Ca2+ in the 
endolysosomal compartment, which consists of  small 
vesicles (0.2-1 µm in diameter) moving throughout the 
cytosol, NAADP-induced Ca2+ signals per se appear as 
scattered, discrete events[53]. The relatively small quantity 
of  Ca2+ mobilized by endolysosomes may, however, be 
amplified into a global Ca2+ wave by recruitment of  In-
sP3Rs and RyRs via CICR[53,147]. This feature requires the 
physical proximity between the NAADP-sensitive Ca2+ 
pool and the Ca2+-releasing channels on ER, that has 
been documented in a number of  cell types[53]. NAADP 
has recently been involved in endothelial Ca2+ signaling 
(Table 1). A cell-permeable NAADP analog induced an 
increase in [Ca2+]i in human aortic ECs, which was associ-
ated with membrane hyperpolarization and NO produc-
tion. Importantly, NAADP-dependent Ca2+ release trig-
gered the Ca2+ response to acetylcholine and thrombin, 
but not ATP[50]. Importantly, NAADP-dependent Ca2+ 
release triggered the Ca2+ response to acetylcholine and 
thrombin, but not ATP[50]. Consistent with these data, it 
was subsequently shown that histamine binding to H1 
receptors caused an increase in intracellular NAADP 
levels in EA.hy926 cells, which evoked a TPC2-mediated 
Ca2+ signal and secretion of  von Willebrand factor[51]. 
Unlike human aortic ECs, however, the Ca2+ response to 
thrombin was insensitive to the inhibition of  NAADP-
dependent signalling[51].

Ca2+ entry from the extracellular 
space
Ca2+ influx across the plasma membrane sustains the 
Ca2+ response to both chemical and mechanical stimuli 
in ECs, as well as most other nonexcitable cells. In addi-
tion to refilling the intracellular Ca2+ stores, Ca2+ inflow 
is responsible for the activation of  Ca2+-sensitive effec-
tors which are strategically located near the inner mouth 
of  endothelial Ca2+ channels[6,9,11,62]. Ca2+ entry in vascu-
lar endothelium may be mediated by voltage-operated 
Ca2+ channels (VOCs), agonist-operated Ca2+ channels 
(AOCs), and mechanosensitive channels (MSCs)[7,11,13,62]. 

AOCs, in turn, comprise at least three types of  Ca2+-
permeable membrane pathways, which may be gated 
by distinct signaling mechanisms: (1) receptor-operated 
channels (ROCs), which are ionotropic receptors activat-
ed by direct binding of  the ligand; (2) second-messenger-
operated channels (SMOCs), which are stimulated by 
intracellularly generated mediators, such as DAG, AA and 
its derivatives (eicosanoids and anandamide), ADPr, and 
cyclic nucleotides; and (3) SOCs, which open in response 
to a depletion of  the ER Ca2+ pool. Most, but not all, 
endothelial SMOCs, as well as MSCs, belong to the TRP 
family of  nonselective cation channels[4,8,19,148-150], whereas 
the molecular nature of  SOCs is still debated[151,152]. The 
inrush of  Ca2+ ions consequent to the opening of  the 
Ca2+-permeable membrane route is governed by the fol-
lowing equation:

JCa = 2 × F × N × p × γCa × (VM - ECa)
where JCa is Ca2+ influx, VM is the membrane poten-

tial, ECa the is equilibrium potential for Ca2+, F is the 
Faraday constant, N is the number of  channels, p and γCa, 
respectively, are their open probability and conductance[7]. 
Ca2+ entry may, therefore, be modulated by any change in 
VM according to the following general rule: hyperpolar-
ization increases the driving-force pushing Ca2+ into the 
cytosol, while depolarization reduces Ca2+ influx across 
the plasmalemma[7,153]. This rule, however, may not ap-
ply to microvascular ECs, which may be endowed with 
VOCs, as depicted below. We refer the reader interested 
in the ion channels controlling endothelial VM to a num-
ber of  exhaustive and relatively recent reviews[7,153]. The 
description of  the Ca2+-permeable membrane pathways 
in ECs will be addressed by focussing on the following 
topics: (1) VOCs; (2) ROCs; (3) cyclic-nucleotide-gated 
channels, which belong to SMOCs; (4) TRP channels, 
which comprise SMOCs, SOCs, and SACs; and (5) Orai1 
and Stim1, which mediate SOCs.

Voltage-gated Ca2+ influx in ECs
Although classically considered as non-excitable cells, 
ECs from capillaries, but not from large vessels, may 
express both L- and T-type VOCs[154-159]. VOCs have 
been detected in microvascular ECs from bovine adre-
nal glands (BAMCECs)[154-156], rat and pig brain[160,161], rat 
and mice lungs[157,162-165]. The following features suggest 
that the voltage-gated currents measured in BAMCECs 
belong to the L- and T-type described in endocrine se-
cretory cells: their kinetic and gating properties, current-
voltage relationships, sensitivity to BAY K 8644, nife-
dipine, and amiloride, and their different selectivity for 
Ba2+ and Ca2+[156]. The T-type transient current displayed 
a conductance of  8 pS and may contribute to depolari-
sation-induced Ca2+ influx[155,166], while the L-type large 
current manifests a single-channel conductance of  20 pS 
and is affected by dihydropyridines[154]. Besides T- and 
L-type VOC, BAMCECs express a voltage-dependent 
Ca2+ channel (termed SB) that shows a single-channel 
conductance of  2.8 pS in 100 mmol/L Ba2+ and is sensi-
tive to BAY K 8644, but not nicardipine[154]. Such a path-
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way is operative at negative resting potentials and might 
contribute to low-threshold Ca2+ inflow[154]. Pulmonary 
microvascular vascular ECs (PMVECs) exhibit a Cav3.1 
(α1G) voltage-gated T-type Ca2+ current that is transiently 
activated at ≥ -60 mV and peaks at around -10 mV[158,159]. 
Although α1G may mediate T-type voltage-dependent 
Ca2+ currents without any interaction with its ancillary 
proteins (β-, γ-, and α2δ subunits), α2δ2-, β1- and β3-, but 
not β2- and β4-subunits are expressed in PMVECs[158]. 
The window current of  T-type Cav 3.1 channels occurs at 
membrane potentials ranging from -60 mV to -30 mV, a 
voltage interval that may be achieved in ECs challenged 
with extracellular agonists when their VM is close to the 
K+ equilibrium potential, i.e., -70/-80 mV[7]. Thrombin, 
in particular, utilize SOCs to depolarize PMVECs and 
exploit T-type Cav3.1-mediated Ca2+ entry to drive the 
exocytosis of  von Willebrand factor[162]. Exposure of  
PMVECs to shear stress may upregulate Cav3.1 (α1G) 
expression, so that flow cessation results in an abrupt 
Ca2+ entry through T-type Ca2+ channels[157]. Ca2+ entry 
through T-type Cav 3.1 channels has also been observed 
in mouse pulmonary capillary endothelium, where it se-
lectively drives P-selectin expression[163]. An R-type VOC 
has been, finally, described in canine aortic ECs, that may 
contribute to PAF-induced Ca2+ entry[167]. This channel 
does not inactivate during long-lasting depolarizations, 
therefore, it is well suited to mediate prolonged Ca2+ in-
flow[7]. It is, finally, noticeable that angiotensin II causes 
α1G though AT1 receptors, Ras and MEK[168]. This study, 
however, did not assess the appearance of  voltage-gated 
Ca2+ signals, although it showed that mibefradil, a T-type 
Ca2+ channel inhibitor, prevented the regeneration of  an 
injured monolayer[168].

ROCs in ECs
Vascular ECs may express at least two distinct ROCs, 
namely the nicotinic acetylcholine (ACh) receptor 
(nAChR) and the purinergic P2X receptor, which are gated 
by ACh and ATP, respectively. These pathways are also 
permeable to K+ and Na+ and gate an inward current at 
physiological VM. Therefore, in capillary ECs endowed 
with VOCs, ROCs may also affect Ca2+ signaling by de-
polarizing the cells and inducing a voltage-dependent 
Ca2+ inrush. 

Neuronal nAChRs: nAChRs are ionotropic receptors 
that mediate fast cationic currents in response to their 
selective agonist, ACh. They are named after nicotine, a 
psychoactive ingredient of  tobacco that can mimic the 
action of  ACh in opening these channels. The neuro-
nal nAChRs are pentameric channels comprising either 
combinations of  two different types of  subunit (α and 
β) or five copies of  the same α subunit symmetrically 
arranged in a barrel-like configuration[169]. Each subunit 
consists of  four α-helical spanning domains (TM1-TM4), 
with TM2 of  each subunit lining the receptor pore[169,170]. 
Ten α isoforms (α1-α10) and four β subtypes [β1-β4], 
which may assemble in either homomeric or heteromeric 

configurations, have been identified[170,171]. The diverse 
stoichiometric combinations may result in ion channels 
displaying different pharmacological [ligand affinity and 
α-bungarotoxin (BTX) sensitivity] and biophysical (mean 
open time and Ca2+ permeability) features[172]. The neu-
ronal α-BTX-sensitive nAChRs are formed by α7-α9 
homopentamers, are inhibited by α-BTX, and display 
the highest Ca2+:Na+ permeability ratio (PCa/PNa), while 
the non-α-BTX nAChRs are heteropentamers contain-
ing at least one α (out of  α2-α6) and one β (out of  
β2-β4) subunits and exhibit a much lower PCa/PNa

[172]. As 
reviewed by Arias et al[173] and Gahring and Rogers[170], 
ECs from both macro- and microvascular origin present 
a pattern of  α [α2-α5, α7] and β [β2 and β4] isoforms 
consistent with the expression of  both nAChR7 and 
nAChR3. Activation of  the latter does not elicit any de-
tectable Ca2+ influx in vascular endothelium[174], while the 
former triggers a proangiogenic Ca2+ entry that might 
be exploited to enhance tissue revascularization[173,175]. 
Moreover, nAChRs-mediated membrane depolarization 
induces VOCs-dependent Ca2+ inrush in BAMCECs[166].

P2X receptors: The ionotropic P2X receptors are channels 
that respond to extracellular ATP to induce membrane 
depolarization and an influx of  Ca2+. Seven P2X receptor 
subtypes (P2X1-7) have been identified: each of  them pos-
sesses two TM domains (TM1 and TM2) connected by a 
large extracellular loop and with the NH2- and COOH-
terminal tails extending into the cytoplasm[176]. The extra-
cellular loop contains the ATP binding site, while TM1 
and TM2 are thought to line the channel pore[176]. The 
P2X receptors assemble as homo- or heterotrimers with 
a range of  biophysical features and functions, including 
different PCa/PNa values (which may range from 1 to 71) 
and rates of  inactivation[177]. For instance, P2X3-mediated 
currents rapidly decay during prolonged exposition to 
ATP, whereas P2X7 remains open for several minutes[176]. 
Vascular ECs express all P2X receptor isoforms in both 
arteries and veins[178,179], although P2X4 levels are higher 
in the latter[179]. P2X4 expression in the arterial endothelial 
layer undergoes a dramatic increase following balloon 
injury, which hints at this subunit as a key player in EC 
regeneration[179]. The electrophysiological analysis showed 
that channels with the electrophysiological and pharma-
cological properties of  both P2X4 (fast inactivation, inward 
rectification, conductance of  around 36 pS, insensitivity 
to reactive blue) and P2X7 (slow inactivation, conductance 
of  9 pS, linear current-to-voltage relationship, sensitivity 
to reactive blue) are functionally present on EC plasma 
membranes[180]. P2X5 subunits may assemble with P2X4 
subtypes and form a heterotrimer associated to a cur-
rent displaying the characteristics of  a P2X4 current[180]. 
Ca2+ imaging recordings demonstrated that P2X4 is the 
main mediator of  ATP- and flow-induced Ca2+ inflow in 
vascular endothelium[181,182]. Shear stress induces ATP re-
lease from ECs through different mechanisms, including 
exocytosis or ATP binding of  cassette transporters[183,184], 
or it may stimulate a cell surface ATP-synthase[185]. ATP, 
in turn, causes a step-like elevation in [Ca2+]i

[181,182], which 
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leads to NO production and vasorelaxation in vivo[186]. 
ATP-dependent Ca2+ entry is linearly correlated with the 
amplitude of  the mechanical stimulation[187].

Cyclic nucleotide-gated Ca2+ channels
Cyclic nucleotide-gated channels (CNGs) are nonselec-
tive cation channels gated by direct binding of  the cyclic 
nucleotides, cAMP and cGMP[188]. There are six members 
of  the CNGC family: four α subunits (CNGA1-4) and 
two β subunits (CNGB1 and CNGB3). They all share 
structural homology with voltage-gated channels and 
have six TM domains with both the NH2- and COOH-
termini facing the cytoplasm. A pore region lies between 
TM5 and TM6. The CNGA1-3 subunits form channels 
whereas CNGA4 and the two CNGB isotypes have 
a modulatory function. The cyclic nucleotide binding 
site is located at the COOH-terminal domain of  each 
subunit[188]. All CNGs conduct Ca2+ better than Na+, a 
feature which enables these conductances to affect sig-
nificantly intracellular Ca2+ signaling[189]. Both CNGA1, 
which is selectively gated by cGMP, and CNGA2, which 
opens in response to cAMP, are widely expressed by ECs 
from several vascular beds, although cultured cells under-
go downregulation of  both subunits[190,191]. Both cAMP 
and cGMP levels may increase in ECs challenged with 
β-receptor agonists, such as epinephrine, noradrenaline 
and isoprenaline[192,193]. Moreover, intracellular levels of  
both cyclic nucleotides may be raised when ECs are stim-
ulated with adenosine and ATP[192-194], which are coupled, 
respectively, to A2B and P2Y1 receptors[194-196], and VEGF, 
which acts through VEGFR-2[196]. Finally, SOCs-medi-
ated Ca2+ entry may lead to the intracellular accumula-
tion of  cGMP, which in turn leads to CNG opening and 
membrane depolarization, thus establishing a negative 
feedback responsible for SOC closure[197]. CNGA2 is the 
main contributor to cyclic-nucleotide-induced Ca2+ inflow 
in vascular endothelium stimulated with epinephrine[198], 
ATP[195] or adenosine[194]. CNGA2-mediated Ca2+ influx, 
in turn, results in NO production and vasorelaxation[194]. 
Moreover, NO may upregulate CNGA2 levels in ECs[199].

TRP channels
The super-family of  TRP channels comprises 28 mem-
bers, which have been subdivided in six categories based 
on the homology of  their amino-acid sequence: the 
TRPC (canonical; TRPC1-TRPC7), TRPV (vanilloid; 
TRPV1-TRPV6), TRPM (melastatin; TRPM1-TRPM8), 
TRPP (polycystin; TRPP1-TRPP3), TRPML (mucolipin; 
TRPML1-TRPML3), and the TRPA (ankyrin; TRPA1) 
families[200]. They all are nonselective cation channels, with 
the exception of  TRPM4 and TRPM5, which are only 
permeable to Na+ and K+ (PCa/PNa < 0.05), and TRPV5 
and TRPV6, which are Ca2+ selective (PCa/PNa > 100)[200]. 
All the family members have the same basic structure 
consisting of  six TM domains (TM1-TM6) with the NH2- 
and COOH-termini located in the cytoplasm. Between 
TM5 and TM6, which are highly conserved among all the 
homologs, there is a re-entrant pore loop constituted by 
a short hydrophobic stretch lining the channel pore. This 

molecular architecture resembles that of  the archetypal 
6-TM voltage-gated channels, although TM4 lacks the 
conserved block of  arginine residues forming the voltage 
sensor of  transmembrane electrical potential[201]. Most 
of  the differences between the three families are found 
within the NH2- and COOH-terminal tails. The TRPC 
and TRPV family members contain three or four ankyrin 
repeats at their NH2 terminus, while TRPA1 contains 14 
ankyrin repeats. All mammalian TRP families present a 
homologous sequence of  around 25 amino acids imme-
diately COOH-terminal to TM6, which has been termed 
TRP domain and consists of  a highly conserved six-
amino-acid TRP box (EWKFAR) and a proline-rich mo-
tif. The TRP domain is, however, lacking in TRPA and 
TRPP[201]. TRPC proteins contain a number of  calmodu-
lin/InsP3R binding domains (CIRB) at both their NH2- 
and COOH-tails, while a predicted coil:coil region may be 
present in both locations of  TRPC, TRPM, and TRPP[19]. 
The TRPM family is characterized by having very long 
N and C termini. The latter contain enzymatic activity in 
some of  the channels, e.g., TRPM2 has an ADP-ribose 
pyrophosphatase, whereas TRPM7 contains an atypical 
protein kinase[200]. TRP subunits within one subfamily 
may assemble in either homo- or heterotetramers and 
this gives rise to large variability in their biophysical prop-
erties and activating mechanisms[19,200,201]. Vascular ECs 
have been shown to express TRP channels from all sub-
families[8,150]. More specifically, all the TRPC, all TRPV, 
all TRPM except TRPM5, TRPP1, TRPP2 and TRPA1 
are present in ECs (Tables 2-4). Endothelial TRP chan-
nels serve as polymodal cell sensors, as each TRP subunit 
may be engaged by more than one signaling pathway. The 
selective coupling to distinct downstream Ca2+-sensitive 
decoders enables TRP-mediated Ca2+ influx to govern a 
plethora of  processes in ECs[4,19,148,149]. For sake of  clarity, 
we will separately address the activating mechanisms and 
the main functions fulfilled by each TRP isoform in vas-
cular endothelium.

TRPC channels
The TRPC family may be subdivided in four subfami-
lies according to their amino acid homology: TRPC1, 
TRPC2, TRPC3/6/7 (around 80% homology), and 
TRPC4/5 (around 60% homology). TRPC2 is a pseudo-
gene in humans and does not fulfil any functional role 
in vascular ECs. TRPC channels are nonselective cation 
channels whose PCa/PNa may vary from 0.9 to 9[202]. The 
TRPC subunits may assemble as homo- and heterotetra-
mers. In the latter case, they may combine with members 
of  their own subfamily or TRPC1 may form heteromers 
with TRPC1, TRPC4/5 and TRPC3[200]. Endothelial 
TRPC channels are activated by GPCRs and TKRs cou-
pled to PIP2 hydrolysis by PLC activation and, depending 
on their stimulating mechanism, may be part of  either 
SMOCs or SOCs. 

TRPC1: TRPC1 is widespread in both cultured and na-
tive ECs (Table 2), where it mainly serves as SOC and 
controls transendothelial permeability[203,204], although 
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recent studies have argued against this conclusion[205,206]. 
TRPC1 is engaged by a number of  inflammatory ago-
nists, such as ATP, thrombin, tumor necrosis factor 
(ΤΝF)-α, and angiotensin II (AngII), and by growth fac-
tors, such as VEGF and bFGF[5,12,148,207-209]. TRPC1 may 
act as a SOC due to its ability to interact with InsP3Rs 
through several signaling cascades. The first model im-
plies RhoA-dependent actin rearrangement, which leads 
InsP3Rs to couple to and gate TRPC1[210]. RhoA activa-
tion, in turn, is induced by TRPC6 via PKCα-mediated 
phosphorylation[211]. At the same time, PKCα also phos-

phorylates TRPC1 to enhance RhoA-dependent stimula-
tion[212]. Alternatively, thrombin utilizes caveolin-1 (Cav-1) 
to trigger TRPC1-mediated Ca2+ entry: Cav-1 scaffolding 
domain (CSD) enables the physical and functional in-
teraction of  TRPC1 and of  InsP3R3 with Cav-1 protein 
within the caveolae[213]. In this view, a recent work has 
demonstrated that polyunsaturated fatty acids, such as 
docosahexaenoic acid, may reduce store-operated Ca2+ 
entry (SOCE) by displacing TRPC1 from membrane 
caveolae lipid rafts[214]. Finally, VEGF recruits TRPC1 via 
direct coupling to InsP3R2 in an angiopoietin-1-regulated 
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Table 2  Pattern of expression of transient receptor potential canonical channels in vascular endothelial cells as detected by reverse 
transcription/polymerase chain reaction, immunostaining for cultured cells, immunohistochemistry, Western blotting, northern 
blots, and in situ hybridization

TRPC1 TRPC2 TRPC3 TRPC4 TRPC5 TRPC6 TRPC7

PCa/PNa and conductance (pS)[202] Non-selective, 
16

2.7, 42 1.6, 60-66 1.1, 30-42 9, 47-66 5, 28-37 0.5-5.4, 
25-50

Human pulmonary artery ECs[210,211,219,222,249,261,415,416] +(RT-PCR, NB, 
WB, IC)

+/-(RT-PCR) +(RT-PCR, 
WB, IC)

-(RT-PCR) +/-(RT-PCR)
+(WB)

Human coronary artery ECs[234,237] +(RT-PCR, WB, 
ISH, IHC)

+(RT-PCR, 
WB, ISH, 

IHC)

+(RT-PCR, 
WB, ISH, 

IHC)

+(RT-PCR, 
WB, ISH, 

IHC)

+(RT-PCR, 
WB, ISH, IHC)

+(RT-PCR, 
WB, ISH)

Human cerebral artery ECs +(RT-PCR, ISH, 
IHC)

+(RT-PCR, 
ISH, IHC)

+(RT-PCR, 
ISH, IHC)

+(RT-PCR, 
ISH, IHC)

+(RT-PCR, 
ISH, IHC)

+(RT-PCR, 
ISH)

Human intact mesenteric artery[127] +(RT-PCR) +(RT-PCR) -(RT-PCR) -(RT-PCR)
Human glomerular ECs +(WB, IC)
Human preglomerular ECs[244,245] +(RT-PCR, 

WB, IHC)
+(IHC)

Human dermal microvascular ECs[18,212,221,222,264] +(RT-PCR, WB) -(RT-PCR) +(RT-PCR) +(RT-PCR, 
WB)

-(RT-PCR) +/-(RT-PCR)
+(WB)

+/-(RT-
PCR)

HUVECs[127,205,212,215,218,220-223,227,231] +(RT-PCR, WB) -(RT-PCR) +/-(RT-PCR) +/-(RT-PCR) +/-(RT-
PCR)

+/-(RT-PCR) +(RT-PCR)

+(WB)
EA.hy926 cells[127,243,269] +(RT-PCR) +/-(RT-PCR)

+(WB)
+/-(RT-PCR) +(RT-PCR, 

WB)
+/-(RT-PCR)

Mouse aortic ECs[216,228,248,258] +(RT-PCR, WB, 
IC)

+(WB) +(RT-PCR, 
WB)

+(WB) +(WB)

Mouse pulmonary artery ECs[218,251,259,262] +(RT-PCR, WB) -(RT-PCR) +/-(RT-PCR) +(RT-PCR, 
WB)

-(RT-PCR) +(RT-PCR, 
WB)

-(RT-PCR)

Mouse brain capillary ECs +(RT-PCR) +(RT-PCR) +(RT-PCR) +(RT-PCR) +(RT-PCR) +(RT-PCR) +(RT-PCR)
Bovine pulmonary artery ECs[232] +(RT-PCR) -(RT-PCR) +(RT-PCR)
Bovine aortic ECs[207-209,248,267,268] +(RT-PCR, WB, 

IC)
+/-(RT-PCR)

+(WB)
+(RT-PCR, 

WB)
+(RT-PCR, 

WB)
+(RT-PCR, 

WB)
Bovine brain capillary ECs +(RT-PCR) -(RT-PCR) +(RT-PCR) -(RT-PCR) +(RT-PCR) -(RT-PCR) -(RT-PCR)
Bovine adrenal capillary ECs[292] 
Rat aortic ECs[233,239] -(WB) +(WB) -(WB) +(WB) +(WB)
Rat pulmonary artery ECs[260] +(RT-PCR) +(RT-PCR) +/-(RT-PCR) +(WB, IC) -(RT-PCR) -(RT-PCR)

-(RT-PCR)
Rat coronary arterioles ECs +(RT-PCR, IHC)
Rat cerebral artery ECs[311] +(RT-PCR)
Rat mesenteric artery ECs[227,312] +(RT-PCR, WB, 

IHC)
+(WB, IHC) +(WB, IHC) +(WB, IHC)

Rat descending vasa recta ECs[254] +(RT-PCR, 
WB, IC)

-(RT-PCR)

Rat splenic sinus ECs[35] +(IHC)
Porcine aortic ECs[241,242] +(RT-PCR, 

WB)
+(WB)

Porcine coronary artery ECs[235] +(RT-PCR, 
WB)

Zebrafish aortic ECs[225] +(IHC, ISH) +(ISH)
Ovine uterine artery ECs[414] +(WB) +(WB) +(WB) +(WB) +(WB)

RT-PCR: Reverse transcription/polymerase chain reaction; WB: Western blotting; IC: Immunostaining for cultured cells; IHC: Immunohistochemistry; ISH: 
In situ hybridization; NB: Northern blotting; ECs: Endothelial cells; HUVECs: Human umbilical vein ECs. 
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fashion[215]. The circulating protein, klotho, may bind to 
both VEGFR-2 and TRPC1 to promote their co-internal-
ization, reduce Ca2+ influx and maintain endothelial integ-
rity[216]. A number of  studies have, however, reported that 
TRPC1 must combine with TRPC4 to be operated by 
intracellular Ca2+ stores[217,218]. This issue will be addressed 
below. TRPC1-mediated Ca2+ entry enlists calmodulin to 
activate the myosin light chain kinase (MLCK) and in-
duce EC retraction, thus disassembling intercellular junc-
tions and increasing endothelial permeability[204]. More-
over, TRPC1-gated Ca2+ entry is capable of  stimulating 
nuclear factor (NF)-κB via AMP-activated protein kinase 
and PKCδ, so that NF-κB may initiate the transcriptional 
programme involved in the host defense to inflammatory 
stimuli and in EC resistance to apoptosis[219,220]. NF-κB, in 
turn, increases TRPC1 expression in ΤΝF-α-stimulated 
cells, thus establishing a feed-forward loop that amplifies 
agonist-elicited SOCE and the increase in transendotheli-
al permeability[221,222]. Similarly, AngII upregulates TRPC1 
levels in an NF-κB-dependent manner in ECs[223]. Finally, 
TRPC1 may be involved in endothelial tube formation 
both in vitro[224] and in vivo[225]. The expression of  TRPC1 
in vascular ECs may be increased by high glucose levels, 
with a consequent increase in the amplitude of  agonist-
induced Ca2+ influx and a dramatic impact on endothe-
lial function in diabetic patients[209]. TRPC1 not only 
acts as an SOC in vascular endothelium, but may also 

serve as an MSC by assembling with TRPV4 to medi-
ate flow-induced Ca2+ entry in vascular endothelium[226]. 
A drop in luminal Ca2+ favors the translocation of  the 
TRPC1-TRPV4 heteromeric channel from the ER to 
plasmalemmal caveolae[227], where the complex amplifies 
shear-stress-induced Ca2+ influx and augments the ensu-
ing vascular dilation[227]. In addition, such an enhanced 
vesicular trafficking of  TRPC1-TRPV4 channels may 
contribute to endothelial SOCs[228]. Similarly, TRPC1 may 
mediate stretch-induced Ca2+ entry after traumatic injury 
in microvessel endothelial cells, thereby resulting in NO 
synthesis and actin stress fiber formation[229].

TRPC3/6/7: TRPC3, TRPC6 and TRPC7 are Ca2+-
permeable channels that may be activated by DAG in a 
PKC-independent manner and may thus be regarded as 
SMOCs[200,201]. TRPC3 and TRPC6 are widely expressed 
both in cultured ECs and in situ endothelium, while 
TRPC7 is far less abundant (Table 2). DAG stimulates 
TRPC3- and TRPC6-gated Ca2+ entry into ECs ex-
posed to a number of  agonists, including VEGF[18,230,231], 
ATP[232-234], and bradykinin[232,235]. TRPC3- and TRPC6-
induced Ca2+ inflow underpin the stimulatory effect of  
VEGF on endothelial proliferation, migration and per-
meability[18,231,236], while ATP exploits TRPC3 to activate 
NF-κB and increase vascular cell adhesion molecule-1 
expression[237]. TRPC3-driven NO synthesis and vasore-
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Table 3  Pattern of expression of transient receptor potential vanilloid channels in vascular endothelial cells as detected by reverse 
transcription/polymerase chain reaction, immunostaining for cultured cells, immunohistochemistry, Western blotting, and in situ 
hybridization

TRPV1 TRPV2 TRPV3 TRPV4 TRPV5 TRPV6

PCa/PNa and conductance (pS)[202] 10, 35-80 1-3, NM 12, 172 6, 90 > 100, 75 > 100, 40-70
Human coronary artery ECs[300] (+RT-PCR, WB, IHC)
Human pulmonary artery ECs[415] +(RT-PCR) +(RT-PCR) +(RT-PCR)
Human pulmonary microvascular ECs +(RT-PCR)
Human cerebral microvascular ECs[272] +(RT-PCR, IC)
Human cerebral arterioles ECs[305] +(RT-PCR, IHC)
Human dermal microvascular ECs[319] +(RT-PCR, WB)
Breast cancer derived microvascular ECs[319] +(RT-PCR, WB)
Human umbilical vein ECs[227,277,296,301] +(RT-PCR) +(WB, IHC)
Mouse aortic ECs[280,285,299,306] +(WB) +(RT-PCR, WB, NM, IHC)
Mouse pulmonary artery ECs[313] +(WB, IHC)
Mouse mesenteric artery ECs[27,280,302] +(RT-PCR, WB, IC) +(RT-PCR, IC)
Mouse cerebral microvascular ECs +(RT-PCR) +(RT-PCR, WB) +(RT-PCR)
Mouse dermal microvascular ECs[307] +(RT-PCR, WB)
Mouse carotid artery ECs[290,296] +(IHC)
Rat mesenteric artery ECs[226,275,302] +(WB) +(WB, IC, IHC)
Rat femoral artery ECs[312] +(RT-PCR, IC)
Rat pulmonary artery ECs[303] +(WB, IHC)
Rat renal artery ECs[303] +(IHC)
Rat cardiac microvascular ECs[303,316] +(IHC)
Rat cerebral artery ECs[287,297,311] +(RT-PCR) +(RT-PCR, IC) +(RT-PCR, IC)
Rat carotid artery ECs[291] +(RT-PCR)
Porcine aortic ECs[312,317] +(RT-PCR, IC, WB)
Porcine coronary artery ECs[273] +(IHC)
Bovine aortic ECs[271] +(WB)
Bovine adrenal capillary ECs[292] +(RT-PCR, WB)
Zebrafish ventricular ECs +(ISH)

RT-PCR: Reverse transcription/polymerase chain reaction; WB:Western blotting; IC: Immunostaining for cultured cells; IHC: Immunohistochemistry; ISH: 
In situ hybridization; NM: Not measured; ECs: Endothelial cells. 
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laxation may be attenuated by the hypoxia-reoxygenation 
injury of  vascular ECs, which prevents TRPC3 traf-
ficking to the plasma membrane[235]. Moreover, TRPC3 
supports both spontaneous and histamine-evoked Ca2+ 
oscillations arising, respectively, during and after EC tu-
bule formation[224]. Finally, TRPC3-mediated Ca2+ inflow 
may stimulate flow-dependent endothelium-dependent 
vasodilation[238]. Endothelial TRPC3 and TRPC6 may be 
inhibited by NO in a protein-kinase-G-dependent fash-
ion[239,240], while TRPC3 may also be inhibited by a PKC-
mediated phosphorylation on Ser-712[239]. Both TRPC3 
and TRPC6 may be recruited by signaling mechanisms 
other than DAG in vascular ECs. TRPC3 may provide a 
leakage Ca2+ entry pathway in unstimulated ECs[234] or be-
have as an SOC owing to its ability to physically interact 
with InsP3R2 in uterine artery ECs[105]. Connexin-43-
mediated intercellular communication between adjacent 
ECs favors TRPC3/InsP3R2 association, although via a 
yet to be identified mechanism[105]. Moreover, endothelial 
TRPC3 may assemble with its distant relative, TRPC4, 
and form a heteromeric channel sensitive to oxidative 
stress and with biophysical properties distinct from both 
TRPC3 and TRPC4 homomers[241,242]. Finally, TRPC3 
may be activated by thapsigargin-induced ER Ca2+ store 
depletion following PLC-dependent DAG synthesis and 
PKCη activation. PKCη, in turn, engages Src tyrosine 
kinase to phosphorylate and gate TRPC3[243]. TRPC3 lev-
els in vascular ECs may be downregulated by VEGF in 
a PI3K-sensitive manner, and upregulated by an increase 
in blood pressure[244,245]. TRPC6, on the other hand, may 
be translocated from intracellular sites to the caveolae 
compartment of  the plasma membrane by cytochrome 
P450 (CYP)-derived epoxyeicosanotrienoic acids (EETs). 
This process enhances bradykinin-induced Ca2+ entry and 
thus prolongs the activation of  small and intermediate 
Ca2+-activated K+ channels responsible for endothelial 
hyperpolarization[246]. The functional consequence of  
TRPC6 insertion into the plasmalemma is related to the 

ability of  ECs to transmit their negative shift in VM to 
the adjacent smooth muscle cells and trigger vasorelax-
ation (the so-called endothelial-dependent hyperpolar-
izing factor, EDHF)[247]. TRPC6 externalization may 
also be induced by lysophosphatidylcholine (LPC): the 
following Ca2+ influx induces TRPC5 translocation to 
the plasma membrane, thus allowing sustained Ca2+ entry 
into ECs[248]. TRPC5-mediated Ca2+ inflow, in turn, is es-
sential to restrict endothelial movement and might be rel-
evant in impairing the healing process of  the intimal layer 
in atherosclerotic arteries, where LPC is abundant[248]. 
TRPC6 externalization requires the phosphatase and 
tensine homolog (PTEN), whose tail 394-403 residues 
associate with the channel and favour its plasmalemmal 
localization[249]. It has yet to be elucidated whether EETs 
and LPC utilize PTEN to induce the intracellular move-
ments of  TRPC6 in ECs. Recent studies have shown 
that TRPC6 plays a key role in the onset of  the lung 
ischemia-reperfusion edema (LIRE) as a consequence 
of  endothelial NOX2-dependent ROS, which, in turns, 
leads to PLCγ activation, DAG kinase inhibition and an 
increase in submembranal DAG levels[250]. Consistently, 
PAF-induced lung edema depends upon the activation of  
acid sphingomyelinase (ASM), which engages TRPC6 to 
caveolae, thereby resulting in Ca2+ influx and following 
increase in endothelial permeability[251]. This process is 
inhibited by NO donors[251].

TRPC4/5: TRPC4 and TRPC5 form a subfamily with 
the closest homology with TRPC1[201]. Both channels 
open in response to the Gq/11 family GPCRs and 
TKRs, although neither InsP3 nor DAG alone are able to 
activate them[200,201,252]. It has, however, been demonstrat-
ed that TRPC4 opening is favored by PIP2 hydrolysis, 
although it also requires Gi recruitment and intracellular 
Ca2+[253]. The scenario is further complicated by the ne-
cessity for TRPC4 to interact with the adaptor NHERF, 
ezrin/radixin/moesin ERM proteins, and cortical actin 
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Table 4  Pattern of expression of transient receptor potential melastatin channels in vascular endothelial cells as detected by 
reverse transcription/polymerase chain reaction, Western blotting, and in situ hybridization

TRPM1 TRPM2 TRPM3 TRPM4 TRPM5 TRPM6 TRPM7 TRPM8

PCa/PNa and conductance (pS)[202] NM, NM 0.5-1.6, 52-80 0.1-10, 65 
(Ca2+)-130

Not permeable, 
25

Not permeable, 
16-25

PCa/PNa~6, 
NM

3, 40-105 1-3, 83

Human Pulmonary artery ECs[320] +(RT-PCR) +/-(RT-PCR) 
+(WB)

+(RT-PCR) +(RT-PCR) -(RT-PCR) +(RT-PCR) +(RT-PCR) +(RT-PCR)

Human umbilical vein ECs[325,327,328] +(RT-PCR, WB) -(RT-PCR) +(RT-PCR, 
WB)

Mouse aortic ECs[329] +(RT-PCR, WB) +(RT-PCR)
Human dermal microvascular ECs[327] +(RT-PCR, 

WB)
Mouse cerebral microvascular ECs -(RT-PCR) +(RT-PCR) +(RT-PCR) +(RT-PCR) -(RT-PCR) -(RT-PCR) +(RT-PCR) -(RT-PCR)
Mouse cardiac microvascular ECs[8] +(RT-PCR, 

WB)
+(RT-PCR)

Rat cerebral artery ECs[311] +(RT-PCR) +(RT-PCR) +(RT-PCR)
Rat spinal cord capillary ECs[324] +(ISH)
Rat mesenteric artery ECs[312] +(RT-PCR)

RT-PCR: Reverse transcription/polymerase chain reaction; WB: Western blotting; IHC: Immunohistochemistry; ISH: In situ hybridization; NM: Not 
measured; ECs: Endothelial cells. 
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via its COOH-terminal PDZ-binding domain to undergo 
PIP2 modulation[253,254]. Similarly, TRPC5 activation may 
be potentiated by intracellular Ca2+ release and is modu-
lated by the scaffolding ERM-binding phosphoprotein-50 
(EBP50)[255,256]. TRPC4 and TRPC5 may assemble either 
as homo- or heterotetramers via their first ankyrin repeat 
in the NH2-terminal[257] and are abundantly expressed 
in both cultured cells and naive tissues. TRPC4 has long 
been considered as the key component of  SOC in vas-
cular endothelium[203], because TRPC4-deficient mice 
lack SOCE and exhibit impaired NO production and 
increased vascular permeability[258,259]. According to this 
model, the extent of  store depletion is conveyed to PM 
by protein 4.1N, which links the cytoskeletal protein, 
spectrin, to TRPC4[260]. The latter, in turn, contributes 
pore-forming subunits to the store-dependent channel 
along with TRPC1 according to the following stoichiom-
etry, 1 TRPC1 and 3 TRPC4[203,217,260,261]. The association 
between the two subunits is favoured by Cav-1, which 
also recruits InsP3R1 into the membranal signalplex[262]. 
InsP3R1, in turn, may interact with protein 4.1N, a fea-
ture which would explain the dependence of  the TRPC1-
TRPC4 complex on intracellular Ca2+ stores[263]. An 
alternative model proposes that this heterotetramer is 
activated by a protein termed stromal interaction mol-
ecule-1 (Stim1)[218], which senses intraluminal ER Ca2+ 
levels, as more widely illustrated below. A recent study, 
however, questioned TRPC1 and TRPC4 involvement in 
endothelial SOCE[205,206]. The controversy was explained 
by the finding that TRPC4 is externalized to the plasma 
membrane upon binding to β-catenin only in subconflu-
ent, migrating ECs, but not in quiescent, barrier-forming 
cells, which is the typical condition for Ca2+ signaling 
studies[264]. Therefore, TRPC4 might serve as an agonist-
recruited SOC during endothelial cell-cycle transitions 
from a proliferating to a quiescent phenotype[265]. Wheth-
er TRPC4 contributes to the repetitive Ca2+ spikes arising 
in HUVECs both before (spontaneous) and after (hista-
mine-evoked) tubule formation in a store-dependent or 
independent manner has yet to be elucidated[224]. A single 
nucleotide polymorphism in the TRPC4 gene has been 
associated with protection from myocardial infarction 
and results in a larger current density when the mis-sense 
channel is expressed in heterologous cell systems[266]. 
This feature is likely due to a less bulky Val-957, which 
favors TRPC4 insertion into the plasma membrane and 
its interaction with the catalytic site of  the tyrosine ki-
nase that phosphorylates the channel at Tyr-959[266]. Less 
information is available on the role played by TRPC5 in 
ECs, where it may be constitutively open and also par-
ticipate to ATP-induced Ca2+ entry[267]. TRPCs have been 
suggested to be activated also by NO via direct S-nitro-
sylation[186], but this mode of  regulation is absent in vas-
cular endothelium, where TRPC5 is actually inhibited by 
NO[267]. Conversely, the endothelial TRPC5 channel may 
be potentiated by the plant-derived isoflavone, genistein, 
independently on tyrosine kinases[268] and is upregulated 
by erythropoietin[269].

TRPV channels
The TRPV family consists of  four subfamilies on the 
basis of  their structure and function: TRPV1/2, TRPV3, 
TRPV4, and TRPV5/6[201]. The latter are highly Ca2+-
selective pathways, while TRPV1-4 are nonselective 
cation channels whose PCa/PNa ranges between 1 and 15 
pS[202]. All TRPV channels are endowed with 3-6 NH2-
terminal ankyrin repeats, which enable the protein to 
traffic to the plasma membrane, are required for tetra-
merization, and control protein-protein interactions[270]. 
TRPV channels may assemble either as homo- or het-
erotetramers, although their exact stoichiometry in situ is 
still unknown[270]. TRPV1-4, which are the only isoforms 
expressed in vascular ECs, may be gated by a number of  
stimuli, including Gq signaling, endocannabinoids, dietary 
agonists, changes in temperature and osmolality, pulsatile 
stretch and shear stress[270]. TRPV channels are, therefore, 
a remarkable example of  polymodal channels and may 
serve as both MSCs and SMOCs.

TRPV1: TRPV1 is a nonselective cation channel with 
a preference for calcium that can be expressed in both 
cultured and native ECs (Table 3). Endothelial TRPV1 
channels may be activated by the dietary agonist, capsa-
icin, and the endogenous cannabinoids, anandamide and 
2-arachidonoyl-glycerol (2-AG)[149,270-272]. TRPV1 may, 
therefore, serve as an SMOC, although the physiologi-
cal ligands that are capable of  recruiting this channel in 
ECs are yet to be elucidated. Pharmacological stimulation 
of  TRPV1, either by capsaicin or anandamide, causes 
vascular relaxation upon release of  several vasodila-
tors, including NO[273-275], calcitonin gene-related peptide 
(CGRP)[276,277], and EDHF[273]. CGRP may also afford 
a protective effect against LPC- and lipopolysaccharide 
(LPS)-dependent injury[276,277]. Furthermore, TRPV1 
mediates the vasorelaxing effects of  the synthetic, canna-
binoid-like compound, VSN16, albeit it is still unknown 
whether TRPV1 is engaged by VSN16 directly or via the 
“abnormal-cannabidiol receptor”[278]. The signaling cas-
cade responsible for endothelial NO synthase (eNOS) 
activation by TRPV1 has been unravelled. TRPV1 may 
trigger Ca2+-dependent PI3K/Akt/CaMKII signal-
ing, which leads to TRPV1 phosphorylation, increases 
TRPV1-eNOS complex formation, eNOS stimulation, 
and NO synthesis[271]. This signaling pathway might 
involve the AMP-activated protein kinase (AMPK), a 
multifunctional regulator of  energy homeostasis that is 
phosphorylated upon TRPV1-mediated Ca2+ influx[279]. 
TRPV1-induced vasodilation is impaired in obese Os-
sabaw swine with the metabolic syndrome and thus could 
be a mechanism involved in endothelial dysfunction and 
development of  coronary disease[273]. Chronic stimula-
tion of  TRPV1 by capsaicin enhances PKA and eNOS 
phosphorylation, which, in turn, results in vasorelaxation, 
reduces blood pressure and delays the onset of  brain 
stroke in spontaneously hypertensive rats[280]. Moreover, 
dietary capsaicin reduces the high-salt-diet-induced en-
dothelial dysfunction and nocturnal hypertension by pre-
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venting the generation of  O2
.- anions and NO reduction 

through vascular TRPV1 activation[281]. Baseline mean 
arterial pressures are, however, not statistically different 
in wild-type and TRPV1-/- mice[282,283]. Besides chemical 
agonists, TRPV1 may be gated by temperature higher 
than 40 ℃ in ECs[277,284]. This feature gives support to the 
hypothesis that TRPV1 contribute to peripheral vascular 
dilatation and high temperatures[8]. Conversely, a recent 
report described TRPV1-induced endothelin produc-
tion by cultured ECs, which might cause the activation 
of  vascular ETA receptors and increase the mean arterial 
pressure in vivo[285]. Finally, capsaicin opposes angiogenesis 
by causing G1 arrest of  ECs via downregulation of  cyclin 
D1 and inhibited VEGF-triggered signaling pathways[286]. 
Whether this effect depends on TRPV1 stimulation is yet 
to be demonstrated.

TRPV2: TRPV2 has been mainly located in vascular 
smooth muscle cells (VSMCs), where it may be activated 
by cell swelling and act as an MSC[270]. Only a few stud-
ies have reported TRPV2 expression in ECs (Table 3) 
and, therefore, its function in vascular endothelium is still 
unclear. Due to its ability to mediate Ca2+ inflow in ECs 
exposed to moderate heat, however, it might aid TRPV1 
to stimulate NO synthesis and peripheral vasorelaxation 
at > 43 ℃[8,284].

TRPV3: TRPV3 is a polymodal channel that may be 
gated by either natural compounds, such as carvacrol, 
eugenol, and camphor, or innocuous warm temperatures 
(> 30 ℃)[200]. TRPV3 expression has recently been shown 
in both in situ and cultured ECs (Table 3). In intact tissue, 
TRPV3 stimulation by carvacrol induces VSMC hyper-
polarization via the Ca2+-dependent opening of  interme-
diate- (IKCa) and small-conductance (SKCa) K+ channels. 
The consequent K+ efflux activates smooth muscle 
inwardly rectifying potassium channels (KIR) and ampli-
fies the negative shift in VSMC VM, thereby promoting 
arterial relaxation[287]. In human corneal ECs, TRPV3-
induced Ca2+ entry is evoked by raising bath temperature 
from 25 to > 44 ℃[284]. If  present also in vascular endo-
thelium, this feature would render the channel capable of  
sensing high temperatures in peripheral circulation along 
with TRPV1 and TRPV2.

TRPV4: TRPV4 is the most polymodal TRP channel, 
being a molecular integrator of  both chemical and physi-
cal stimuli[200,270], and may be expressed in both native 
and cultured ECs (Table 3). More specifically, endothe-
lial TRPV4 may be activated by non-noxious tempera-
tures (> 24 ℃)[288], hypo-osmotic cell swelling[289], shear 
stress[290,291], cyclic strain[292,293], and pharmacologically, 
by the non-PKC-activating phorbol ester, 4α-phorbol-
12,13-didecanoate (4αPDD)[294] and by the plant-derived 
flavone, apigenin[295]. Cell swelling and shear stress do 
not gate TRPV4 directly, but via the PLA2-dependent 
synthesis of  AA, and its subsequent metabolization to 
5’,6’-epoxyeicosatrienoic acid (EET) through a CYP 

epoxygenase-dependent pathway[290,291,296-299]. A unique 
mechanism has been described in human coronary arteri-
oles isolated from patients suffering from coronary artery 
disease, where the endothelial TRPV4 stimulate mito-
chondria to release ROS, which in turn cause VSMCs to 
relax[300]. Conversely, TRPV4 signaling induced by me-
chanical strain is mediated by direct force transfer from 
β1 integrins to the integrin-associated transmembrane 
CD98 protein within focal adhesions[293]. This feature 
renders TRPV4 a pure MSC that can be activated within 
only 4 ms by external force application[293]. TRPV4-
mediated Ca2+ responses to heat and 4αPDD require an 
aromatic amino acid at the NH2-terminal of  the third 
transmembrane domain[289]. Recent work proposed that 
Cav-1 governs TRPV4 activity and location to the plasma 
membrane in ECs[301]. NO, PGI2, and IKCa/SKCa/MaxiK-
mediated EDHF are vasodilatory pathways that are 
activated following by pharmacological activation of  
TRPV4[27,291,302-304]. An alternative mechanism has been 
unravelled in human coronary arterioles from patients 
with coronary artery disease, where flow-induced TRPV4 
activation causes ECs to release mitochondrial ROS, 
thereby relaxing the adjoining VSMCs[300]. Under physio-
logical conditions, TRPV4-mediated vasodilation, mainly 
via NO and EDHF production, is induced by both shear 
stress[27,290,291,296] and extracellular autacoids, such as Ach 
and UTP[297,301,305,306]. Although the cellular mechanisms 
linking membrane receptors to TRPV4 opening are still 
unclear, UTP utilizes PLA2 to gate the channel[297], while 
PKCα mediates Ach-dependent activation[307]. Despite 
the evidence for TRPV4-evoked vasodilation, the base-
line blood pressure is not affected in TRPV4-/- mice[305,306]. 
Nevertheless, systemic activation of  the channel may 
induce vasorelaxation in vivo[302,303,308,309] and, eventually, 
lead to circulatory collapse[303]. The vasorelaxing effect 
of  TRPV4 is more evident in rodent models of  Nω-
nitro-l-arginine (L-NNA)- and salt-induced hyperten-
sion[305,308,309]: this feature suggests that its main function 
might be to adverse excessive vasoconstricting stimuli and 
protect the vasculature during times of  extreme stress[270]. 
It is, therefore, intriguing that TRPV4 is downregulated 
in a genetic model of  salt-susceptible hypertensive rats 
exposed to a salt-enriched diet, whereas its function and 
expression are enhanced in salt-resistant rat strains[308]. 
In this view, apigenin might afford a protective effect on 
the development of  cardiovascular diseases by stimulat-
ing TRPV4 to release EDHF[295]. An additional role for 
TRPV4-dependent Ca2+ signals consists in driving the 
shear stress-induced growth of  collateral vessels (arterio-
genesis) which occurs as a consequence of  arterial occlu-
sion[310-312]. Ca2+ entry may, indeed, recruit several Ca2+-
sensitive transcription factors, including nuclear factor 
of  activated T cells, cytoplasmic, calcineurin-dependent 
1 (NFATc1), Kv channel interacting protein 3, calsenilin 
(KCNIP3/CSEN/DREAM), and myocyte enhancer 
factor 2C (MEF2C)[310]. On the other hand, TRPV4-
mediated Ca2+ influx elicited by cyclic strain triggers 
cytoskeletal remodeling and movement necessary for cell 
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realignment in the vasculature[292]. TRPV4 channels are 
extensively expressed in alveolar septal capillaries[163,313], 
where they control lung endothelial permeability and 
barrier integrity in response to intravascular and airway 
pressures[314-316]. More specifically, TRPV4-gated Ca2+ en-
try increases vascular permeability to such an extent that 
barrier disruption and alveolar flooding may occur[313]. 
Finally, TRPV4 may enable ECs to sense body tempera-
ture, because the threshold for the heat-dependent activa-
tion for this channel is set at 25-27 ℃ and it is activated 
by moderate heat in ECs[4,288,317,318]. The results provided 
by knocked out mice, however, suggest that the steady 
state release of  NO from endothelium is not governed 
by such a mechanism. A recent study implicated TRPV4 
in tumor angiogenesis, as Florio Pla and coworkers re-
ported an increase in TRPV4 levels in breast tumor ECs 
(b-TECs) as compared to control cells belonging to a hu-
man dermal microvascular endothelial cell line (HMVEC). 
In particular, AA-dependent TRPV4-mediated Ca2+ in-
flux selectively drives cell migration via remodeling of  the 
actin cytoskeleton in b-TECs, but not in HMVECs[319].

TRPM channels
The melastatin-related TRP subfamily was named based 
on the first discovered member, melastatin 1 (TRPM1), 
the gene of  which was identified from melanomas. Mem-
bers of  the TRPM family are divided into four groups: 
TRPM1/3, TRPM2/8, TRPM4/5, and TRPM6/7[200,201]. 
TRPM channels exhibit highly varying cation permeabil-
ity, from Ca2+ impermeable (TRPM4/5) to highly Ca2+ 
and Mg2+ permeable (TRPM6 and TRPM7)[202]. All the 
TRPM isoforms except TRPM5 are expressed in ECs 
(Table 4), although only the role of  TRPM2 and TRPM7 
has been extensively elucidated in these cells[270]. These 
channels are regarded as chanzymes, as they result from 
the fusion of  an ion-channel pore-forming domain with 
an enzymatic domain[200].

TRPM2: TRPM2 is a non-elective cation channel whose 
predominant feature is the so-called Nudix box, a con-
sensus region for pyrophosphatases that is localized in 
the cytoplasmic COOH-terminal tail of  the channel 
protein and confers a unique activation mechanism, i.e., 
gating by ADPr, on the channel[144]. ADPr arises from 
breakdown of  β-NAD, CD38, or other enzymes acting 
on cADPr and hydrolysis of  ADP polymers by poly-
ADP ribose glycohydrolase (PARP). TRPM2 is also ac-
tivated by oxidative or nitrosative stress (e.g., H2O2)[4,144], 
perhaps mediated by mitochondrial ADPr. Therefore, 
TRPM2 serves as a sensor for the intracellular redox 
status by mediating oxidative stress-induced Ca2+ entry 
and triggering the subsequent Ca2+-dependent eleva-
tion in endothelial permeability[4,200,320]. This chain of  
reactions is suppressed by a truncated TRPM2 isoform 
(TRPM2-S), generated by alternative splicing of  the full-
length protein (TRPM2-L)[144]. Moreover, TRPM2 may 
underlie neutrophil-elicited increase in endothelial [Ca2+]i, 
which is a prerequisite for transendothelial migration and, 

consequently, for sepsis-induced increase in lung vascular 
permeability[321]. The NH2-terminal domain possesses a 
calmodulin-binding site which renders the channel sensi-
tive to changes in sub-plasmalemmal Ca2+, which shifts 
the dose-response curve to ADPr to the left[144]. In ad-
dition, the NH2-terminal cytosolic tail of  TRPM2 also 
contains a high affinity binding site for PKCα, which 
rapidly colocalizes with TRPM2-S in ECs challenged with 
H2O2

[4,321]. PKCα might, thus, increase TRPM2-mediated 
Ca2+ influx and increase in endothelial permeability by 
phosphorylating TRPM2-S[4,321].

TRPM4: TRPM4, which is expressed as two splice vari-
ants, TRPM4a (non functional) and TRPM4b (functional, 
traditionally referred to as TRPM4), which is selective for 
monovalent cations, with an order of  permeability Na+ > 
K+ > Cs+ > Li+, but not for Ca2+[200,202]. TRPM4 is pres-
ent in both intact vessels and cultured ECs (Table 4) and 
is gated by cytosolic Ca2+ with a KD ranging from 0.4 to 
9.8 µmol/L[322]. Therefore, TRPM4 represents the long-
sought Ca2+-activated nonselective cation channels[200]. A 
short stretch of  six acidic amino acids in the pore loop 
determines its monovalent selectivity[202]. We refer the 
reader to other recent and comprehensive reviews for 
the molecular details of  TRPM4 modulation in cell types 
other than ECs[322,323]. Briefly, the Ca2+-dependent activa-
tion is regulated by ATP, Ca2+-calmodulin, and PKC. The 
current-voltage exhibits a large outward rectification, in-
dicative of  a voltage-dependent behavior which is further 
enhanced by increasing the temperature between 15 and 
35 ℃. PIP2 also modulates channel activity by influenc-
ing its Ca2+ and voltage sensitivity[322]. The main function 
attributed to TRPM4 in ECs is that, when activated, it 
protects against Ca2+ overload by depolarizing the cell, 
thereby decreasing the driving force for Ca2+ entry. It has, 
however, recently been shown that TRPM4 plays a cru-
cial role in promoting EC death. TRPM4 is upregulated 
in capillary ECs of  injured spinal cord, which leads to mi-
crovessel fragmentation, formation of  satellite (petecchial) 
hemorrhagic lesions, and secondary hemorrhages[324]. In 
addition, TRPM4 mediates LPS-induced EC death by a 
yet to be unveiled mechanism[325].

TRPM7: TRPM7 is a nonselective cation channel that 
exhibits moderate permeability to Mg2+ (albeit at very low 
conductances) and is, therefore, involved in intracellular 
Mg2+ homeostasis[200]. In addition, TRPM7 is perme-
able to Zn2+, Co2+, and Mn2+, thereby providing a mem-
brane pathway for metal ions[323]. TRPM7 might form 
either homo- or heteromultimers with its close homolog 
TRPM6, and has been found both in in situ and in vitro 
ECs (Table 4). Similar to TRPM2, TRPM7 serves as a 
chanzyme, its primary structure resulting from the fusion 
of  a cation-selective ion channel pore with a COOH-
terminal region possessing homology to a unique family 
of  serine/threonine kinase domains, named the α-kinase 
family[200,326]. The enzymatic activity of  the α-kinase do-
main is not required for pore opening, although evidence 
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exists that it may have an alternative means of  influencing 
channel gating[323,326]. The mechanism underlying the con-
stitutive activation of  the channel is, therefore, still unre-
solved[323]. The phosphotransferase activity of  the kinase 
domain is, nevertheless, able to respond to local changes 
in free Mg2+ occurring as the result of  Mg2+ flux through 
the channel. TRPM7 might, therefore, act as “Mg2+-
sensor”[323,326]. Consistently, silencing TRPM7 mimics the 
effect of  lowering extracellular Mg2+ in human microvas-
cular ECs by impairing cell migration and arresting the 
cells in G0/G1 and G2/M phases[327]. Similarly, TRPM7 
may inhibit EC proliferation via an extracellular signal-
regulated kinase (ERK)-dependent reduction in eNOS 
levels[328]. This finding has been supported by in vivo ob-
servations performed in mice with inherited hypomagne-
semia, TRPM7 upregulation is associated with endothelial 
dysfunction consequent to a decrease in eNOS levels and 
an increase in systolic blood pressure, to an augmented 
expression of  vascular cell adhesion molecule-1 and plas-
minogen activator inhibitor-1, and to the downregulation 
of  annexin-1, a downstream target of  TRPM7[329]. Unlike 
VSMCs, the endothelial TRPM7 is insensitive to laminar 
shear stress[330].

TRPP channels or polycystins
The TRPP family consists of  eight members, only two of  
which, i.e., polycystic kidney disease 2 (PKD2 or TRPP2) 
and PKD2-like (or TRPP3), form Ca2+-permable chan-
nels[200,323]. TRPP2 may, however, assemble with the non-
channel protein, TRPP1 (or PKD1), in order to form a 
heterocomplex able to transduce laminar shear stress in 
intracellular [Ca2+]i signals[200,323]. Both TRPP1 and TRPP2 
have been found in cultured and in situ vascular ECs (Table 
5). TRPP1 is an integral membrane glycoprotein with 11 
transmembrane domains, an extensive NH2-terminal ex-
tracellular tail involved in cell-cell, cell-matrix interaction 
and signaling pathways, and a cytosolic COOH-terminal 
endowed with a coiled-coil domain[331]. TRPP1 interacts 
with TRPP2, a six-transmembrane domain protein of  the 
TRP ion channel family[200,323]. Polycystins also interact 
with multiple partners, including the TRP channel sub-
units TRPC1 and TRPV4, as well as several elements of  
the cytoskeleton[331]. By the coiled-coil COOH-terminal 
domain, TRPP2 and TRPP1 can form a functional poly-
cystin complex in the apical cilia of  both cultured and 
native ECs[332,333]. Due to its large extracellular NH2-ter-
minal tail, TRPP1 has been suggested to be a mechanical 
sensor regulating the opening of  the associated calcium-
permeable channel TRPP2[323]. Shear-stress-induced and 
TRPP1/TRPP2-dependent Ca2+ entry, in turn, triggers 
NO production by recruiting PKC, Ca2+-calmodulin and 
the PI3K/Akt pathway[332,333]. Moreover, TRPP2 may aid 
TRPC1 in mediating Ca2+ influx, NO production, and ac-
tin reorganization in bEnd3 cells exposed to mechanical 
stress[229], as aforementioned.

TRPA1 channels
TRPA1 is the sole member of  the TRPA family, whose 

structural hallmark is represented by the 14 ankyrin re-
peats at its NH2 terminus[200,323]. These repeats might be 
required for the channel to interact with cytoskeletal com-
ponents or to bind to specific agonists[323]. In addition, the 
NH2 terminus possesses a Ca2+-binding EF-domain[323]. 
TRPA1 homotetramers assemble to form a nonselective 
cation channel displaying a relatively high Ca2+ permeabil-
ity when compared with other TRP channels, including 
TRPV1 (Table 5). TRPA1 may be activated by electro-
philic compounds such as acrolein (an active component 
of  tear gas), allicin (found in garlic), and allyl isothiocya-
nate (AITC) (derived from mustard oil). α, β-Unsaturated 
aldehydes produced endogenously in response to oxida-
tive stress, such as 4-hydroxy-2-nonenal, 4-oxo-nonenal, 
and 4-hydroxyhexenal, also activate the channel[323]. Most 
identified TRPA1 agonists act via covalent modification 
of  cysteines in the NH2 termini, with specific binding 
residues identified[323]. In addition, TRPA1 might open in 
response to noxious cold (< 17 ℃), but the thermosensi-
tivity of  the channel is still debated[323]. TRPA1 has been 
detected in native ECs, localized to endothelial cell mem-
brane projections through the internal elastic lamina in the 
direction of  VSMCs. TRPA1-mediated Ca2+ influx causes 
endothelium-dependent SMC hyperpolarization and relax-
ation of  cerebral arteries by activating IKCa and SKCa

[304]. 
IKCa- and SKCa-gated K+ efflux, in turn, activates KIR in 
SMCs, thus amplifying myocyte relaxation and dilation[304].

Stim1 and Orai1
The physical interaction between the ER Ca2+-sensor, 
Stim1, and the plasmalemmal, Ca2+-permeable channel, 
Orai1, has recently been shown to mediate SOCE in 
a number of  vascular ECs[205,206,243,334]. Stim1 is an ER-
resident type I single transmembrane protein with an 
NH2 terminus located either in the ER lumen or facing 
the extracellular space. It contains two NH2-terminal EF 
hand domains (a canonical and a hidden one) followed 
by a sterile α-motif  (SAM) domain, the transmembrane 
region, three predicted coiled-coil domains comprising 
an ezrin-radixin-moesin (ERM) motif  and at the COOH 
terminus, a proline-rich and a lysine-rich domain[335,336]. 
The negatively charged NH2-terminal EF hand domain 
is the Ca2+ sensing subunit of  the protein. In the rest-
ing state, Stim1 seems to be present as a dimer in the 
ER membrane. The dimerization happens through the 
COOH-terminal coiled-coil domains. In case of  store re-
lease, and subsequent Ca2+ dissociation from the canoni-
cal EF hand domain, further oligomerization of  Stim1 
through the SAM domain occurs. These Stim1 oligomers 
migrate towards sites of  the ER that are in close vicinity 
to the plasma membrane, where they assembly into punc-
tuate clusters and activate SOCE by directly binding to 
Orai1[335,336]. Accordingly, the latter has been found to be 
an essential component of  SOCE by forming the pore 
unit of  the channel in a variety of  cell types[335,337], includ-
ing vascular ECs[205,206,338]. Orai1 is a four-transmembrane 
protein with intracellular NH2 and COOH termini. In the 
resting state, it is present as a dimer in the plasma mem-
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brane, however, the functional SOC channel seems to 
be formed by Orai1 tetramers. The interaction between 
Stim1 and Orai1 is mediated by the CRAC activation 
domain (CAD) located at the COOH terminus of  Stim1 
and the cytosolic NH2 and COOH tails of  Orai1[335,336]. 
Accordingly, the genetic suppression of  either Orai1 or 
Stim1 suppresses SOCE induced by either pharmacologi-
cal (CPA and thapsigargin) and physiological (VEGF, 
thrombin) stimulation in HUVECs, EA.hy296 cells, and 
porcine aortic ECs[205,206,218,243,334]. This, in turn, leads to the 
blockade of  several key steps of  the angiogenic process, 
such as proliferation and tubulogenesis[205,206,338]. These 
data are supported by the finding that, under resting con-
ditions, the ER Ca2+ sensor is homogeneously distributed 
throughout the cytosol, whereas emptying of  the InsP3-
sensitive Ca2+ reservoir in the absence of  extracellular 
Ca2+ induces Stim1 homo-oligomerization and redistribu-
tion into sub-plasmalemmal puncta[206,218,339]. Both pro-
cesses are recovered upon Ca2+ restoration to the bathing 
solution, as Ca2+ entry recharges the intracellular Ca2+ 
pool and inactivates Stim1[340]. Stim1 puncta in vascular 
EC reassembly at the same loci during repetitive cycles of  
ER Ca2+ depletion and refilling suggest that this process 
is driven by accessory proteins, such as the microtubule-
plus-end tracking protein, EB1[335,336,340]. The engagement 
of  Stim1 is, however, limited when ECs are stimulated 
in the presence of  extracellular Ca2+, which is consistent 
with modest reduction in the ER Ca2+ load observed 
under these conditions[40,41,340]. An important aspect of  
Stim1 dynamics in ECs regards its modulation by cyto-
solic Ca2+: an increase in submembranal Ca2+ levels pre-
vents Stim1 clustering, thereby impeding prolonged SOC 
activity and intracellular Ca2+ overload[340]. This feature 
might contribute to explain the long-known inhibition of  
SOCE by Ca2+ microdomains arising at the mouth of  the 
channel[341]. SOCE mediated by Stim1 and Orai1 is gated 
by an inwardly rectifying, Ca2+-selective current[205], whose 
amplitude may fall below the resolution limit of  a whole-

cell patch-clamp recording system[206]. Orai1 has two 
homologs in mammals, namely Orai2 and Orai3, which 
do not contribute to SOCE in ECs[205,218,338]. In contrast 
to Stim1, Stim2 has no major effect on SOCE, but might 
be involved in the regulation and stabilization of  basal 
cytosolic and ER Ca2+ levels in ECs[342]. The involvement 
of  Stim1 and Orai1 to endothelial SOCE is, however, still 
controversial and might depend on both the vascular bed 
and the cell type. For instance, recent work ruled out any 
detectable role for Orai1 in thrombin- and thapsigargin-
induced Ca2+ inflow in mouse lung ECs[218], where SOCE 
activity requires functional TRPC1 and TRPC4[218]. The 
same study reported that, in these cells, Stim1 is mobi-
lized into sub-plasmalemmal puncta in a TRPC4-depen-
dent manner and, in turn, it signals TRPC1 and TRPC4 
about the ER Ca2+ content. 

Ca2+ EXTRUSION FROM THE CYTOSOL
A variety of  pumps and exchangers fulfil the function to 
remove Ca2+ from the cytosol following EC stimulation, 
namely SERCA, NCX, PMCA, and the mitochondrial 
uniporter[36,40,41,139,343-349]. SERCA, NCX, PMCA, mito-
chondria may be aligned either in series or in parallel in 
ECs in order to remove Ca2+ from the cytosol properly, 
to achieve successful ER Ca2+ refilling, and facilitate 
SOCE by buffering sub-plasmalemmal Ca2+. These func-
tions are facilitated by their optimal coupling to either 
InsP3Rs or RyRs. 

Expression of SERCA, NCX and PMCA in ECs
SERCA is encoded by three different genes (ATP2A1, 
ATP2A2, and ATP2A3) with numerous alternative splice 
isoforms at the 3′ ends of  the mRNA. More specifi-
cally, ATP2A1 encodes for SERCA1a-1b, ATP2A2 for 
SERCA2a-2c, and ATP2A3 for SERCA3a-3f[350]. The 
SERCA isoforms differ mainly by their affinity for Ca2+ 
(2b > 2a = 1 >> 3) and their Ca2+ transport turnover 
rates, SERCA2b having the lowest transport capacity of  
all SERCAs[350]. Both SERCA2a and SERCA3 have been 
found in isolated and in situ ECs[106,351-356], albeit SERCA3 
transcript levels decrease during EC proliferation in cul-
ture and in hypertension[106,112]. SERCA3 expression is 
regulated by Ca2+ itself  in a calcineurin/NFAT-dependent 
manner[357] and its genetic deletion leads to a decrease in 
agonist-induced elevation in [Ca2+]i and NO synthesis[358]. 
The Ca2+-ATPase activity in vascular endothelium may be 
enhanced by NO, which considerably increases Ca2+ load-
ing into ER lumen[359]. Moreover, ECs may be endowed 
with phospholamban (PLB), a 24- 27-kDa phosphopro-
tein that is closely associated with the cardiac sarcoplas-
mic reticulum, where it modulates SERCA function[360]. 
More specifically, PLB inhibits Ca2+ uptake by SERCA 
in Ach-stimulated cells and dampens the endothelial-
dependent vasorelaxation[360]. In addition, SERCA activity 
is more resistant to peroxynitrite and peroxide in ECs as 
compared to VSMCs[361,362]; a feature that may confer a 
protective effect during the massive production of  free 
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Table 5  Pattern of expression of transient receptor potential 
ankyrin and polycystic channels in vascular endothelial cells as 
detected by reverse transcription/polymerase chain reaction, 
immunohistochemistry, and Western blotting

TRPA1 TRPP1 TRPP2

PCa/PNa and conductance 
(pS)[202]

0.8-1.4, NM 1-5, 40-177 4, 137

Human renal artery ECs[332] +(RT-PCR, 
WB, IC)

Human umbilical vein ECs[332] +(RT-PCR, 
WB)

Mouse aortic ECs[332,333] +(RT-PCR, 
WB, IC)

+(RT-PCR, 
WB)

Mouse femoral artery ECs[332] +(RT-PCR, 
WB)

Rat cerebral arteries[287,304,311] +(RT-PCR, IC) +(RT-PCR)

RT-PCR: Reverse transcription/polymerase chain reaction; WB: Western 
blotting; IC: Immunostaining for cultured cells; NM: Not measured; ECs: 
Endothelial cells. 
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radicals observed under pathological conditions, such 
as ischemia-reperfusion. Conversely, selective targeting 
of  thiol groups (i.e., Cys residues) by myeloperoxidase-
derived oxidants may inhibit the Ca2+-ATPase activity and 
lead to an unbalanced increase in [Ca2+]i, which might 
contribute to the endothelial dysfunction occurring dur-
ing several inflammatory diseases[363]. In this view, oxi-
dized and glycated low-density lipoprotein causes SERCA 
oxidation, aberrant ER stress and atherosclerosis in vivo, 
although this detrimental chain of  events is suppressed 
by AMPK[364,365].

The Na+/Ca2+ exchanger family comprises three 
members, namely NCX1, NCX2, and NCX3, which act 
by expelling one Ca2+ ion for the uptake of  three Na+ 
ions (the so-called “forward-mode” of  NCX). The elec-
trochemical gradient for Na+ provides the energy neces-
sary to drive Ca2+ out of  the cell against its large gradi-
ent and with a stoichiometric ratio of  3 Na+ in: 1 Ca2+ 
out[366]. Cultured ECs may express all of  the three NCX 
subtypes[355,367,368], while the only evidence about NCX 
presence in situ has been reported in rat brain[369]. NCX 
expression may be upregulated by an increase in [Ca2+]i

[370]
. 

In addition to extruding Ca2+ out of  the cytosol, NCX 
may contribute to Ca2+ entry when operating in the so-
called “reverse-mode” (3 Na+ out: 1 Ca2+ in). More spe-
cifically, the close proximity between NCX and the TRPC 
channels, which may either physically interact[371] or be 
clustered in limited membrane nanodomains[372], causes 
NCX to switch into the reverse-mode upon Na+ accumu-
lation beneath the plasma membrane[371,372]. Intriguingly, 
NCX-mediated Ca2+ entry in ECs may be stimulated by 
Ach[373], histamine[43], and VEGF[374], but not by ATP[375]. 
In particular, NCX-driven Ca2+ influx underpins PKCα 
translocation to the plasma membrane, where it stimu-
lates ERK1/2 to trigger a number of  steps (proliferation, 
migration, and tubulogenesis) involved in VEGF-depen-
dent angiogenesis[374]. It is, therefore, conceivable that 
NCX role in the regulation of  Ca2+-dependent processes 
in vascular endothelium may be governed by the incom-
ing stimuli.

PMCA is encoded by four genes, termed PMCA1-4. 
Alternative splicing of  their primary transcripts yields 
a large variety of  PMCA proteins that differ in their 
kinetics and regulation[350]. The pump operates with 
high Ca2+ affinity and low transport capacity, with a 1:1 
Ca2+/ATP stoichiometry[350]. PMCA1 is the main isoform 
found in vascular endothelium, although lower levels of  
PMCA2 and PMCA4 may also be present[355,376]. PMCA-
dependent Ca2+ clearance is triggered by local elevation 
in intracellular Ca2+, which acts by promoting the as-
sociation between CaM and a specific CaM-binding do-
main located at the COOH terminus of  the pump[348,377]. 
PMCA activity and expression is negatively regulated by 
endothelin-1, which may thus lead to an increase in [Ca2+]i 
by reducing Ca2+ clearance from the cytosol[378]. PMCA is 
preferentially located at caveolae on the luminal surface 
of  ECs, and its activity is reduced by phosphatidylserine 
externalization[379,380]. In addition to extruding Ca2+ across 

the plasma membrane, PMCA suppresses both eNOS ac-
tivity and the subsequent NO production by promoting 
Thr-495 phosphorylation in resting and activated ECs[381]. 
PMCA activity in vascular ECs is, in turn, inhibited by 
S-glutathionylation, which leads to a progressive raise in 
[Ca2+]i

[124]. The elucidation of  the role served by PMCA 
in endothelial signaling might benefit from the recent dis-
covery of  caloxin 1b3, a specific PMCA1 inhibitor[382].

Mitochondrial Ca2+ uptake
Mitochondria contribute to the dynamics of  Ca2+ signal-
ing by aiding SERCA, NCX, and PMCA in removing 
Ca2+ from the cytoplasm during the recovery phase. 
Mitochondrial Ca2+ release mechanisms, then, return 
Ca2+ back into the cytosol, where it can be sequestered 
by SERCA. Indeed, there is a close functional relation-
ship between mitochondria and ER[10]. This interaction is 
reinforced by the chaperon glucose-regulated protein 75 
(grp75), which tethers ER InsP3Rs to the voltage-depen-
dent anion channels (VDACs) in the outer mitochondrial 
membrane. VDACs enable the transfer of  cytosolic Ca2+ 
into the mitochondrial intermembrane space, from where 
the electrochemical gradient (the inner mitochondrial 
membrane potential is equal to about -180 mV) drives 
Ca2+ into the mitochondrial matrix mainly by two trans-
port mechanisms[383]. The mitochondrial Ca2+ uniporter 
(MCU), which is located in the inner mitochondrial 
membrane, operates at the micromolar Ca2+ concentra-
tions that are only transiently reached in cells near Ca2+ 
release channels, and might be contributed by uncoupling 
proteins 2 and 3 (UCP2 and UCP3) in ECs[384]. How-
ever, UCP2/3 buffer intracellularly mobilized Ca2+, but 
not that entering the cells via SOCs[385]. Mitochondrial 
Ca2+ uptake from SOCE in ECs is accomplished by a 
second type of  MCU, which mediates Ca2+ uptake into 
mitochondria at nanomolar cytosolic Ca2+ concentrations 
and has been termed Letm1[383]. This is a leucine-zipper-
EF hand-containing a TM region which catalyzes the 
1:1 electrogenic exchange of  Ca2+ for H+[386]. Conversely, 
the contribution of  the so-called mitochondrial calcium 
uptake 1 (MICU1), which has recently been discovered 
by working on HeLa and HEK-293 cells[387], to endo-
thelial Ca2+ signaling has not been ascertained yet The 
mitochondrial NCX (mNCX) is the main mechanism re-
sponsible for the outward transport of  Ca2+ towards the 
cytosol with a stoichiometry of  3Na+:1Ca2+ (as for the 
plasmalemmal NCX)[36,41]: the Na+ that enters down the 
electrochemical gradient is exchanged for Ca2+[383]. 

Microarchitecture of the Ca2+ transporting systems in 
ECs
The microstructural physical localization of  Ca2+ pumps, 
transporters and channels in the ER and plasma mem-
brane relative to each other determines the pattern of  Ca2+ 
clearance from the endothelial cytosol[36,40,41,138,139,345,388]. 
This organization of  the Ca2+ transporting systems creates 
Ca2+ gradients between the sub-plasmalemmal region and 
bulk cytoplasm, which, in turn, enables the same second 
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messenger, i.e., Ca2+, to regulate diverse cellular functions 
depending on its proximity to specific Ca2+-sensitive ef-
fectors[10]. The sequence of  events leading to removal 
of  cytosolic Ca2+ may be different in ECs from different 
vascular beds and three main Ca2+-buffering pathways 
have hitherto been identified. (1) In-series arrangement 
of  RyRs and NCX and of  SERCA and RyRs[139,345]: ac-
cording to this model, that has been described in rabbit 
aortic ECs, cytosolic Ca2+ is captured by SERCA, released 
from the ER via RyRs, and extruded across the plasma 
membrane via the NCX. PMCA acts in parallel to this 
pathway to bind to and deliver Ca2+ to the extracellular 
space; (2) Vectorial Ca2+ release from sub-plasmalemmal 
InsP3Rs to the extracellular space via NCX[389]: this system 
operates following either a moderate or a slow increase in 
InsP3 levels in porcine coronary artery ECs, prevents sub-
plasmalemmal Ca2+ from reaching the deeper cytosol by 
triggering CICR on RyRs, and has, therefore, been termed 
SCCU. The SCCU has also been found in EA.hy926 cells, 
where it subserves a signaling role by activating the en-
dothelial Ca2+-dependent large conductance K+ channels 
(BKCa) after cell stimulation by low concentrations of  his-
tamine[140,141]. An increase in the agonist dose overcomes 
the moderate RyRs-dependent subplasmalemmal Ca2+ 
release due to the higher InsP3-dependent Ca2+ mobiliza-
tion; and (3) Mitochondrion-mediated ER refilling: this 
pathway redirects entering Ca2+ through SOCs to the ER 
in the presence of  an InsP3-generating agonist[36,41,388]. 
SOCE is buffered by sub-plasmalemmal mitochondria 
and vectorially transferred via mNCX to SERCA. When 
SOCE occurs in the absence of  InsP3, the superficial do-
mains of  the ER mimic mitochondrial Ca2+ buffering by 
immediately capturing entering Ca2+. This Ca2+-buffering 
mode has been mainly characterized in EA.hy926 cells, 
where it coexists with the SCCU system described above. 
The former is responsible for the extrusion of  Ca2+ enter-
ing into the cells via SOCE, whereas the latter removes 
from the cytosol the intracellularly-released calcium ions. 
The mitochondria-mediated ER recharging might also be 
present in other vascular beds, but this mechanism has not 
been thoroughly investigated in mature endothelium.

The endothelial Ca2+-buffering system may, however, 
operate in parallel, as depicted by a number of  stud-
ies conducted on microvascular endothelial cells. In rat 
brain capillary ECs, for instance, the SERCA provides 
the major pathway responsible for clearing cytosolic Ca2+, 
whereas NCX extrudes across the PM a minor percentage 
(around 30%) of  the calcium ions mobilized from ER[343]. 
Conversely, in rat cardiac microvascular cells, PMCA and 
SERCA have been shown to restore endothelial Ca2+ 
to prestimulation levels during exposure to the agonist. 
However, upon interruption of  the stimulation, SERCA 
quickly recaptures Ca2+ back into the ER lumen[349].

Spatiotemporal organization of 
intracellular Ca2+ signals in ECs
The remarkable versatility of  Ca2+ is due to the multitude 

of  Ca2+ signals that can be generated by extracellular 
stimuli within a single cell. Such heterogeneity depends 
on the recruitment of  specific components of  the Ca2+ 
toolkit which lead to the generation of  intracellular 
signals varying in amplitude, spatial dimension and fre-
quency[10,390,391]. The opening of  Ca2+-permeable pathways 
either on the ER or plasma membrane may give rise to 
local or elementary Ca2+ signals, which are spatially re-
stricted within hundreds of  nanometers to micrometers 
from the mouth of  the channel pore[392]. The local nature 
of  these events is attributable to the concerted action of  
Ca2+ buffering and reuptake mechanisms that limit the 
diffusion of  the Ca2+ signal[37]. The most simple Ca2+ re-
lease events are the Ca2+ blips and the Ca2+ quarks, which 
arise from the opening of  single InsP3Rs and RyRs, 
respectively[10,392]. Endothelial Ca2+ blips have average 
amplitude of  23 nmol/L, are 1- to 3-µm wide, and last < 
100 ms[393]. Conversely, there is no report of  endothelial 
Ca2+ quarks. The concerted opening of  a fixed cluster 
of  InsP3Rs and RyRs give rise, respectively, to Ca2+ puffs 
and Ca2+ sparks[10,392]. Spontaneous Ca2+ puffs have been 
reported in native ECs[394-396], which can be excited by 
adjoining SMCs through gap junctional communica-
tion[396-398]. Isolated ECs display only agonist-induced 
Ca2+ puffs, which reach a peak of  about 50 nmol/L and 
spread for no longer than 30 µm[393]. Elementary Ca2+ 
release events mediated by InsP3Rs, but different from 
the classic Ca2+ puffs, may occur in restricted spaces of  
myoendothelial projections and have been termed Ca2+ 
pulsars[16,399]. The endothelial Ca2+ pulsars colocalize with 
the intermediate conductance, Ca2+-sensitive K+ channels 
(KCa3.1) so that local Ca2+ signals may be translated into 
a negative shift in VM which is rapidly transmitted to the 
adjacent VSMCs in terms of  EDHF[399]. Consistently, 
sympathetic nerve stimulation activates α-adrenergic 
receptors on SMCs to recruit new pulsar sites in the 
adjoining ECs in order to oppose vasoconstriction[400]. 
The spatiotemporal summation of  adjacent Ca2+ puffs 
leads to a regenerative intracellular Ca2+ wave that can 
spread throughout the cytosol at an average speed of  5-60 
µm/s[118,393,401]. The regenerative propagation of  the Ca2+ 
elevation is, indeed, faster in the perinuclear region and at 
the initiation site[118]. The endothelial Ca2+ sweep tends to 
originate from multiple peripheral foci localized in the ca-
veolae compartments of  the plasma membrane[402]. These 
triggering sites remain constant during repetitive cell 
stimulation[393,401,402]. Indeed, when the information em-
bedded within the [Ca2+]i increase must be conveyed over 
a long time, both the elementary events and the global 
Ca2+ sweeps can adopt an oscillatory pattern[16,72,339,396]. 
However, the physiological outcome of  local Ca2+ spikes 
depends on the Ca2+-sensitive decoders located within 
a few nanometers from the channel pore[395], and the 
frequency of  repetitive Ca2+ waves encodes for the selec-
tive engagement of  specific downstream targets[403-405]. 
The interspike interval of  the Ca2+ transients is inversely 
correlated to the strength of  the stimulus until, at least 
at high agonist doses, they apparently fuse to generate a 
plateau level[16,72,406,407]. Endothelial Ca2+ oscillations may, 
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indeed, be elicited by mechanical forces, extracellular au-
tacoids or oxidative stress. Shear stress and pressure may 
induce ECs to undergo repetitive Ca2+ transients by trig-
gering Ca2+ entry through Gd3+-sensitive MSCs followed 
by CICR from RyRs[22,24,25]. The opening of  the MSC gen-
erates a transient local Ca2+ event that has been termed 
Ca2+ hotspot[24]. Unlike the oscillatory Ca2+ response to 
extracellular ligands[72,406,407], the amplitude of  the Ca2+ 
spikes increases with the intensity of  the mechanical 
stimulation[22-25]. Agonist-evoked Ca2+ oscillations require 
PLC activation by either GPCRs or TKRs[72,339,404,405,408]. 
The following InsP3-dependent Ca2+ mobilization may 
be amplified by adjacent RyRs via CICR[44,134] and requires 
Ca2+ inflow to supply releasable Ca2+ over time and 
maintain InsP3R sensitivity to the ligand[72,407,409,410]. Ca2+ 
entering through either SOCE or the reverse-mode of  
NCX is sequestered by SERCA into ER lumen before 
being released again into the cytosol through the open 
InsP3Rs[72,134,339,404,405]. Some[16], but not all[72], microvascu-
lar ECs may be independent on Ca2+ inflow. In addition 
to bringing about the downstroke of  each Ca2+ spike, 
SERCA shapes both the rate of  the initial Ca2+ release 
and the amplitude of  the regenerative upstroke, whereas 
it does not affect the Ca2+ wave speed[339,411]. As a conse-
quence of  the rhythmic interplay between InsP3-induced 
Ca2+ release and SERCA-mediated Ca2+ reuptake, SOCE 
is not constant during the Ca2+ train. Accordingly, store-
sensitive Ca2+ inflow is activated by the partial depletion 
of  the Ca2+ pool occurring during each Ca2+ spike and is 
then turn off  by store replenishment[410,412]. Finally, ECs 
may display repetitive Ca2+ oscillations in response to the 
NAD(P)H oxidase-derived H2O2 that is endogenously 
produced during the ischemia/reperfusion injury[56,413]. 
H2O2-elicited Ca2+ spikes are supported by the periodic 
opening of  InsP3Rs, but rapidly run down in absence of  
extracellular Ca2+[56,413]. It would, therefore, be interesting 
to assess whether the H2O2-sensitive plasmalemmal chan-
nel, TRPM2, is involved in the signal transduction path-
ways recruited under these conditions[320].

CONCLUSION
Once regarded as an inert barrier between circulation and 
vascular tissue, ECs constitute the largest signal transduc-
tion platform of  the organism, which is essential for the 
proper functioning of  the cardiovascular system. Any al-
teration in the endothelial capability to detect and decode 
both physical and humoural stimuli into the most suitable 
vessel wall phenotype may lead to an astonishing variety 
of  severe diseases, including myocardial infarction, brain 
stroke, atherosclerosis, peripheral artery disease, and tu-
mor. As recently outlined by Munaron and Florio Pla[11], 
it is imperative to understand the molecular mechanisms 
that enable vascular ECs to fulfil their multifaceted role 
in order to either prevent or reduce the adverse conse-
quences of  so-called endothelial dysfunction. The Ca2+ 
signalling toolkit plays a key role in the control of  a wide 
array of  endothelial processes and, therefore, any change 
in the pattern of  expression of  each of  its components is 

somehow involved in the pathogenesis of  an increasing 
number of  pathologies. Despite the most recent advances 
in the comprehension of  the molecular underpinnings of  
the Ca2+ responses to both physical and chemical stimula-
tion, a huge amount of  work is standing in front of  us. 
First, the blend of  endothelial ion channels, transporters 
and receptors may vary with species, age, sex, hormonal 
status, vascular bed, and blood vessel diameter. This issue 
has been further stressed by the recent finding that Stim1 
and Orai1 control in vitro tubulogenesis in HUVECs[206], 
but not in the HUV-derived EC line, EA.hy926[224]. As 
a consequence, the information on the Ca2+ machinery 
acquired on animal or cell line models cannot undergo 
a straightforward clinical translation, but must be con-
firmed in humans and in the vascular region implicated 
in the disease under investigation. This task may not be 
easy due to the difficulties of  obtaining human samples 
from either healthy or pathological vessels. Second, the 
controversy on the molecular nature of  SOCs, which 
are regarded as the most important pathway for Ca2+ 
influx into vascular endothelium, is far from being fully 
resolved. As described above, a recent study suggested 
that Orai1 and Stim1, whose physical interaction medi-
ates SOCE in the immune system, underlie this Ca2+ en-
try route only in HUVECs, whereas TRPC1 and TRPC4 
are activated by the emptying of  the Ca2+ pool in other 
vascular beds. The same study, however, contributed to 
boost such controversy by demonstrating that the genetic 
suppression of  TRPC1 dampens SOCE in HUVECs, 
a finding which is not consistent with those previously 
reported on the same preparation. This conflict is not 
surprising when considering the abundance of  discrepant 
data about TRPC1 modulation by Stim1. The possibility 
that the molecular structure of  SOCE (i.e., either the ER 
Ca2+ sensor and the Ca2+-permeable pore) might differ in 
distinct species and vascular beds, as put forward by Sun-
divakkam et al[218], should be also considered. Moreover, 
the possibility that the components of  SOCE may be dif-
ferent in distinct phases of  the cell cycle should be taken 
in account. Yet, it is evident that further studies will have 
to be devoted to clarify this issue in vascular ECs. A re-
cent study attempted to solve this controversy by investi-
gating the association between Orai1 and TRPC1, which 
has been described in a growing number of  nonexcitable 
cells, in rat pulmonary artery ECs. In these cells, SOCE 
has long been associated with TRPC1 and TRPC4, as 
widely described above[217]. Surprisingly, Cioffi et al[414] have 
found that Orai1 constitutively interacts with TRPC4 and 
drives the activation of  the TRPC1-TRPC complex upon 
intracellular Ca2+ release. It is not clear, however, whether 
and how protein 4.1 and Stim1 independently confer 
store-sensitivity to the ternary complex on the plasma 
membrane. Third, whereas the intracellular target of  
InsP3 has long been recognized, the selective receptor of  
the two newly discovered second messengers, cADPr and 
NAADP, has recently been questioned. Indeed, a couple 
of  recent investigations demonstrated that the genetic 
suppression of  TPC1-2 does not prevent cell labeling by 
NAADP[415,416]. Conversely, the same studies suggested 
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that a 22- and 23-kDa pair of  accessory proteins might 
serve as NAADP receptors and regulate the activity of  
its target channels, including TPC1-2 in ECs and RyRs 
in the immune system. The same controversy holds true 
also for the molecular effector of  cADPr-dependent sig-
nalling in mature ECs. As mentioned already, the mecha-
nistic link between cADPr and RyRs-mediated Ca2+ is yet 
to be elucidated. Fourth, ECs establish either transient or 
permanent intimate contacts with a variety of  cell types, 
such as circulating blood cells or tumoral cells, fibroblasts, 
and SMCs. Only a few studies have hitherto addressed 
whether and how these tight relationships may affect en-
dothelial Ca2+ homeostasis. In addition, ECs may under-
go a rearrangement of  their Ca2+ signaling proteins when 
detached from the vessel walls and cultured in vitro[7,153]. 
It follows that future studies should be conducted both 
in vitro and in vivo, by exploiting the genetic Ca2+-sensors 
that have been described in the literature, to explore this 
fascinating aspect of  Ca2+ signaling. Finally, intracellular 
Ca2+ waves have recently been shown to drive EPC pro-
liferation, homing, and tubulogenesis. Only a few inves-
tigations have so far been devoted to unmask the players 
of  the Ca2+ machinery involved in these tasks. In the 
light of  the promising therapeutic potential of  the Ca2+-
permeable channels in these cells, either as a target or 
facilitators of  clinical interventions, we are confident that 
this field will gain the interest of  researchers worldwide. 
Therefore, it appears that the way towards full compre-
hension of  the intricate network of  membrane receptors, 
ion channels, transporters, pumps, and cytosolic decoders 
that convert an extracellular stimulus into a meaningful 
Ca2+ signal still has a long way to go and overcome many 
obstacles, but a multidisciplinary approach will certainly 
be helpful to reach this goal.
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