

# Detection of Carbapenemase Producers in *Enterobacteriaceae* by Use of a Novel Screening Medium

#### Patrice Nordmann, Delphine Girlich, and Laurent Poirel

Service de Bactériologie-Virologie, INSERM U914 "Emerging Resistance to Antibiotics," Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine Paris Sud, K.-Bicêtre, France

A Drigalski agar-based culture medium containing an ertapenem, cloxacillin, and zinc sulfate (Supercarba medium) was tested for screening carbapenemase-producing members of the family *Enterobacteriaceae*. OXA-48 (n = 44), NDM (n = 25), VIM or IMP (n = 27), and KPC producers (n = 18) were detected with a low detection limit. Its overall sensitivity (95.6%) was higher than those of the currently available ChromID ESBL (bioMérieux) and CHROMagar KPC (CHROMagar) screening media. The Supercarba medium provides a significant improvement for detection of the most common types of carbapenemase producers.

variety of carbapenemases are increasingly reported in mem-Abers of the family Enterobacteriaceae worldwide. Carbapenemase producers are becoming a source of therapeutic failures in both hospital- and community-acquired infections. The detection of infected patients and carriers with multidrug-resistant isolates is therefore becoming a major issue, and it is a major health issue to prevent the spread of these isolates. The clinically significant carbapenemases in Enterobacteriaceae belong to several Ambler classes of  $\beta$ -lactamases that differ by chemical structures and biochemical properties (1). They are mostly of the Ambler class A (KPC) that hydrolyze all  $\beta$ -lactams, of the zinc-dependent Ambler class B (NDM, VIM, and IMP) that hydrolyze all β-lactams except aztreonam, and of the Ambler class D (OXA-48-like) that hydrolyze carbapenems and weakly hydrolyze (or do not hydrolyze) broad-spectrum cephalosporins (2, 5, 6, 8, 13, 15–17, 20–22). The level of resistance to carbapenems provided by those carbapenemase producers may vary significantly, making their detection difficult when based only on high-level carbapenem resistance (3, 4, 11, 12). A medium initially designed to screen for extendedspectrum *β*-lactamase (ESBL) producers that contains cefpodoxime (ChromID ESBL; bioMérieux, La Balme-les-Grottes, France) and a carbapenem-containing medium (CHROMagar KPC; CHROMagar Company, Paris, France) (11, 23, 24) were evaluated for screening carbapenemase producers. Both media contained chromogenic molecules that may contribute to the recognition of enterobacterial species. The ChromID ESBL medium has good sensitivity; its main disadvantage is its lack of detection of OXA-48-like producers that are susceptible to cefpodoxime in the absence of coproduction of an ESBL (3). In addition, this medium lacks specificity, since the widespread ESBL producers may be coselected on that medium. The CHROMagar KPC medium detects carbapenemase producers only if they are resistant to high levels of carbapenems. Therefore, its main disadvantage remains its lack of sensitivity, since it does not detect carbapenemase producers with a low level of resistance to carbapenems (3, 16). This is the case for many KPC-, IMP-, VIM-, NDM-, and OXA-48-producing Escherichia coli and Klebsiella pneumoniae.

Taking into account the current importance of detecting carbapenemase producers with accuracy, we have designed a novel screening medium called Supercarba medium. The rationale for the design of this medium was that it should be able to detect carbapenemase producers with low-level resistance to carbapenems and be as selective as possible by inhibiting the growth of carbapenem-resistant but non-carbapenemase-producing isolates.

Different concentrations of several carbapenem molecules were tested, and finally, ertapenem was added to Drigalski agar medium at a concentration of 0.25 µg/ml. ZnSO<sub>4</sub> (70 µg/ml) was added to improve expression of metallo- $\beta$ -lactamases (MBLs) by MBL producers (12). Cloxacillin (250 µg/ml), which is a cephalosporinase (AmpC-type  $\beta$ -lactamase) inhibitor, was used to prevent growth of isolates expressing high levels of cephalosporinases, such as *Enterobacter cloacae*, *Enterobacter aerogenes*, *Morganella morgannii*, and *Serratia marcescens*. These isolates are clinically significant sources of carbapenem resistance associated with an outer membrane permeability defect (9, 14).

A total of 114 carbapenemase-producing isolates belonging to various enterobacterial species of worldwide origin were included in the study, all having a  $\beta$ -lactamase content characterized at the molecular level (Table 1). The strains were as follows: KPC producers (n = 18), VIM producers (n = 12), IMP producers (n =15), NDM-1 producers (n = 25), together with OXA-48- (n = 41) and OXA-181 producers (n = 3). Seventy-five of those isolates coexpressed an ESBL (Table 1). Strains that did not express any carbapenemase were used as controls, consisting of isolates showing reduced susceptibility to ertapenem due to an overexpressed AmpC (n = 10), or to an ESBL (n = 12), and/or porin deficiency. Wild-type ertapenem-susceptible isolates, restricted-spectrum β-lactamase producers, ESBL producers, and high-level AmpC producers were also included as controls (n = 40) (Table 1). Using an inoculum of  $\sim 2 \times 10^7$  CFU/ml (range,  $1.5 \times 10^7$  to  $3.5 \times 10^8$ CFU/ml), serial 10-fold dilutions of the isolates were made in normal saline, and 100-µl portions were plated onto the Supercarba medium and compared to results obtained using CHROMagar KPC and ChromID ESBL media. Viable bacteria

Received 22 November 2011 Returned for modification 21 December 2011 Accepted 15 February 2012

Published ahead of print 22 February 2012

Address correspondence to Patrice Nordmann, nordmann.patrice@bct.aphp.fr. Copyright © 2012, American Society for Microbiology. All Rights Reserved. doi:10.1128/JCM.06477-11

## TABLE 1 MICs and limits of detection of Supercarba, ChromID ESBL, and CHROMagar KPC media $^a$

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                                                                                              | MIC (µg/ml) of antibiotic <sup>c</sup> |              | Lowest detection limit (CFU/ml) for the following medium <sup><i>d</i></sup> : |                                               |                                           |                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------|--------------|--------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------|-------------------------------------------|
| Amble das A arbigenemic (MC)-<br>producing status         NCC 2 + SIV:11         >32         >32         32         1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> K presentation (ES         KCC 2 + TEM 1 + OX.9         >32         >32         32         1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> E presentation (ES         KCC 2 + TEM 1 + OX.9         6         1 = 15         1 = 15         1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> E presentation (ES         KCC 2 + TEM 1 + OX.9         6         1 = 15         1 × 10 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Strain                                         | β-Lactamase content <sup>b</sup>                                                             | IPM                                    | ETP          | MEM                                                                            | Supercarba                                    | ChromID<br>ESBL                           | CHROMagar<br>KPC                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ambler class A carbapenemase (KPC)-            |                                                                                              |                                        |              |                                                                                |                                               |                                           |                                           |
| K. prenominale 2003         KWC 2 - TSM + 1 + 0XA - 9         > 52         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53         > 53 </td <td>producing strains</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | producing strains                              |                                                                                              |                                        |              |                                                                                |                                               |                                           |                                           |
| <i>k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k</i> <td>K. pneumoniae 2303</td> <td><b>KPC-2</b> + SHV-11</td> <td>&gt;32</td> <td>&gt;32</td> <td>&gt;32</td> <td><math>1 \times 10^{1}</math></td> <td><math>1 \times 10^{1}</math></td> <td><math>1 \times 10^{1}</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K. pneumoniae 2303                             | <b>KPC-2</b> + SHV-11                                                                        | >32                                    | >32          | >32                                                                            | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $1 \times 10^{1}$                         |
| k         production         k         production         k         production         produ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K. pneumoniae LIE                              | KPC-2 + TEM-1 + OXA-9                                                                        | >32                                    | >32          | >32                                                                            | $5 \times 10^{1}$                             | $1 \times 10^{1}$                         | $1 \times 10^{1}$                         |
| A. Phenomics 38         N.C.2 + LEM-1 + SIN-1 + UNA-3         24         24         10         1.5         1.8         1.8           R. proximities A28006         RCC 2 + TEM-1 + SIN-1 + CTX-M-2 + OXA-9         232         232         232         231         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100         1.8         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K. pneumoniae GES                              | KPC-2 + TEM-1 + SHV-11                                                                       | 6                                      | 12           | 1.5                                                                            | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $\frac{1 \times 10^3}{1 \times 10^1}$     |
| A. Freemanning L28000         RC 2 + TEM + 1 (TEX M 2 + SHV-11         Solution (Construction)         Solution (Construction)         Solution (Construction)         Solution (Construction)           K. preakmaine KAM         RC 2 + TEM + SHV-11 + SHV-12         0.75         4         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K. pneumoniae 588                              | KPC - 2 + TEM - 1 + SHV - 11 + SHV - 12 + OXA 0                                              | 24                                     | 32<br>24     | 16                                                                             | $1 \times 10^{1}$<br>$1 \times 10^{1}$        | $1 \times 10^{1}$<br>$1 \times 10^{1}$    | $1 \times 10^{-1}$                        |
| End       Formation (C)       Constraint (C) </td <td>K. pneumoniae A28006</td> <td>KPC-2 + TEM-1 + STIV-11 + STIV-12 + OAA-9<br/>KPC-2 + TEM-1 + CTX-M-2 + SHV-11</td> <td>4<br/>16</td> <td>24</td> <td>32</td> <td><math>1 \times 10</math><br/><math>2 \times 10^{1}</math></td> <td><math>1 \times 10</math><br/><math>1 \times 10^{1}</math></td> <td><math>1 \times 10</math><br/><math>1 \times 10^{1}</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K. pneumoniae A28006                           | KPC-2 + TEM-1 + STIV-11 + STIV-12 + OAA-9<br>KPC-2 + TEM-1 + CTX-M-2 + SHV-11                | 4<br>16                                | 24           | 32                                                                             | $1 \times 10$<br>$2 \times 10^{1}$            | $1 \times 10$<br>$1 \times 10^{1}$        | $1 \times 10$<br>$1 \times 10^{1}$        |
| E         perturbation         KMC         TEAH         SNV-11         SNV-12         C75         4         L5         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L <thl< th="">         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         <thl< th="">         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         <thl< td=""><td>K. pneumoniae A33504</td><td><math display="block">\mathbf{KPC-2} + \mathbf{TEM-1} + \mathbf{SHV-11} + \mathbf{CTX-M-2} + \mathbf{OXA-9}</math></td><td>&gt;32</td><td>&gt;32</td><td>&gt;32</td><td><math>1 \times 10^{1}</math></td><td><math>1 \times 10^{1}</math><br/><math>1 \times 10^{1}</math></td><td><math>1 \times 10^{1}</math><br/><math>1 \times 10^{1}</math></td></thl<></thl<></thl<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K. pneumoniae A33504                           | $\mathbf{KPC-2} + \mathbf{TEM-1} + \mathbf{SHV-11} + \mathbf{CTX-M-2} + \mathbf{OXA-9}$      | >32                                    | >32          | >32                                                                            | $1 \times 10^{1}$                             | $1 \times 10^{1}$<br>$1 \times 10^{1}$    | $1 \times 10^{1}$<br>$1 \times 10^{1}$    |
| K       preasmoniae KAM       KPC 3 + TEM + 1 SHV +11       8       12       2       1 × 10 <sup>2</sup> 1 × 10 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K. pneumoniae MUS                              | <b>KPC-2</b> + TEM-1 + SHV-11 + SHV-12                                                       | 0.75                                   | 4            | 1.5                                                                            | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $1 \times 10^{3}$                         |
| E of PSP         KPC-2 + TEAI + OXA-1         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5 </td <td>K. pneumoniae KAM</td> <td><b>KPC-3</b> + TEM-1 + SHV-11</td> <td>8</td> <td>12</td> <td>2</td> <td><math>1 \times 10^{1}</math></td> <td><math>1 \times 10^{1}</math></td> <td><math>5 \times 10^{3}</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K. pneumoniae KAM                              | <b>KPC-3</b> + TEM-1 + SHV-11                                                                | 8                                      | 12           | 2                                                                              | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $5 \times 10^{3}$                         |
| $ \begin{array}{c} L \ oto\ DN \\ E \ oto\ DN \ Oto\ DN \\ E \ oto\ DN \ Oto\ DN \\ E \ oto\ DN \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E. coli PSP                                    | $\mathbf{KPC-2} + \mathbf{TEM-1} + \mathbf{OXA-1}$                                           | 0.5                                    | 0.5          | 0.5                                                                            | $1 \times 10^{2}$                             | $1 \times 10^{1}$                         | $\frac{1 \times 10^4}{10^4}$              |
| L of OLL         KPC-J   LM-1 + CLAM-9         4         4         4         4         4         4         1 $\times$ 10 <sup>1</sup> L × 10 <sup>1</sup> <thl 10<sup="" ×="">1 <thl 10<sup="" ×="">1</thl></thl>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E. coli DIN                                    | KPC-2 + TEM-1 + OXA-1                                                                        | 1                                      | >32          | 0.5                                                                            | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $1 \times 10^{1}$                         |
| E. dotailling         PRC 2 + TEX-1         V 0.0.79         2         4         52         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         1        &lt;</th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E. coli COL                                    | KPC - 2 + TEM - 1 + CTX - M - 9                                                              | 4                                      | 4            | 2                                                                              | $1 \times 10^{1}$<br>$1 \times 10^{1}$        | $1 \times 10^{1}$<br>$1 \times 10^{1}$    | $\frac{1 \times 10^3}{1 \times 10^1}$     |
| E. docae CFV1         KPC 2 + TEM 3         4         2         1         1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 5 × 10 <sup>2</sup> E. docae HPTU         KPC 2 + TEM 1         23         23         23         1 × 10 <sup>1</sup> 1 × 10 <sup></sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E. CON LIL<br>F. cloacae HMG                   | KPC-2 + TEM-1 + OXA-9<br>KPC-2 + TEM-1                                                       | 2                                      | >32          | 16                                                                             | $1 \times 10^{-1}$<br>$1 \times 10^{2}$       | $1 \times 10$<br>$1 \times 10^{1}$        | $1 \times 10^{1}$<br>$1 \times 10^{1}$    |
| $ \begin{array}{c} \underline{E}, \underline{c}, \underline{c}$ | E. cloacae CFVL                                | KPC-2 + TEM-1                                                                                | 4                                      | 2            | 1                                                                              | $1 \times 10^{1}$<br>$1 \times 10^{1}$        | $1 \times 10^{1}$<br>$1 \times 10^{1}$    | $5 \times 10^{5}$                         |
| S. marcescene D6403         KPC 2 + TEM-1         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         32         32         10         1         10         1         10         1<10         1         10         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E. cloacae HPTU                                | KPC-2 + TEM-1 + SHV-11                                                                       | 2                                      | 4            | 1.5                                                                            | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $\frac{1}{1 \times 10^1}$                 |
| S. macceenes C7052         KPC-2 + TEM-1 + SHV-12         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         >32         1         10 <sup>1</sup> 1         1         1         1         1         1         1         1         10 <sup>1</sup> 1 <th10<sup>1         1         10<sup>1</sup></th10<sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S. marcescens D6403                            | <b>KPC-2</b> + TEM-1                                                                         | >32                                    | >32          | >32                                                                            | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $1 \times 10^{1}$                         |
| Ambler class B carbapenenase-producing strains in the strains of the second strains of the second strains in the strains in the second strain strains in the second strain strains in the second strain strain strains in the second strain strain strains in the second strain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S. marcescens C7052                            | $\mathbf{KPC-2} + \mathrm{TEM-1} + \mathrm{SHV-12}$                                          | >32                                    | >32          | >32                                                                            | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $1 \times 10^{1}$                         |
| K. preumoniae OMA19         NDM-1 + CXA-1         1.5         6         2         1 × 10 <sup>1</sup> 1 × 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ambler class B carbapenemase-producing strains |                                                                                              |                                        |              |                                                                                |                                               |                                           |                                           |
| k         preumoniae K12         NDM-1 + CTX-M-15 + OXA-1         1         8         4         1         N0         1         X         N0           k         preumoniae         OMA         1         CTX-M-15 + OXA-1 + OXA-1         1         232         232         1         N0 <sup>1</sup> 1         X         N0 <sup>1</sup> 1         N0 <sup>1</sup> N0 <sup>1</sup> 1         N0 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K. pneumoniae OMA419                           | NDM-1 + OXA-1                                                                                | 1.5                                    | 6            | 2                                                                              | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $1 \times 10^{2}$                         |
| k. preumoniae VA         NDM-1 + C1X-M-15 + CM-14 + OXA-1         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2         >>2 <td>K. pneumoniae KI2</td> <td>NDM-1 + CTX-M-15 + OXA-1</td> <td>1</td> <td>8</td> <td>4</td> <td><math>1 \times 10^{1}</math></td> <td><math>1 \times 10^{1}</math></td> <td><math>1 \times 10^{1}</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K. pneumoniae KI2                              | NDM-1 + CTX-M-15 + OXA-1                                                                     | 1                                      | 8            | 4                                                                              | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $1 \times 10^{1}$                         |
| <i>k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K. pneumoniae UK                               | $NDM \cdot I + CTX \cdot M \cdot 15 + CMY \cdot 4 + OXA \cdot 10$                            | >32                                    | >32          | >32                                                                            | $1 \times 10^{1}$<br>$1 \times 10^{1}$        | $1 \times 10^{1}$<br>$1 \times 10^{1}$    | $1 \times 10^{1}$<br>$1 \times 10^{1}$    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K. pneumoniae 6759 GEN                         | NDM-1 + CTX-M-13 + OXA-1 + OXA-10<br>NDM-1 + CTX-M-15 + CMY-16 + OXA-1 + OXA-1               | 12                                     | >32          | >32                                                                            | $1 \times 10$<br>$1 \times 10^{1}$            | $1 \times 10$<br>$1 \times 10^{1}$        | $1 \times 10$<br>$1 \times 10^{1}$        |
| k. preumoniae OMA001NDM-1 + C1X-M-15 + OXA-1 + OXA-9 $32$ $32$ $32$ $32$ $32$ $1\times 10^{-1}$ $1\times $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                | 9 + OXA-10                                                                                   |                                        |              |                                                                                | 4                                             | 4 4 0 1                                   | 4                                         |
| h. pretermoniae OM1NDM-1 + TEM-1 + CIX-M-15 + CM-1 $0.22 - 222 - 222 - 1 \times 100$ $1 \times 10^{-1} - 1 \times 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K. pneumoniae OMA601                           | NDM - I + CIX - M - 15 + OXA - I + OXA - 9                                                   | >32                                    | >32          | >32                                                                            | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $1 \times 10^{1}$                         |
| R. pneumoniae OM4NDM-1 + TEM-1 + CIX-M-15 + SHV-11 + CXA-9 $4.25$ $5.25$ $1.53$ $1 \times 10^{1}$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K. pneumoniae OM2                              | $NDM_{-1} + TEM_{-1} + CTX_{-M-3} + SHV_{-1} + OXA_{-1}$                                     | >52<br>0.75                            | >32<br>8     | >32<br>1.5                                                                     | $1 \times 10$<br>$1 \times 10^{1}$            | $1 \times 10$<br>$1 \times 10^{1}$        | $1 \times 10$<br>$3 \times 10^4$          |
| k pneumoniae OM8<br>K pneumoniae OM13NDM-1 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1<br>+ OXA-92 $32$ $4$ $2$ $1 \times 10^3$ $1 \times 10^3$ $1 \times 10^3$ K pneumoniae OM15<br>K pneumoniae OM15NDM-1 + TEM-1 + CTX-M-15 + SHV-28 + OXA-1<br>to OXA-9 $3$ $4$ $2$ $1 \times 10^1$ $1 \times 10^1$ $3 \times 10^5$ K pneumoniae OM15<br>K pneumoniae OM19NDM-1 + CTX-M-15 + SHV-12 + OXA-1<br>to MD-1 + CTX-M-15 + SHV-12 + OXA-1<br>to AX-1 + OXA-181<br>K pneumoniae XEE<br>E coli GUENDM-1 + CTX-M-15 + SHV-12 + OXA-1<br>to AX-1 + OXA-181<br>to AX-1 + OXA-1 $3$ $2$ $1 \times 10^1$ $1 \times 10^1$ $4 \times 10^2$ K pneumoniae XEE<br>E coli GUE<br>E coli AUSNDM-1 + SHV-32 + CMV-16 + OXA-10<br>NDM-1 + TEM-1 + CTX-M-15 $6$ $32$ $16$ $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E coli GUE<br>E coli GUS<br>E coli GUSNDM-1 + TEM-1 + CTX-M-15 $6$ $32$ $16$ $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E coli GUS<br>E coli GUC<br>E coli GUCNDM-1 + TEM-1 + CTX-M-15 $16$ $32$ $12$ $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E coli GUC<br>E coli GU2NDM-1 + TEM-1 + CTX-M-15 $16$ $32$ $12$ $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E coli GU2<br>E coli AUC<br>NDM-1 + TEM-1 + CTX-M-15 $16$ $32$ $12$ $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E coli GU2<br>E coli AUC<br>DMD-1 + TEM-1 + CTX-M-15 $12$ $03$ $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E coli GU2<br>C fuendi STE<br>P stuarti PS1<br>P stuarti PS1<br>C freundi STE<br>P stuarti PS1<br>C freundi STE<br>P stuarti PS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K. pneumoniae OM2                              | NDM-1 + TEM-1 + CTX-M-5 + SHV-11 + OXA-9                                                     | 4                                      | >32          | 1.5                                                                            | $1 \times 10^{1}$<br>$1 \times 10^{1}$        | $1 \times 10^{1}$<br>$1 \times 10^{1}$    | $\frac{3 \times 10}{1 \times 10^1}$       |
| Kpneumoniae OM13NDM-1+ TEM-1 + CTX-M-15 + SHV-28 + OXA-1342 $1 \times 10^1$ $1 \times 10^1$ $3 \times 10^4$ Kpneumoniae OM15NDM-1 + CTX-M-15 + SHV-130 + OXA-11.5123 $1 \times 10^1$ $1 \times 10^1$ $3 \times 10^5$ Kpneumoniae OM16NDM-1 + CTX-M-15 + SHV-130 + OXA-14248 $3 \times 10^4$ $1 \times 10^1$ $4 \times 10^2$ Kpneumoniae CM19NDM-1 + CTX-M-15 + SHV-12 + OXA-14248 $1 \times 10^1$ $1 \times 10^1$ $4 \times 10^2$ Kpneumoniae CM19NDM-1 + TEM-14 + OXA-1332 $1 \times 10^1$ $1 \times 10^1$ $4 \times 10^2$ E coli GUENDM-1 + TEM-1 + CTX-M-1563216 $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E coli GENNDM-1 + TEM-1 + CTX-M-1516 $3 \times 21$ $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E coli GENNDM-1 + TEM-1 + CTX-M-1516 $3 \times 21$ $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E coli ALLNDM-1 + TEM-1 + CTX-M-152 $3 \times 11$ $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E coli CALNDM-1 + TEM-1 + CTX-M-152 $3 \times 12$ $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E coli CALNDM-1 + TEM-1 + CTX-M-152 $3 \times 2$ $3 \times 10^2$ $4 \times 10^4$ E coli CALNDM-1 + TEM-1 + CTX-M-152 $3 \times 2$ $3 \times 10^2$ $4 \times 10^4$ E coli CALNDM-1 + TEM-1 + CTX-M-152 $3 \times 2$ $3 \times 10^2$ $4 \times 10^4$ E coli CALNDM-1 + CMY-6 + OXA-1 $2 \times 2 \times 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K. pneumoniae OM8                              | NDM-1 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1                                                    | 2                                      | >32          | 4                                                                              | $2 \times 10^{1}$                             | $1 \times 10^{1}$                         | $1 \times 10^{2}$                         |
| K. pneumoniae OM15NDM-1 + CTX-M-15 + SHV-130 + OXA-11.51.231 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> $\frac{3 \times 10^5}{1 \times 10^1}$ K. pneumoniae OM16NDM-1 + CTX-M-15 + OXA-1 + OXA-188>32163 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> K. pneumoniae KIENDM-1 + SHV-38 + CMY-16 + OXA-142481 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> K. pneumoniae KIENDM-1 + SHV-38 + CMY-16 + OXA-13321 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> E coli GUENDM-1 + TEM-1 + OXA-13321 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> E coli GUENDM-1 + TEM-1 + CXX-0.15632161 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> E coli RSNDM-1 + TEM-1 + CXX-0.1516>32121 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> E coli RCNDM-1 + TEM-1 + CXX-0.1 + OXA-18>32281 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> E coli ALLNDM-1 + TEM-1 + CXX-0.1 + OXA-18>321 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> E coli CM20NDM-1 + TEM-1 + CXX-0.152>3281 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> E coli OM20NDM-1 + TEM-1 + CXX-0.152162 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> E coli OM20NDM-1 + TEM-1 + CXX-0.15223321 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> Ferminiae 0404024VIM-1CTX-0.15 + VIM-4 + OXA-1232322321 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> K pneumoniae 0404024VIM-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K. pneumoniae OM13                             | <b>NDM-1</b> + TEM-1 + CTX-M-15 + SHV-28 + OXA-1<br>+ OXA-9                                  | 3                                      | 4            | 2                                                                              | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $\underline{3 \times 10^4}$               |
| K<br>pneumoniae OM16NDM-1 + CTX-M-15 + OXA-1 + OXA-1818>32163 × 1011 × 101 $\overline{1 \times 101}$ K<br>pneumoniae OM19NDM-1 + CTX-M-15 + SHV-12 + OXA-100.75211 × 1011 × 101 $\overline{1 \times 101}$ E<br>coli GUENDM-1 + TEM-1 + OXA-103321 × 1011 × 101 $\overline{1 \times 101}$ E<br>coli GUSNDM-1 + TEM-1 + CTX-M-15632161 × 1011 × 101 $\overline{1 \times 101}$ E<br>coli RSNDM-1 + TEM-1 + CTX-M-1516>32161 × 1011 × 1011 × 101E<br>coli RCNDM-1 + TEM-1 + CTX-M-1516>32161 × 1011 × 1011 × 101E<br>coli RCNDM-1 + TEM-1 + CTX-M-1516>32121 × 1011 × 1011 × 101E<br>coli ALLNDM-1 + TEM-1 + CTX-M-1516>32121 × 1011 × 1011 × 101E<br>coli ALLNDM-1 + TEM-1 + CTX-M-15223281 × 1011 × 1011 × 101E<br>coli ALLNDM-1 + TEM-1 + CTX-M-1521621 × 1011 × 1011 × 101E<br>coli ALLNDM-1 + TEM-1 + CTX-M-1521621 × 1011 × 1011 × 101E<br>coli ALLNDM-1 + TEM-1 + CTX-M-1521621 × 1011 × 1011 × 101E<br>coli ALLNDM-1 + TEM-1 + CTX-M-1521621 × 1011 × 1011 × 101E<br>coli ALLNDM-1 + TEM-1 + CTX-M-152222 <td>K. pneumoniae OM15</td> <td>NDM-1 + CTX-M-15 + SHV-130 + OXA-1</td> <td>1.5</td> <td>12</td> <td>3</td> <td><math>1 \times 10^{1}</math></td> <td><math>1 \times 10^{1}</math></td> <td><math>3 \times 10^{5}</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K. pneumoniae OM15                             | NDM-1 + CTX-M-15 + SHV-130 + OXA-1                                                           | 1.5                                    | 12           | 3                                                                              | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $3 \times 10^{5}$                         |
| K. pneumoniae OM19NDM-1 + CTX-M-15 + SHV-12 + OXA-14248 $1 \times 10^1$ $1 \times 10^1$ $4 \times 10^2$ K. pneumoniae KIENDM-1 + SHV-38 + CMY-16 + OXA-100.7521 $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^4$ E. coli GUENDM-1 + TEM-1 + OXA-1332 $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E. coli RUSNDM-1 + TEM-1 + CTX-M-1563216 $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E. coli RSNDM-1 + TEM-1 + CTX-M-158>3212 $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E. coli RCNDM-1 + TEM-1 + CTX-M-158>3212 $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E. coli RLNDM-1 + TEM-1 + CTX-M-152238 $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E. coli RLNDM-1 + TEM-1 + CTX-M-152328 $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E. coli OM20NDM-1 + TEM-1 + CTX-M-152 $2 \times 32$ 8 $1 \times 10^1$ $1 \times 10^1$ F. stuarti PS1NDM-1 + TEM-1 + CTX-M-152 $2 \times 32$ $32$ $1 \times 10^1$ $1 \times 10^1$ F. stuarti PS1NDM-1 + TEM-1 + CTX-M-15 + VIM-4 + OX-1 $>32$ $>32$ $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0404024VIM-1 $1 \times 10^2$ $32$ $232$ $232$ $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0404024VIM-1 + SHV-5 $32$ $232$ $232$ $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0404024VIM-1 + SHV-5 $32$ <t< td=""><td>K. pneumoniae OM16</td><td>NDM-1 + CTX-M-15 + OXA-1 + OXA-181</td><td>8</td><td>&gt;32</td><td>16</td><td><math>3 	imes 10^1</math></td><td><math>1 \times 10^{1}</math></td><td><math>\overline{1 \times 10^1}</math></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K. pneumoniae OM16                             | NDM-1 + CTX-M-15 + OXA-1 + OXA-181                                                           | 8                                      | >32          | 16                                                                             | $3 	imes 10^1$                                | $1 \times 10^{1}$                         | $\overline{1 \times 10^1}$                |
| K. pneumoniae KIENDM-1 + SHV-38 + CMY-16 + OXA-100.75211 × 10 <sup>1</sup> 1 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K. pneumoniae OM19                             | NDM-1 + CTX-M-15 + SHV-12 + OXA-1                                                            | 4                                      | 24           | 8                                                                              | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $4 \times 10^{2}$                         |
| E coli GUENDM-1 + 1EM-1 + 0XA-133321 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> E coli GUSNDM-1 + TEM-1 + CTX-M-15632161 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> E coli IRSNDM-1 + TEM-1 + CTX-M-1516>32161 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> E coli RCNDM-1 + TEM-1 + CTX-M-1516>32161 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> E coli RCNDM-1 + CMY-16 + 0XA-18>32121 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> E coli ALLNDM-1 + CTX-M-15 + 0XA-101311 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> E coli OM20NDM-1 + TEM-1 + CTX-M-152>3281 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> E colico R38NDM-1 + CTX-M-1521621 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> P stuarii PS1NDM-1 + CTX-M-15 + VIM-4 + OXA-1>32>321 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> C freundii STENDM-1 + TEM-1 + CTX-M-15 + VIM-4 + OXA-1>32>322321 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> K pneumoniae 0404024VIM-1SHV-5>32>322321 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> K pneumoniae 0404020VIM-1 + SHV-12>32>322321 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> K pneumoniae 0404020VIM-1 + SHV-5322322321 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> K pneumoniae 0404020VIM-1 + CTX-M-310.511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K. pneumoniae KIE                              | NDM-1 + SHV-38 + CMY-16 + OXA-10                                                             | 0.75                                   | 2            | 1                                                                              | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $\frac{1 \times 10^4}{1 \times 10^5}$     |
| E. coli RUSNDM-1 + TEM-1 + CTX-M-15632161 × 10 <sup>1</sup> 1 × 10 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E. coli GUE                                    | NDM-1 + TEM-1 + OXA-1                                                                        | 3                                      | 3            | 2                                                                              | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $\frac{1 \times 10^3}{1 \times 10^1}$     |
| L coli RCNDM-1 + TEM-1 + CIA'M-R1510 $2 \cdot 2$ 10 $1 \times 10^{-1}$ $1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E. coli AUS<br>E. coli IR5                     | NDM-1 + TEM-1 + CTX-M-15<br>NDM-1 + TEM-1 + CTY-M-15                                         | 0<br>16                                | >32          | 16                                                                             | $1 \times 10$<br>$1 \times 10^{1}$            | $1 \times 10$<br>$1 \times 10^{1}$        | $1 \times 10$<br>$1 \times 10^{1}$        |
| E coli RICNDM-1 + CMY-16 + OXA-1 + OXA-101311 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> <td>E. coli GEN</td> <td>NDM-1 + TEM-1 + CMY-30 + OXA-1</td> <td>8</td> <td>&gt; 32<br/>&gt; 32</td> <td>12</td> <td><math>1 \times 10^{1}</math><br/><math>1 \times 10^{1}</math></td> <td><math>1 \times 10^{1}</math><br/><math>1 \times 10^{1}</math></td> <td><math>1 \times 10^{1}</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E. coli GEN                                    | NDM-1 + TEM-1 + CMY-30 + OXA-1                                                               | 8                                      | > 32<br>> 32 | 12                                                                             | $1 \times 10^{1}$<br>$1 \times 10^{1}$        | $1 \times 10^{1}$<br>$1 \times 10^{1}$    | $1 \times 10^{1}$                         |
| E. coli ALLNDM-1 + TEM-1 + CTX-M-15 + OXA-1 + OXA-24>3281 × 1011 × 1011 × 101E. coli OM20NDM-1 + TEM-1 + CTX-M-152>3281 × 1011 × 1011 × 101E. cloacae IR38NDM-1 + CTX-M-1521621 × 1013 × 1024 × 104P. stuartii PS1NDM-1 + CMY-6 + OXA-1120.381.5 $1 \times 10^7$ $1 \times 10^3$ $1 \times 10^7$ C. freundii STENDM-1 + TEM-1 + CTX-M-15 + VIM-4 + OXA-1>32>32>32 $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0404024VIM-1+ CTX-M-15>32>32>32 $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0511135VIM-1 + SHV-5>32>32>32 $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0404020VIM-1 + SHV-50.51.50.38 $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae MADVIM-1 + CTX-M-310.51 $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae MADVIM-1 + CTX-M-31.5 $0.38$ $0.5$ $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E. coli 040018VIM-1 + CTX-M-15>32>32 $32$ $2 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E. coli 040018VIM-1 + CTX-M-31.5 $0.38$ $0.5$ $1 \times 10^1$ $1 \times 10^1$ $2 \times 10^6$ E. coli 040029VIM-1 + CTX-M-3 $0.38$ $0.5$ $1 \times 10^6$ $2 \times 10^6$ E. cloacae 1008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E. coli RIC                                    | NDM-1 + CMY-16 + OXA-1 + OXA-10                                                              | 1                                      | 3            | 1                                                                              | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $1 \times 10^{5}$                         |
| E. coli OM20NDM-1+ TEM-1 + CTX-M-152>328 $1 \times 10^1$ E. colacae IR38NDM-1 + CTX-M-152 $16$ 2 $1 \times 10^1$ $3 \times 10^2$ $4 \times 10^4$ P. stuartii PS1NDM-1 + CTX-M-152 $0.38$ $5.$ $1 \times 10^7$ $1 \times 10^3$ $1 \times 10^3$ $1 \times 10^3$ C. freundii STENDM-1 + TEM-1 + CTX-M-15 + VIM-4 + OXA-1>32>32>32 $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0404024VIM-1StVA-10 + OXA-181>32>32>32 $2 \times 32$ $2 \times 32$ $2 \times 32$ $2 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0404020VIM-1 + SHV-12>32>32>32 $2 \times 23$ $2 \times 23$ $2 \times 23$ $2 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0404020VIM-1 + SHV-5>32>32>32 $2 \times 32$ $2 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae MADVIM-1 + CTX-M-3 $1$ $0.5$ $1.5$ $0.38$ $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae MADVIM-1 + CTX-M-3 $1$ $0.5$ $1.5$ $0.38$ $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E. coli 0404018VIM-1 + CTX-M-3 $1$ $0.5$ $1.5$ $1 \times 10^5$ $1 \times 10^1$ $1 \times 10^1$ E. coli 0404018VIM-1 + CTX-M-3 $1.5$ $0.38$ $0.5$ $1 \times 10^5$ $1 \times 10^3$ E. coli 0404018VIM-1 + CTX-M-3 $32$ $32$ $32$ $2 \times 10^6$ $1 \times $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E. coli ALL                                    | $\mathbf{NDM-1} + \mathbf{TEM-1} + \mathbf{CTX-M-15} + \mathbf{OXA-1} + \mathbf{OXA-2}$      | 4                                      | >32          | 8                                                                              | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $1 \times 10^{1}$                         |
| E. cloacae IR38NDM-1 + CTX-M-1521621 × 10 <sup>1</sup> $3 \times 10^{\circ}$ $\frac{4 \times 10^{\circ}}{10^{\circ}}$ P. stuartii PS1NDM-1 + CTX-M-15VIM-4 + OXA-1120.381.5 $1 \times 10^{7}$ $1 \times 10^{3}$ $1 \times 10^{7}$ C. freundii STENDM-1 + TEM-1 + CTX-M-15 + VIM-4 + OXA-1>32>32>32 $1 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ K. pneumoniae 0404024VIM-1 $+ OXA-9 + OXA-10 + OXA-181$ >32>32>32 $1 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ K. pneumoniae 0404020VIM-1 + SHV-12>32>32>32 $1 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ K. pneumoniae ENNVIM-1 + SHV-5 $0.5$ $1.5$ $0.38$ $1 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ K. pneumoniae MADVIM-1 + CTX-M-3 $1$ $0.5$ $1$ $1 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ E. coli D0HVIM-1 + CMY-6 $3$ $1.5$ $1$ $5 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ E. coli 008077VIM-1 + CMY-6 $3$ $1.5$ $0.38$ $0.5$ $1 \times 10^{1}$ $1 \times 10^{1}$ E. coli MADVIM-1 + CTX-M-3 $1.5$ $0.38$ $0.5$ $1 \times 10^{5}$ $1 \times 10^{1}$ $2 \times 10^{8}$ E. coli MADVIM-1 + CTX-M-3 $1.5$ $0.38$ $0.5$ $1 \times 10^{1}$ $1 \times 10^{1}$ $2 \times 10^{5}$ E. coli MADVIM-1 + CTX-M-3 $1.5$ $0.38$ $0.5$ $1 \times 10^{5}$ $1 \times 10^{1}$ $2 \times 10^{8}$ E. coli MADVIM-1 + CTX-M-3 $322$ <t< td=""><td>E. coli OM20</td><td><b>NDM-1</b>+ TEM-1 + CTX-M-15</td><td>2</td><td>&gt;32</td><td>8</td><td><math>1 \times 10^{1}</math></td><td><math>1 \times 10^{1}</math></td><td><math>1 \times 10^{1}</math></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E. coli OM20                                   | <b>NDM-1</b> + TEM-1 + CTX-M-15                                                              | 2                                      | >32          | 8                                                                              | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $1 \times 10^{1}$                         |
| P. stuartii Ps1NDM-1 + CM1+6 + OAA-1120.381.5 $1 \times 10^{\circ}$ $1 \times 10^{\circ}$ $1 \times 10^{\circ}$ C. freundii STENDM-1 + TEM-1 + CTX-M-15 + VIM-4 + OXA-1>32>32>32 $1 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ K. pneumoniae 0404024VIM-1 $OXA-9 + OXA-10 + OXA-181$ >32>32>32 $1 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ K. pneumoniae 0511135VIM-1 + SHV-12>32>32>32 $1 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ K. pneumoniae 0404020VIM-1 + SHV-5>32>32 $2 \times 32$ $2 \times 32$ $1 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ K. pneumoniae ENNVIM-1 + SHV-50.51.50.38 $1 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ K. pneumoniae MADVIM-1 + CTX-M-310.5 $1 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ E. coli D1HVIM-1CMY-63 $1.5$ $1 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ E. coli 040018VIM-1 + CTX-M-3 $1 \times 0^{3}$ $0.5$ $1 \times 10^{1}$ $1 \times 10^{1}$ $2 \times 10^{6}$ E. coli MADVIM-1 + CTX-M-3 $1.5$ 0.38 $0.5$ $1 \times 10^{1}$ $1 \times 10^{1}$ $2 \times 10^{6}$ E. coli MADVIM-1 + CTX-M-3 $1 \times 0^{3}$ $0.5$ $1 \times 10^{6}$ $1 \times 10^{1}$ $2 \times 10^{6}$ E. colacae KARVIM-1 + CTX-M-3 $1.5$ $0.38$ $0.5$ $1 \times 10^{1}$ $1 \times 10^{1}$ S. marcescens 1008029VIM-1 + CTX-M-15 $232$ $232$ $232$ $232$ <td< td=""><td>E. cloacae IR38</td><td>NDM-1 + CTX-M-15</td><td>2</td><td>16</td><td>2</td><td><math>1 \times 10^{1}</math></td><td><math>3 \times 10^{2}</math></td><td><math>\frac{4 \times 10^{4}}{1 \times 10^{7}}</math></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E. cloacae IR38                                | NDM-1 + CTX-M-15                                                                             | 2                                      | 16           | 2                                                                              | $1 \times 10^{1}$                             | $3 \times 10^{2}$                         | $\frac{4 \times 10^{4}}{1 \times 10^{7}}$ |
| C. Jrumun GTLTA TRAFT + CTAMP15 + VIMP4 + OAAP1 $-32$ $-32$ $-32$ $-32$ $-1 \times 10^{-1}$ $1 \times 10^{-1}$ $1 \times 10^{-1}$ K. pneumoniae 0404024VIM-1SI $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-1 \times 10^{-1}$ $1 \times 10^{-1}$ $1 \times 10^{-1}$ $1 \times 10^{-1}$ K. pneumoniae 0511135VIM-1 + SHV-12 $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-32$ $-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P. stuartii PS1<br>C. fraundii STE             | $NDM_{-1} + CM1_{0} + OXA_{-1}$ $NDM_{-1} + TEM_{-1} + CTY_{-M_{-1}5} + VIM_{-4} + OYA_{-1}$ | >32                                    | 0.38<br>>32  | 1.5                                                                            | $\frac{1 \times 10}{1 \times 10^1}$           | $\frac{1 \times 10^{1}}{1 \times 10^{1}}$ | $\frac{1 \times 10}{1 \times 10^1}$       |
| K. pneumoniae 0404024VIM-1VIM-1 $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C. freunun STE                                 | + OXA-9 + OXA-10 + OXA-181                                                                   | - 52                                   | 252          | 2 52                                                                           | 1 × 10                                        | 1 × 10                                    | 1 × 10                                    |
| K. pneumoniae 0511135VIM-1 + SHV-12 $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>31$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$ $=1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K. pneumoniae 0404024                          | VIM-1                                                                                        | >32                                    | >32          | >32                                                                            | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $1 \times 10^{1}$                         |
| K. pneumoniae 0404020VIM-1 + SHV-5 $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K. pneumoniae 0511135                          | <b>VIM-1</b> + SHV-12                                                                        | >32                                    | >32          | >32                                                                            | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $1 \times 10^{1}$                         |
| K. pneumoniae ENNVIM-1 + SHV-5 $0.5$ $1.5$ $0.38$ $1 \times 10^4$ $1 \times 10^4$ $1 \times 10^4$ $1 \times 10^4$ K. pneumoniae MADVIM-1 + CTX-M-31 $0.5$ 1 $1 \times 10^1$ $3 \times 10^1$ $2 \times 10^4$ E. coli DIHVIM-1 + CMY-63 $1.5$ 1 $5 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ E. coli 1008077VIM-1 + TEM-1 + CTX-M-15> $32$ 44 $1 \times 10^1$ $1 \times 10^1$ $21 \times 10^8$ E. coli 1008077VIM-1 + TEM-1 + CTX-M-31.5 $0.38$ $0.5$ $1 \times 10^5$ $1 \times 10^1$ $2 \times 10^5$ E. coli MADVIM-1 + CTX-M-3 $1.5$ $0.38$ $0.5$ $1 \times 10^5$ $1 \times 10^1$ $2 \times 10^5$ E. cloacae KARVIM-1 + CTX-M-3 $1.5$ $0.38$ $0.5$ $1 \times 10^5$ $1 \times 10^1$ $2 \times 10^5$ E. cloacae I008029VIM-1 + CTX-M-3 $>32$ $>32$ $>32$ $2 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ S. marcescens 1008091VIM-1 + CTX-M-15 $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ $>32$ <t< td=""><td>K. pneumoniae 0404020</td><td>VIM-1 + SHV-5</td><td>&gt;32</td><td>&gt;32</td><td>&gt;32</td><td><math>1 \times 10^{1}</math></td><td><math>1 \times 10^{1}</math></td><td><math>1 \times 10^{1}</math></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K. pneumoniae 0404020                          | VIM-1 + SHV-5                                                                                | >32                                    | >32          | >32                                                                            | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $1 \times 10^{1}$                         |
| K. pneumoniae MADVIM-1 + C1X-M-310.511 × 10 <sup>1</sup> 3 × 10 <sup>1</sup> $\frac{2 \times 10^{2}}{1 \times 10^{1}}$ E. coli DIHVIM-1981641 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> $\frac{1}{1 \times 10^{1}}$ E. coli D44018VIM-1 + CMY-631.51.55 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> $\frac{1}{2 \times 10^{8}}$ E. coli 1008077VIM-1 + TEM-1 + CTX-M-15>32441 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> $\frac{2 \times 10^{8}}{1 \times 10^{8}}$ E. coli MADVIM-1 + CTX-M-31.50.380.5 $\frac{1 \times 10^{5}}{1 \times 10^{1}}$ $\frac{2 \times 10^{5}}{1 \times 10^{1}}$ E. colacae KARVIM-1 + CTX-M-31.50.380.5 $\frac{1 \times 10^{5}}{1 \times 10^{1}}$ $\frac{2 \times 10^{5}}{1 \times 10^{1}}$ E. cloacae 1008029VIM-1 + CTX-M-3>32>32>32 $2 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ S. marcescens 1008091VIM-1 + CTX-M-15>32>32>32 $2 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ K. pneumoniae 0709121IMP-1128 $\frac{1 \times 10^{6}}{1 \times 10^{1}}$ $1 \times 10^{1}$ $1 \times 10^{1}$ K. pneumoniae 0709125IMP-1 + TEM-1 + SHV-121.542 $1 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ K. pneumoniae 0709127IMP-1 + TEM-10.541 $1 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K. pneumoniae ENN                              | VIM-1 + SHV-5                                                                                | 0.5                                    | 1.5          | 0.38                                                                           | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $1 \times 10^{1}$                         |
| E. coli 10111VIM-1981641 × 101 × 101 × 10E. coli 0404018VIM-1CMY-631.515 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 1 × 10 <sup>3</sup> E. coli 1008077VIM-1 + TEM-1 + CTX-M-15>32441 × 10 <sup>1</sup> 1 × 10 <sup>1</sup> 2 × 10 <sup>8</sup> E. coli MADVIM-1 + CTX-M-31.50.380.5 $1 \times 10^5$ 1 × 10 <sup>1</sup> $2 \times 10^5$ E. cloacae KARVIM-1 + SHV-7010.380.5 $1 \times 10^6$ 1 × 10 <sup>1</sup> $2 \times 10^5$ E. cloacae 1008029VIM-1 + CTX-M-3>32>32>32232 $2 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ S. marcescens 1008091VIM-1 + CTX-M-15>32>32>32>32 $2 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0709121IMP-1128 $1 \times 10^6$ $2 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0709125IMP-1 + TEM-1SHV-121.542 $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0709127IMP-1 + TEM-10.541 $1 \times 10^1$ $1 \times 10^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K. pneumoniae MAD                              | VIM-I + CTX-M-3                                                                              | 1                                      | 0.5          | 1                                                                              | $1 \times 10^{1}$                             | $3 \times 10^{1}$                         | $\frac{2 \times 10^4}{1 \times 10^1}$     |
| L. coli 0404010VIM-1 + CM1-0 $3 - 1.5$ $3 - 1.5$ $3 - 1.5$ $3 - 1.60$ $1 - 1.01$ $1 - 1.01$ E. coli 1008077VIM-1 + TEM-1 + CTX-M-15 $>32$ $4$ $4$ $1 \times 10^{1}$ $1 \times 10^{1}$ $\geq 1 \times 10^{8}$ E. coli MADVIM-1 + CTX-M-3 $1.5$ $0.38$ $0.5$ $1 \times 10^{5}$ $1 \times 10^{1}$ $2 \times 10^{5}$ E. cloacae KARVIM-1 + SHV-70 $1$ $0.38$ $0.5$ $1 \times 10^{5}$ $1 \times 10^{1}$ $2 \times 10^{5}$ E. cloacae 1008029VIM-1 + CTX-M-3 $>32$ $>32$ $>32$ $>32$ $2 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ S. marcescens 1008091VIM-1 + CTX-M-15 $>32$ $>32$ $>32$ $>32$ $>32$ $2 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ K. pneumoniae 0709121IMP-1 $1$ $2$ $8$ $1 \times 10^{6}$ $2 \times 10^{1}$ $1 \times 10^{1}$ K. pneumoniae 0709125IMP-1 + TEM-15 $8$ $3$ $2$ $1 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ K. pneumoniae 0709125IMP-1 + TEM-1 + SHV-12 $1.5$ $4$ $2$ $1 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$ K. pneumoniae 0709127IMP-1 + TEM-1 $0.5$ $4$ $1$ $1 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E. coli DIH<br>E. coli 0404018                 | VIM-19 $VIM-1 + CMV-6$                                                                       | 8                                      | 10           | 4                                                                              | $1 \times 10$<br>5 × 10 <sup>1</sup>          | $1 \times 10$<br>$1 \times 10^{1}$        | $1 \times 10$<br>>1 × 10 <sup>8</sup>     |
| E. coli MADVIM-1 + CTX-M-31.50.380.5 $1 \times 10^5$ $1 \times 10^1$ $2 \times 10^5$ E. cloacae KARVIM-1 + SHV-7010.380.5 $1 \times 10^5$ $1 \times 10^1$ $2 \times 10^5$ E. cloacae 1008029VIM-1 + CTX-M-3>32>32>32>32 $2 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ S. marcescens 1008091VIM-1 + CTX-M-15>32>32>32>32 $2 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae TURIMP-1128 $1 \times 10^6$ $2 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0709121IMP-11.5832 $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0709125IMP-1 + TEM-1 + SHV-121.542 $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0709127IMP-1 + TEM-10.541 $1 \times 10^1$ $1 \times 10^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E. coli 1008077                                | VIM-1 + TEM-1 + CTX-M-15                                                                     | >32                                    | 4            | 4                                                                              | $1 \times 10^{1}$                             | $1 \times 10^{1}$<br>$1 \times 10^{1}$    | $\frac{>1\times10}{>1\times10^8}$         |
| E. cloacae KARVIM-1 + SHV-7010.380.5 $\overline{1 \times 10^6}$ $1 \times 10^1$ $\overline{\geq 1 \times 10^8}$ E. cloacae 1008029VIM-1 + CTX-M-3>32>32>32>32 $2 \times 10^1$ $1 \times 10^1$ $\overline{1 \times 10^1}$ S. marcescens 1008091VIM-1 + CTX-M-15>32>32>32>32 $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae TURIMP-1128 $1 \times 10^6$ $2 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0709121IMP-11.531 $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0709125IMP-1 + TEM-15832 $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0709125IMP-1 + TEM-10.541 $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0709127IMP-1 + TEM-10.541 $1 \times 10^1$ $1 \times 10^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E. coli MAD                                    | VIM-1 + CTX-M-3                                                                              | 1.5                                    | 0.38         | 0.5                                                                            | $1 \times 10^{5}$                             | $1 \times 10^{1}$                         | $2 \times 10^{5}$                         |
| E. cloacae 1008029VIM-1 + CTX-M-3>32>32>32 $2 \times 10^1$ $1 \times 10^1$ $\overline{1 \times 10^1}$ S. marcescens 1008091VIM-1 + CTX-M-15>32>32>32 $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae TURIMP-1128 $1 \times 10^6$ $2 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0709121IMP-11.531 $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0709125IMP-1 + TEM-15832 $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0709125IMP-1 + TEM-10.541 $1 \times 10^1$ $1 \times 10^3$ K. pneumoniae 0709127IMP-1 + TEM-10.541 $1 \times 10^1$ $1 \times 10^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E. cloacae KAR                                 | <b>VIM-1</b> + SHV-70                                                                        | 1                                      | 0.38         | 0.5                                                                            | $1 \times 10^6$                               | $1 \times 10^{1}$                         | $>1 \times 10^{8}$                        |
| S. marcescens 1008091VIM-1 + CTX-M-15 $>32$ $>32$ $>32$ $>32$ $>32$ $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae TURIMP-1128 $1 \times 10^6$ $2 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0709121IMP-11.531 $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^3$ K. pneumoniae 0709125IMP-1 + TEM-15832 $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^4$ K. pneumoniae 0709125IMP-1 + TEM-1 + SHV-121.542 $1 \times 10^1$ $1 \times 10^1$ $1 \times 10^3$ K. pneumoniae 0709127IMP-1 + TEM-10.541 $1 \times 10^1$ $1 \times 10^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E. cloacae 1008029                             | <b>VIM-1</b> + CTX-M-3                                                                       | >32                                    | >32          | >32                                                                            | $2 \times 10^1$                               | $1 	imes 10^1$                            | $1 \times 10^{1}$                         |
| K. pneumoniae TURIMP-1128 $\frac{1 \times 10^6}{1 \times 10^1}$ $2 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0709121IMP-11.531 $1 \times 10^1$ $1 \times 10^1$ $\frac{1 \times 10^3}{1 \times 10^1}$ K. pneumoniae 0709124IMP-1 + TEM-15832 $1 \times 10^1$ $1 \times 10^1$ $\frac{1 \times 10^3}{1 \times 10^4}$ K. pneumoniae 0709125IMP-1 + TEM-1 + SHV-121.542 $1 \times 10^1$ $1 \times 10^1$ K. pneumoniae 0709127IMP-1 + TEM-10.541 $1 \times 10^1$ $1 \times 10^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S. marcescens 1008091                          | VIM-1 + CTX-M-15                                                                             | >32                                    | >32          | >32                                                                            | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $1 \times 10^{1}$                         |
| K. pneumoniae 0/09121       IMP-1       1.5       3       1 $1 \times 10^{1}$ <th< td=""><td>K. pneumoniae TUR</td><td>IMP-1</td><td>1</td><td>2</td><td>8</td><td><math>\frac{1 \times 10^{\circ}}{1 \times 10^{1}}</math></td><td><math>2 \times 10^{1}</math></td><td><math>1 \times 10^{1}</math></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K. pneumoniae TUR                              | IMP-1                                                                                        | 1                                      | 2            | 8                                                                              | $\frac{1 \times 10^{\circ}}{1 \times 10^{1}}$ | $2 \times 10^{1}$                         | $1 \times 10^{1}$                         |
| K. pneumoniae 0709124       INIT-1 + 1ENI-15       8       5       2       1 × 10 <sup>-1</sup> $1 \times 10^{-1}$ K. pneumoniae 0709125       IMP-1 + TEM-1 + SHV-12       1.5       4       2 $1 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{3}$ K. pneumoniae 0709127       IMP-1 + TEM-1       0.5       4       1 $1 \times 10^{1}$ $1 \times 10^{1}$ $1 \times 10^{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | к. pneumoniae 0709121<br>К. ридиторіае 0709124 | $\frac{1}{1}$                                                                                | 1.5                                    | 3<br>3       | 1                                                                              | $1 \times 10^{4}$<br>$1 \times 10^{1}$        | $1 \times 10^{1}$<br>$1 \times 10^{1}$    | $\frac{1 \times 10^{-1}}{1 \times 10^4}$  |
| Image: Non-state       Image: Non-state       Image: Non-state       Image: Non-state         K. pneumoniae 0709127       IMP-1 + TEM-1 $0.5 \ 4 \ 1 \ 1 \times 10^1 \ 1 \times 10^1 \ 1 \times 10^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K pneumoniae 0709124                           | IMP - 1 + TEM - 1 + SHV - 12                                                                 | 1.5                                    | 4            | 2                                                                              | $1 \times 10^{1}$<br>$1 \times 10^{1}$        | $1 \times 10^{1}$<br>$1 \times 10^{1}$    | $\frac{1 \land 10}{1 \times 10^3}$        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K. pneumoniae 0709127                          | IMP-1 + TEM-1                                                                                | 0.5                                    | 4            | -<br>1                                                                         | $1 \times 10^{1}$                             | $1 \times 10^{1}$                         | $\frac{1}{1 \times 10^4}$                 |

(Continued on following page)

### TABLE 1 (Continued)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MIC ( $\mu$ g/ml) of antibiotic <sup><i>c</i></sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                            | Lowest detection limit (CFU/ml) for the following medium <sup><i>d</i></sup> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Strain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | β-Lactamase content <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ETP                                                                                                                                                        | MEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Supercarba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ChromID<br>ESBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHROMagar<br>KPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| K. pneumoniae TWA<br>K. pneumoniae TAW<br>E. coli JAP<br>E. coli TWA<br>E. coli 1108013<br>E. cloacae TWA<br>E. cloacae TAW<br>E. cloacae 1008079<br>E. cloacae 1008187<br>S. marcescens 0911033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IMP-8<br>IMP-8 + SHV-12<br>IMP-1<br>IMP-8 + SHV-12<br>IMP-1 + TEM-1<br>IMP-8<br>IMP-8 + SHV-12<br>IMP-1<br>IMP-1<br>IMP-1 + CTX-M-15<br>IMP-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c} 1\\ 0.5\\ 0.5\\ 6\\ 0.5\\ 1.5\\ 0.75\\ 8\\ 8\\ >32 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c} 1 \\ 0.5 \\ 3 \\ 8 \\ 4 \\ 1 \\ 0.5 \\ > 32 \\ > 32 \\ > 32 \\ > 32 \end{array} $                                                       | $\begin{array}{c} 0.5 \\ 0.5 \\ 0.5 \\ 3 \\ 1 \\ 1 \\ 0.5 \\ > 32 \\ 4 \\ > 32 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 1\times10^{1} \\ 4\times10^{2} \\ 1\times10^{4} \\ 1\times10^{1} \\ 1\times10^{1} \\ 1\times10^{1} \\ 1\times10^{2} \\ 1\times10^{1} \\ 1\times10^{1} \\ 1\times10^{1} \\ 1\times10^{1} \end{array}$                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 1\times 10^{1} \\ 1\times 10^{2} \\ 1\times 10^{2} \\ 1\times 10^{1} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{r} \geq \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>Ambler class D carbapenemase-<br/>producing strains</li> <li>K. pneumoniae BIC</li> <li>K. pneumoniae RAM</li> <li>K. pneumoniae RAM</li> <li>K. pneumoniae RAM</li> <li>K. pneumoniae BOU</li> <li>K. pneumoniae BOU</li> <li>K. pneumoniae COU</li> <li>K. pneumoniae LOU</li> <li>K. pneumoniae CNA</li> <li>K. pneumoniae CHA</li> <li>K. pneumoniae EGY</li> <li>K. pneumoniae BEY</li> <li>K. pneumoniae BAJ</li> <li>K. pneumoniae BEN</li> <li>K. pneumoniae SIC</li> <li>K. pneumoniae SIC</li> <li>K. pneumoniae SIC</li> <li>K. pneumoniae VSG</li> <li>K. pneumoniae VSG</li> <li>K. pneumoniae VSG</li> <li>K. pneumoniae OM11</li> <li>K. pneumoniae OM11</li> <li>K. pneumoniae DIA</li> </ul> | $\begin{array}{l} OXA-48\\ + TEM-1\\ OXA-48 + TEM-1\\ OXA-48 + TEM-1 + CTX-M-15\\ OXA-48 + CTX-M-15\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-28\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-10\\ OXA-48 + TEM-1 + CTX-M-15 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11\\ OXA-48 + TEM-1 + CTX-M-15 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1\\ OXA-48 + TEM-1 + C$ | 0.5<br>1<br>16<br>0.38<br>0.5<br>4.75<br>0.5<br>0.38<br>2<br>0.5<br>0.38<br>0.5<br>0.38<br>0.5<br>0.38<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 | $\begin{array}{c} 2\\ 4\\ 4\\ 16\\ 0.5\\ 0.75\\ 16\\ 2\\ 1\\ 1\\ 3\\ 1.5\\ 0.38\\ 2\\ 1.5\\ 1\\ 32\\ 1\\ 6\\ 2\\ 3\\ 2\\ 3\\ >32\\ 0.75\\ >32 \end{array}$ | 0.5<br>1<br>1<br>16<br>0.25<br>0.5<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.52<br>0.25<br>0.38<br>0.38<br>0.38<br>0.52<br>0.25<br>0.38<br>0.38<br>0.38<br>0.52<br>0.25<br>0.38<br>0.38<br>0.52<br>0.25<br>0.38<br>0.38<br>0.52<br>0.25<br>0.38<br>0.52<br>0.25<br>0.38<br>0.52<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.532<br>0.5 | $\begin{array}{c} 1 \times 10^1 \\ 1 \times 10^1 \end{array}$ | $\begin{array}{c c} \geq 1 \times 10^8 \\ \geq 1 \times 10^1 \\ 1 \times 10$ | $\begin{array}{c} \frac{5 \times 10^6}{1 \times 10^5} \\ \overline{1 \times 10^5} \\ \overline{5 \times 10^4} \\ 1 \times 10^8 \\ \overline{>} 1 \times 10^8 \\ \overline{>} 1 \times 10^8 \\ \overline{>} 1 \times 10^8 \\ \overline{5 \times 10^7} \\ \overline{>} 1 \times 10^8 \\ \overline{1 \times 10^8} \\ \overline{4 \times 10^5} \\ \overline{>} 1 \times 10^8 \\ \overline{4 \times 10^5} \\ \overline{>} 1 \times 10^8 \\ \overline{4 \times 10^5} \\ \overline{>} 1 \times 10^8 \\ \overline{1 \times 10^1} \\ \overline{>} 1 \times 10^8 \\ \overline{>}$ |
| E. coli ROB<br>E. coli HAN<br>E. coli BOU<br>E. coli OM3<br>E. coli OM22<br>E. coli BER<br>E. coli AME<br>E. coli ZAN<br>E. coli BON<br>E. coli BON<br>E. coli BON<br>E. colacae TUR<br>E. cloacae TUR<br>E. cloacae 501<br>E. cloacae BEU<br>C. koseri NOU<br>C. koseri VER<br>K. pneumoniae HOL<br>K. pneumoniae OMA<br>P. rettgeri RAP                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{l} \textbf{OXA-48} \\ \textbf{OXA-48} + \textbf{CTX-M-15} \\ \textbf{OXA-48} + \textbf{CTX-M-15} \\ \textbf{OXA-48} + \textbf{TEM-1} + \textbf{CTX-M-15} \\ \textbf{OXA-48} + \textbf{TEM-1} + \textbf{CTX-M-15} \\ \textbf{OXA-48} + \textbf{TEM-1} + \textbf{CTX-M-15} \\ \textbf{OXA-48} + \textbf{CTX-M-24} \\ \textbf{OXA-48} + \textbf{TEM-1} + \textbf{CTX-M-14} \\ \textbf{OXA-48} + \textbf{TEM-1} + \textbf{CTX-M-14} \\ \textbf{OXA-48} + \textbf{CTX-M-15} \\ \textbf{OXA-48} + \textbf{CTX-M-15} \\ \textbf{OXA-48} + \textbf{CTX-M-15} \\ \textbf{OXA-48} + \textbf{TEM-1} + \textbf{CTX-M-15} + \textbf{SHV-12} \\ \textbf{OXA-48} \\ \textbf{OXA-48} \\ \textbf{OXA-48} \\ \textbf{OXA-181} + \textbf{CTX-M-15} \\ \textbf{OXA-181} + \textbf{CTXM-15} + \textbf{OXA-1} \\ \textbf{OXA-181} + \textbf{OXA-1} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.5\\ 3\\ 0.5\\ 0.5\\ 0.5\\ 0.38\\ 0.25\\ 0.38\\ 0.25\\ 0.5\\ 1\\ 0.5\\ 0.38\\ 0.75\\ 1\\ 0.5\\ 8\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.75\\ 16\\ 0.75\\ 1\\ 1.5\\ 0.5\\ 8\\ 0.5\\ 0.38\\ 0.5\\ 16\\ 8\\ 2\\ 2\\ 4\\ 2\\ 1\end{array}$                                         | $\begin{array}{c} 0.25\\ 1\\ 0.125\\ 0.38\\ 0.25\\ 0.19\\ 0.75\\ 0.19\\ 0.75\\ 0.19\\ 0.5\\ 1.5\\ 0.5\\ 0.38\\ 0.38\\ 1\\ 0.5\\ 2\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 2 \times 10^{1} \\ 5 \times 10^{1} \\ 2 \times 10^{1} \\ 1 \times 10^{1} \\ 5 \times 10^{1} \\ 2 \times 10^{1} \\ 1 \times 10^{1} \\ 5 \times 10^{2} \end{array}$                                                                                                                                                                                                                                                 | $\begin{array}{c} \displaystyle \frac{>1\times 10^8}{1\times 10^1} \\ \displaystyle \frac{>1}{1\times 10^1} \\ \displaystyle 1\times 10^1 \\ \displaystyle \frac{>1\times 10^8}{>1\times 10^8} \\ \displaystyle \frac{>1\times 10^8}{1\times 10^1} \\ \displaystyle 1\times 10^1 \\ \displaystyle 1\times 10^1 \\ \displaystyle 1\times 10^1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{r} \geq 1 \times 10^8 \\ \hline 3 \times 10^4 \\ \geq 1 \times 10^8 \\ \geq 1 \times 10^8 \\ \hline 2 1 \times 10^8 \\ \geq 1 \times 10^8 \\ \hline 3 1 \times 10^8 \\ \hline 2 1 \times 10^8 \\ \hline 3 1 \times 10^8 \\ \hline 1 \times 10^7 \\ \hline 1 \times 10^7 \\ \hline 1 \times 10^1 \\ \hline 1 \times 10^4 \\ \hline 2 1 \times 10^8 \\ \hline 1 \times 10^8 \\ \hline 1 \times 10^1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Non-carbapenemase-producing strains<br>K. pneumoniae 7725<br>K. pneumoniae 0227<br>K. pneumoniae 048236 <sup>e</sup><br>K. pneumoniae 1022<br>K. pneumoniae BER <sup>e</sup><br>K. pneumoniae BER <sup>e</sup><br>K. pneumoniae 10112<br>K. pneumoniae MEK <sup>e</sup><br>K. pneumoniae SIM <sup>e</sup>                                                                                                                                                                                                                                                                                                                                                                                                              | SHV-1<br>SHV-2<br>SHV-2a<br>SHV-2a + SHV-28<br>SHV-28 + TEM-1<br>CTX-M-15<br>CTX-M-15 + TEM-1 + SHV-11<br>CTX-M-14 + TEM-1 + SHV-11<br>CTX-M-15 + SHV-11<br>CTX-M-15 + TEM-1 + SHV-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.19\\ 0.19\\ 0.25\\ 0.5\\ 1\\ 0.12\\ 0.5\\ 0.12\\ 1.5\\ 8\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.006<br>0.008<br>2<br>0.016<br>4<br>0.012<br>0.016<br>0.016<br>>32<br>>32                                                                                 | 0.032<br>0.016<br>0.38<br>0.023<br>1<br>0.012<br>0.023<br>0.016<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \geq \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \geq\!\! 1\times\!10^8 \\ \hline \times\!\! 1\times\!10^1 \\ 1\times\!10^1 \\ 1\times\!10^1 \\ \hline 1\times\!10^1 \\ 1\times\!10^1 \\ 1\times\!10^1 \\ 1\times\!10^1 \\ 1\times\!10^1 \\ 1\times\!10^1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \geq\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

(Continued on following page)

#### TABLE 1 (Continued)

|                                                                   |                                                          | MIC (µg/ml) of antibiotic <sup><i>c</i></sup> |       | Lowest detection limit (CFU/ml) for the following medium <sup><i>d</i></sup> : |                               |                            |                             |
|-------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|-------|--------------------------------------------------------------------------------|-------------------------------|----------------------------|-----------------------------|
| Strain                                                            | $\beta$ -Lactamase content <sup>b</sup>                  | IPM                                           | ETP   | MEM                                                                            | Supercarba                    | ChromID<br>ESBL            | CHROMagar<br>KPC            |
| K. pneumoniae SHM <sup>e</sup>                                    | CTX-M-15 + TEM-1 + SHV-11                                | 3                                             | >32   | 3                                                                              | $1 \times 10^{1}$             | $1 \times 10^{1}$          | $1 \times 10^{1}$           |
| K. pneumoniae COO <sup>e</sup>                                    | CTX-M-15 + SHV-28                                        | 8                                             | >32   | 4                                                                              | $1 \times 10^{1}$             | $1 \times 10^{1}$          | $1 \times 10^{1}$           |
| K. pneumoniae FOS <sup>e</sup>                                    | CTX-M-15 + TEM-1 + SHV-11                                | 6                                             | >32   | >32                                                                            | $1 \times 10^{2}$             | $1 \times 10^{1}$          | $1 \times 10^{1}$           |
| K. pneumoniae BED <sup>e</sup>                                    | CTX-M-15 + TEM-1 + SHV-11                                | 1.5                                           | >32   | 4                                                                              | $1 \times 10^{1}$             | $1 \times 10^{1}$          | $1 \times 10^{1}$           |
| K. pneumoniae SHI <sup>e</sup>                                    | CTX-M-15 + TEM-1 + SHV-11                                | 0.25                                          | 1     | 1                                                                              | $7 \times 10^{4}$             | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| K. pneumoniae LEG <sup>e</sup>                                    | CTX-M-15 + TEM-1 + SHV-12                                | 0.75                                          | >32   | 3                                                                              | $2 \times 10^{4}$             | $2 \times 10^{1}$          | $2 \times 10^{1}$           |
| K. pneumoniae ALE <sup>e</sup>                                    | CTX-M-15 + SHV-1                                         | 1                                             | >32   | 4                                                                              | $1 \times 10^5$               | $1 \times 10^{1}$          | $1 \times 10^{1}$           |
| K. pneumoniae KDH <sup>1</sup>                                    | DHA-2                                                    | 0.12                                          | 0.5   | 0.12                                                                           | $1 \times 10^{2}$             | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. coli 6252                                                      | None (wild type)                                         | 0.12                                          | 0.004 | 0.008                                                                          | $>1 \times 10^{8}$            | $>1 \times 10^{8}$         | $>1 \times 10^{8}$          |
| E. coli 6367                                                      | None (wild type)                                         | 0.19                                          | 0.006 | 0.012                                                                          | $>1 \times 10^{8}$            | $>1 \times 10^{8}$         | $>1 \times 10^{8}$          |
| E. coli 1082                                                      | TEM-1                                                    | 0.19                                          | 0.019 | 0.016                                                                          | $>1 \times 10^{8}$            | $>1 \times 10^{8}$         | $>1 \times 10^{8}$          |
| E. coli 1034                                                      | TEM-1 + SHV-38                                           | 0.19                                          | 0.006 | 0.016                                                                          | $>1 \times 10^{8}$            | $>1 \times 10^{8}$         | $>1 \times 10^{8}$          |
| E. coli 1048                                                      | TEM-1 + SHV-2a                                           | 0.19                                          | 0.012 | 0.016                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. coli 1008                                                      | CTX-M-1 + TEM-1                                          | 0.19                                          | 0.016 | 0.016                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. coli 10122                                                     | CTX-M-1 + TEM-1                                          | 0.19                                          | 0.016 | 0.016                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. coli 1020                                                      | CTX-M-1 + TEM-1                                          | 0.19                                          | 0.023 | 0.016                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. coli 10121                                                     | CTX-M-2                                                  | 0.19                                          | 0.016 | 0.016                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. coli 1023                                                      | CTX-M-2 + TEM-1                                          | 0.12                                          | 0.016 | 0.016                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. coli E14                                                       | CTX-M-14                                                 | 0.12                                          | 0.012 | 0.012                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. coli FOR                                                       | CTX-M-15                                                 | 0.12                                          | 0.012 | 0.012                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. coli 1033                                                      | CTX-M-15                                                 | 0.19                                          | 0.012 | 0.016                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. coli EVB                                                       | VEB-1                                                    | 0.12                                          | 0.012 | 0.012                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. coli 1092                                                      | OXA-1                                                    | 0.12                                          | 0.19  | 0.023                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. coli ECA                                                       | ACC-1                                                    | 0.12                                          | 0.012 | 0.012                                                                          | $>1 \times 10^{8}$            | $5 \times 10^{3}$          | $>1 \times 10^{8}$          |
| E. coli SYD                                                       | CMY-2                                                    | 0.12                                          | 0.012 | 0.012                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. coli MET                                                       | Chromosome-encoded extended-spectrum<br>cephalosporinase | 0.12                                          | 0.012 | 0.012                                                                          | $\geq 1 \times 10^8$          | $1 \times 10^{1}$          | $\geq 1 \times 10^8$        |
| E. coli MAR <sup>f</sup>                                          | Overexpressed AmpC                                       | 16                                            | >32   | 2                                                                              | $1 \times 10^{2}$             | $1 \times 10^{1}$          | $1 \times 10^{1}$           |
| E. coli HB4 <sup>e</sup> (OmpC <sup>-</sup> , OmpF <sup>-</sup> ) | None                                                     | 0.12                                          | 1     | 0.25                                                                           | $1 \times 10^{1}$             | $\geq 1 \times 10^{8}$     | $>1 \times 10^{8}$          |
| E. aerogenes 1009                                                 | TEM-24                                                   | 0.19                                          | 0.12  | 0.016                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. aerogenes 1085                                                 | TEM-24                                                   | 0.12                                          | 0.19  | 0.023                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. cloacae 7746                                                   | None (wild type)                                         | 0.38                                          | 0.064 | 0.032                                                                          | $>1 \times 10^{8}$            | $\geq 1 \times 10^{8}$     | $>1 \times 10^{8}$          |
| E. cloacae 7725                                                   | None (wild type)                                         | 0.19                                          | 0.008 | 0.012                                                                          | $>1 \times 10^{8}$            | $>1 \times 10^{8}$         | $>1 \times 10^{8}$          |
| E. cloacae 5434                                                   | None (wild type)                                         | 0.38                                          | 0.016 | 0.032                                                                          | $>1 \times 10^{8}$            | $>1 \times 10^{8}$         | $>1 \times 10^{8}$          |
| E. cloacae 1012                                                   | TEM-1 + SHV-12                                           | 0.19                                          | 0.016 | 0.016                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. cloacae 1072 <sup>f</sup>                                      | TEM-1 + OXA-1                                            | 0.38                                          | 0.5   | 0.064                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. cloacae CLO                                                    | CTX-M-15                                                 | 0.12                                          | 0.12  | 0.12                                                                           | $1 \times 10^{7}$             | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. cloacae 10111 <sup>f</sup>                                     | TEM-1 + CTX-M-15                                         | 0.5                                           | 0.75  | 0.094                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. cloacae 1027                                                   | TEM-1 + CTX-M-15                                         | 0.19                                          | 0.016 | 0.016                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. cloacae CVB                                                    | VEB-1                                                    | 0.12                                          | 0.12  | 0.12                                                                           | $1 \times 10^{4}$             | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. cloacae 1019 <sup>f</sup>                                      | TEM-1                                                    | 0.25                                          | 1     | 0.094                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. cloacae ARF <sup>f</sup>                                       | Overexpressed AmpC                                       | 0.12                                          | 1     | 0.12                                                                           | $1 \times 10^{7}$             | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. cloacae BLA <sup>f</sup>                                       | Overexpressed AmpC                                       | 0.12                                          | 1     | 0.12                                                                           | $1 \times 10^{7}$             | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. cloacae CON <sup>f</sup>                                       | Overexpressed AmpC                                       | 0.25                                          | 4     | 0.25                                                                           | $1 \times 10^{7}$             | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| E. cloacae AZA <sup>f</sup>                                       | Overexpressed AmpC                                       | 0.12                                          | 1     | 0.12                                                                           | $1 \times 10^{7}$             | $1 \times 10^{6}$          | $>1 \times 10^{8}$          |
| C. freundii 7767                                                  | None (wild type)                                         | 0.25                                          | 0.008 | 0.016                                                                          | $>1 \times 10^{8}$            | $>1 \times 10^{8}$         | $>1 \times 10^{8}$          |
| C. freundii 10107                                                 | TEM-1 + SHV-12                                           | 0.38                                          | 0.016 | 0.023                                                                          | $>1 \times 10^{8}$            | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| C. freundii 1003                                                  | CTX-M-15 + TEM-1                                         | 0.38                                          | 0.016 | 0.023                                                                          | $>1 \times 10^8$              | $1 \times 10^{1}$          | $>1 \times 10^{8}$          |
| C. freundii 10135                                                 | CTX-M-15                                                 | 0.38                                          | 0.016 | 0.023                                                                          | $>1 \times 10^{\overline{8}}$ | $1 \times 10^{1}$          | $> 1 \times 10^{8}$         |
| C. freundii MAU <sup>f</sup>                                      | Overexpressed AmpC + TEM-3                               | 1                                             | 8     | 1                                                                              | $1 \times 10^{5}$             | $1 \times 10^{1}$          | $1 \times 10^{5}$           |
| S. Typhimurium 1081                                               | CTX-M-1                                                  | 0.25                                          | 0.19  | 0.032                                                                          | $\geq 1 \times 10^8$          | $1 \times 10^{1}$          | $>\overline{1 \times 10^8}$ |
| P. mirabilis 1031                                                 | CTX-M-14 + TEM-1 + SHV-11                                | 1.5                                           | 0.047 | 0.032                                                                          | $>1 \times 10^8$              | $1 \times 10^{1}$          | $>1 \times 10^8$            |
| P. mirabilis PMA                                                  | ACC-1                                                    | 0.25                                          | 0.094 | 0.064                                                                          | $\geq 1 \times 10^8$          | $\underline{>}1\times10^8$ | $>1 \times 10^{8}$          |

<sup>a</sup> The MICs of imipenem, ertapenem, and meropenem and the detection limits of Supercarba medium for 176 carbapenemase- and/or ESBL/AmpC-producing enterobacterial isolates compared to the detection limits obtained with ChromID ESBL and CHROMagar KPC media are shown. The 176 enterobacterial isolates belong to the following species: *Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, Serratia marcescens, Providencia stuartii, Citrobacter freundii, Citrobacter koseri, Providencia rettgeri, Enterobacter aerogenes, Salmonella enterica serotype Typhimurium, and Proteus mirabilis.* 

 $^{\textit{b}}$  β-Lactamase names shown in boldface type are carbapenemases.

<sup>c</sup> Abbreviations: IMP, imipenem; ETP, ertapenem; MP, meropenem.

<sup>*d*</sup> Underlined CFU counts are considered negative results (cutoff values set at  $\geq 1 \times 10^3$  CFU/ml).

<sup>e</sup> Reduced susceptibility to ertapenem due to porin deficiency.

<sup>f</sup> Reduced susceptibility to ertapenem due to overexpressed AmpC.

were counted after 24 h of culture at 37°C. The sensitivity and specificity cutoff values were set at  $1 \times 10^3$  CFU/ml, i.e., a limit value of  $1 \times 10^3$  CFU/ml and above was considered "not efficiently detected."

The lowest limit of detection of OXA-48, OXA-181, NDM-1,

and KPC producers ranged from  $1 \times 10^1$  to  $1 \times 10^2$  CFU/ml (Table 1). A single NDM producer (NDM-1-producing *Providencia stuartii* isolate [19]) was not efficiently detected on the Supercarba medium (detection limit of  $1 \times 10^7$  CFU/ml) (Table 1). Its lack of detection might be explained by its low MIC value of er-

| Novel Medium To Detect Carbapenemase Produce | oducers |
|----------------------------------------------|---------|
|----------------------------------------------|---------|

| TABLE 2 Sensitivity and specificity | of Supercarba, | ChromID | ESBL, | and |
|-------------------------------------|----------------|---------|-------|-----|
| CHROMagar KPC media                 |                |         |       |     |

|                                                            | Value for sensitivity (%) or specificity (%) on the following medium: |                 |                  |  |  |  |
|------------------------------------------------------------|-----------------------------------------------------------------------|-----------------|------------------|--|--|--|
| Sensitivity or specificity                                 | Supercarba                                                            | ChromID<br>ESBL | CHROMagar<br>KPC |  |  |  |
| Sensitivity                                                | 95.6                                                                  | 87.7            | 40.3             |  |  |  |
| Specificity                                                | 82.2                                                                  | 24.2            | 85.5             |  |  |  |
| Sensitivity for Ambler class of carbapenemase <sup>a</sup> |                                                                       |                 |                  |  |  |  |
| Class A                                                    | 100                                                                   | 100             | 66.7             |  |  |  |
| Class B                                                    | 90                                                                    | 98              | 55.8             |  |  |  |
| Class D                                                    | 100                                                                   | 70              | 13.6             |  |  |  |

<sup>*a*</sup> Sensitivity was determined for each Ambler class of carbapenemase: class A carbapenemases are of the KPC type, class B carbapenemases are of the VIM, IMP, and NDM types, whereas class D carbapenemases are of the OXA-48 type.

tapenem (0.38 µg/ml) and a likely weak expression of the  $bla_{NDM-1}$  gene, related to chromosomal insertion of the  $bla_{NDM-1}$ gene. As expected, OXA-181-producing K. pneumoniae was also detected well with the Supercarba medium. The lowest limit of detection of VIM and IMP producers ranged from  $1 \times 10^{1}$  to  $1 \times$ 10<sup>6</sup> CFU/ml (Table 1). Although the addition of zinc sulfate significantly decreased the detection limits for VIM and IMP producers, a few VIM and IMP producers were not efficiently detected on this medium (detection limit of  $\geq 1 \times 10^3$  CFU/ml). As expected, growth of isolates that do not express any carbapenemase (i.e., AmpC and/or ESBL producers) were inhibited by the Supercarba medium (with a detection limit much higher than 1 imes10<sup>3</sup> CFU/ml). In particular, the addition of cloxacillin prevented growth of the isolates expressing cephalosporinases (Table 1). As previously shown, a porin defect resulting in a decreased outer membrane permeability leads to a reduced susceptibility to ertapenem of E. coli and K. pneumoniae (7, 9, 10). In this study, among the 19 non-ertapenem-susceptible isolates with MIC values of ertapenem of >0.25 µg/ml (1 Citrobacter freundii isolate, 2 E. coli isolates, 4 Enterobacter cloacae isolates, and 12 K. pneumoniae isolates) and for which a porin defect was involved in ertapenem resistance, 58% (n = 11) were detected by selection on the Supercarba medium (lower detection limit of  $\leq 10^2$  CFU/ml) (Table 1). The addition of zinc sulfate and cloxacillin was useful for prevention of growth of many non-carbapenemase-producing carbapenem-resistant isolates (up to 42%; n = 8). Noticeably, non-carbapenemase-producing Acinetobacter baumannii and Pseudomonas aeruginosa grew on the Supercarba medium (data not shown). Similar growth results of nonenterobacterial Gramnegative rods were obtained using the ChromID ESBL and CHROMagar KPC media (data not shown). These three media are suitable only for selection of members of the Enterobacteriaceae.

A comparison of the results obtained with the ChromID ESBL and CHROMagar KPC media with those obtained with the Supercarba medium showed that the latter screening medium is more efficient in detecting carbapenemase-producing isolates (Tables 1 and 2). Indeed, the sensitivity of the Supercarba medium was 95.6%, which was higher than the sensitivity of the ChromID ESBL (87.7%) medium and of the CHROMagar KPC (40.3%) medium. Moreover, the sensitivities of the Supercarba medium determined for each class of carbapenemase producers was higher (100%, 90%, and 100% for classes A, B, and D, respectively) than those obtained for the two other screening media (Table 2). The specificity of the Supercarba medium was also high (82.2%). A further improvement of the Supercarba medium would be the addition of chromogenic molecules that would permit recognition of species.

To assess the storage ability of the Supercarba medium, *E. cloacae* ARF that overexpressed AmpC was subcultured daily onto Drigalski agar plates from a single batch of Supercarba medium stored at 4°C. Growth of this isolate was consistently inhibited on the Supercarba agar during a 7-day period.

We propose here the very first screening medium that may detect not only KPC and MBL producers but also OXA-48 producers. This medium represents a significant improvement compared to the available screening media to detect carbapenemase producers, and particularly for detection of OXA-48 producers that do not coexpress any ESBL. Taking into account the fact that Supercarba medium contains ertapenem at a low concentration, using this medium may detect carbapenemase producers with low-level resistance to carbapenems, which is a situation frequently observed for OXA-48 producers. In addition, this medium is useful for selecting specifically carbapenemase producers in stools that also contain a large amount of ESBL producers and inhibiting the growth of ESBL producers. This property is particularly relevant, since high rates of ESBL carriage are now reported worldwide (18).

Finally, a further improvement of the Supercarba medium would be the addition of chromogenic molecules for identification of enterobacterial species.

#### ACKNOWLEDGMENT

This work was funded by a grant from the INSERM (UMR914), Paris, France.

### REFERENCES

- Ambler RP, et al. 1991. A standard numbering scheme for class A β-lactamases. Biochem. J. 276:269–272.
- 2. Carrër A, et al. 2010. Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrob. Agents Chemother. 54:1369–1373.
- Carrër A, Fortineau N, Nordmann P. 2010. Use of ChromID extendedspectrum β-lactamase medium for detecting carbapenemase-producing *Enterobacteriaceae*. J. Clin. Microbiol. 48:1913–1914.
- 4. Castanheira M, et al. 2011. Early dissemination of NDM-1- and OXA-181-producing *Enterobacteriaceae* in Indian hospitals: report from the SENTRY Antimicrobial Surveillance Program, 2006-2007. Antimicrob. Agents Chemother. 55:1274–1278.
- Cuzon G, et al. 2010. Worldwide diversity of *Klebsiella pneumoniae* that produce beta-lactamase *bla*<sub>KPC-2</sub> gene. Emerg. Infect. Dis. 16:1349–1356.
- Cuzon G, Ouanich J, Gondret R, Naas T, Nordmann P. 2011. Outbreak of OXA-48-positive carbapenem-resistant *Klebsiella pneumoniae* isolates in France. Antimicrob. Agents Chemother. 55:2420–2423.
- Doumith M, Ellington MJ, Livermore DM, Woodford N. 2009. Molecular mechanisms disrupting porin expression in ertapenem-resistant *Klebsiella* and *Enterobacter* spp. clinical isolates from the UK. J. Antimicrob. Chemother. 63:659–667.
- Fukigai S, et al. 2007. Nosocomial outbreak of genetically related IMP-1 β-lactamase-producing *Klebsiella pneumoniae* in a general hospital in Japan. Int. J. Antimicrob. Agents 29:306–310.
- Girlich D, Poirel L, Nordmann P. 2009. CTX-M expression and selection of ertapenem resistance in *Klebsiella pneumoniae* and *Escherichia coli*. Antimicrob. Agents Chemother. 53:832–834.
- Jacoby GA, Mills DM, Chow N. 2004. Role of β-lactamases and porins in resistance to ertapenem and other β-lactams in *Klebsiella pneumoniae*. Antimicrob. Agents Chemother. 48:3203–3206.
- 11. Landman D, Salvani JK, Bratu S, Quale J. 2005. Evaluation of techniques

for detection of carbapenem-resistant *Klebsiella pneumoniae* in stool surveillance cultures. J. Clin. Microbiol. **43**:5639–5641.

- Lee K, Lim YS, Yong D, Yum JH, Chong Y. 2003. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of *Pseudomonas* spp. and *Acinetobacter* spp. J. Clin. Microbiol. 10:4623–4629.
- Liao IC, et al. 2011. Metallo-β-lactamase-producing *Enterobacteriaceae* isolates at a Taiwanese hospital: lack of distinctive phenotypes for screening. APMIS 119:543–550.
- Mammeri H, Nordmann P, Berkani A, Eb F. 2008. Contribution of extended-spectrum AmpC (ESAC) β-lactamases to carbapenem resistance in *Escherichia coli*. FEMS Microbiol. Lett. 282:238–240.
- Nordmann P, Cuzon G, Naas T. 2009. The real threat of *Klebsiella* pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis. 9:228–236.
- Nordmann P, Naas T, Poirel L. 2011. Global spread of carbapenemaseproducing *Enterobacteriaceae*. Emerg. Infect. Dis. 17:1791–1798.
- Nordmann P, Poirel L, Walsh TR, Livermore DM. 2011. The emerging NDM carbapenemases. Trends Microbiol. 19:588–595.

- Pitout JD, Laupland KB. 2008. Extended-spectrum beta-lactamaseproducing *Enterobacteriaceae*: an emerging public-health concern. Lancet Infect. Dis. 8:159–166.
- Poirel L, Dortet L, Bernabeu S, Nordmann P. 2011. Genetic features of bla<sub>NDM-1</sub>-positive Enterobacteriaceae. Antimicrob. Agents Chemother. 55: 5403–5407.
- Poirel L, Pitout JD, Nordmann P. 2007. Carbapenemases: molecular diversity and clinical consequences. Future Microbiol. 2:501–512.
- 21. Potron A, et al. 2011. Characterization of OXA-181, a carbapenemhydrolyzing class D  $\beta$ -lactamase from *Klebsiella pneumoniae*. Antimicrob. Agents Chemother. 55:4896–4899.
- Psichogiou M, et al. 2008. Ongoing epidemic of *bla*<sub>VIM-1</sub>-positive *Klebsiella pneumoniae* in Athens, Greece: a prospective survey. J. Antimicrob. Chemother. 61:59–63.
- Réglier-Poupet H, et al. 2008. Performance of ChromID ESBL, a chromogenic medium for detection of *Enterobacteriaceae* producing extended spectrum β-lactamases. J. Med. Microbiol. 573:310–315.
- Samra Z, et al. 2008. Evaluation of CHROMagar KPC for rapid detection of carbapenem-resistant *Enterobacteriaceae*. J. Clin. Microbiol. 46:3110–3111.