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An isolate of Klebsiella oxytoca carrying a novel IMP metallo-�-lactamase was discovered in Madrid, Spain. The blaIMP-28 gene is
part of a chromosomally located class I integron. The IMP-28 kcat/Km values for ampicillin, ceftazidime, and cefepime and, to a
lesser extent, imipenem and meropenem, are clearly lower than those of IMP-1. The His306Gln mutation may induce important
modifications of the L3 loop and thus of substrate accessibility and hydrolysis and be the main reason for this behavior.

The emergence of metallo-�-lactamases (MBL) in members of
the family Enterobacteriaceae is a problem of major concern

for clinicians worldwide (11). These enzymes can hydrolyze most
�-lactams, including carbapenems, and are not susceptible to
conventional �-lactamase inhibitors (2).

The IMP family has at least 33 unique IMP variants (http:
//www.lahey.org/Studies), which may differ widely in regard to
the primary sequence and biochemical activity. However, some
allelic variants with the following mutations are associated with
decreased overall activity (particularly against penicillins), i.e.,
Ser62 in IMP-12 (3), Ser196 in IMP-3 (6) and IMP-6 (17), and
Gly242 in IMP-18 (1).

Here we describe the genetic context and kinetic parameters of
the new MBL IMP-28, which was first described in a Klebsiella
oxytoca isolate from Spain, and in addition, we consider the pos-
sible cause of its poor overall activity.

K. oxytoca HGUGM21530 was isolated from a lip wound pa-
tient seropositive for human immunodeficiency virus diagnosed
with progressive multifocal leukoencephalopathy in the Gregorio
Marañon Hospital (Madrid, Spain) in 2009.

Pulsed-field gel electrophoresis (PFGE) with S1 nuclease diges-
tion of whole-genome DNA (S1-PFGE) and PCR-based replicon
typing (PBRT) were used to characterize plasmids as described
previously (4). The S1-PFGE-I gel was transferred and hybridized
with IMP and Inc A/C probes (the only amplicon obtained by
PBRT). The results showed one band of 340 kb that hybridized
only with the A/C probe. PFGE with I-CeuI digestion of whole-
genome DNA, as described by Liu et al. (9), was used to determine
whether the blaIMP-28 gene was located in the chromosome. The
PFGE-I-CeuI gel was transferred and hybridized with 16S rRNA
and IMP probes. The results showed one band that hybridized
with both the 16S rRNA and IMP probes. These data suggest that
the blaIMP-28 gene is located in the chromosome (data not shown).

The genetic context of the blaIMP-28 gene was elucidated by
PCR and sequencing. The blaIMP-28 gene is located in a class I
integron, designated In767 (http://integrall.bio.ua.pt/), that dis-
plays more structural differences from (1, 5, 7, 14, 15, 17) than
similarities to (12, 18) the other integrons published for IMP-
encoding genes in the last decade. The structure consists of two
aminoglycoside resistance genes, aacA44 and aadA13, just down-

stream of blaIMP-28. The aacA44 gene codes for a newly described
aminoglycoside-(6=)-acetyltransferase variant showing 86% se-
quence identity with AacA4.

The blaIMP-1 and blaIMP-28 genes were cloned into plasmid
pBGS18-pCTX under the control of the promoter of the gene for
the CTX-M-14 �-lactamase and then transformed into Esche-
richia coli strain TG1. The blaIMP-28 gene was obtained from K.
oxytoca HGUGM21530 by PCR and cloned into plasmid pBGS18
harboring the bla CTXM-14 promoter, which was previously used in
similar studies of �-lactamase expression (10). The primers used
for cloning were 5=AAAAGGTACCATGAGCAAGTTATTTGTA
TTCTTTATG (forward) and 5= AAAAGAATTCTTAGTTACTT
GGTTTTGATGGTTTTTTA (reverse). The blaIMP-1 gene was ob-
tained by PCR from plasmid pET-28a(�) with blaIMP-1 as an
insert (obtained from Y. Ishii [Toho University School of Medi-
cine, Tokyo, Japan]) and cloned into the same plasmid as the
blaIMP-28 gene. The primers used for cloning in this case were 5=A
AAGATCCATGAGCAAGTTATCTGTA (forward) and 5=AAAG
AATTCTTAGTTGCTTGGTTTTGA(reverse). Microbiological
analysis showed show a 4-fold minimum decrease in the MICs of
all of the antibiotics, except cefotaxime and aztreonam, for bacte-
ria expressing IMP-28 relative to those for bacteria expressing
IMP-1 (Table 1). These data suggest that the IMP-28 enzyme dis-
plays lower activity than IMP-1. In order to confirm this point, we
purified both enzymes and obtained the corresponding kinetic
data.

To purify IMP-28, the blaIMP-1 gene was cloned into the pGEX-
6P-1 expression vector with primers 5=AAAAGAATTCAGCGGG
GAGGCCCCGC (forward) and 5=AAAAGTCGACTCACTCGG
CCAACTGACTCAG (reverse). The construct was transformed
into E. coli M15 and produced a fusion protein consisting of glu-
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tathione S-transferase (GST) and the IMP-28 enzyme without its
signal peptide. The �-lactamase was purified to homogeneity ac-
cording to the manufacturer=s instructions for the GST gene fu-
sion system (Amersham Pharmacia Biotech, Europe, GmbH). Af-
ter the cleavage of GST from IMP-28, the purified (�99% pure)
protein appeared as a single band on sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis (data not shown).

Hydrolysis of the antibiotics by the IMP-28 �-lactamase was
monitored by recording the variation in absorbance resulting
from the opening of the �-lactam ring. The kinetic parameters of
nitrocefin were determined from the initial rates by Hanes-Woolf
linearization of the Henri-Michaelis-Menten equation. For the
other antibiotics, the Km value was measured as the Ki in a com-
petition experiment with nitrocefin as the reporter substrate (16).
The kcat values were then obtained by monitoring the hydrolysis of
the antibiotic at a concentration �10 times the Km.

The results revealed a systematic decrease in the kcat values of
IMP-28 relative to those of IMP-1. This decrease was not very
significant with nitrocefin and cefotaxime and was largest for am-
picillin (�1,000), for which IMP-1 displays the highest kcat value.
Comparison of the Km values of IMP-1 and IMP-28 did not reveal
any significant modifications; the greatest difference was a 6-fold
increase in the Km of IMP-28 for cefepime. The catalytic efficiency
of IMP-28 was relatively poor against the other antibiotics tested,
especially ampicillin, ceftazidime, and cefepime, and much lower
than that of IMP-1 against these antibiotics (Table 2). Although
the reduced Km contributed to some extent, the most important
factor in this behavior was the significantly lower kcat. The overall
kinetic data were consistent with a general decrease in the MICs
when the enzymes were expressed in E. coli TG-1. Therefore, the

data confirmed that IMP-28 has a lower hydrolytic capacity than
IMP-1. To rule out a loss of activity linked with this lower activity,
stability studies by thermal denaturation were performed. The
overall data showed the two enzymes to be similarly stable (data
not shown).

It is difficult to assign any mutation to this general low activity
since IMP-28 differs in 6 amino acids from IMP-5, its most similar
counterpart, and in 15 residues from IMP-1 (Fig. 1). An alignment
of the amino acid sequences of representative IMP �-lactamases,
including those with lower activity toward beta-lactams, revealed
that there are no modifications in the catalytic residues of IMP-28.
Moreover, IMP-28 does not contain the mutations that some
groups have associated with decreased overall activity (particu-
larly against penicillins). We also observed three unique replace-
ments in IMP-28, namely, Arg47Lys, Gly174Ser, and His306Gln,
none of which was repeated in any other enzyme of this group.

The impact of the 15 amino acids modified in IMP-28 relative
to IMP-1 was therefore assessed by examining the various IMP-1
structures available. Among the 15 mutations differentiating
IMP-28 from IMP-1, the 10 involving surface residues and the
homologous Val216Ile mutation are not expected to affect sub-
strate hydrolysis (Fig. 2A). The Asn208Arg mutation, which we
identified as potentially being involved in protein dynamics, is
also unlikely to play a major role because it would probably have
affected the hydrolysis of the various substrates more uniformly.
The remaining 3 amino acid differences between IMP-28 and
IMP-1 are related to the L3 loop, which defines one side of the
MBL active site and is known to be important for efficient hydro-
lysis (13). The Val223Ile and Leu241Ile differences found at both

TABLE 1 MICs of ampicillin, oxyiminocephalosporins, carbapenems, and other antibiotics for E. coli TG1 and the bacterial clinical isolate
expressing the IMP-1 and IMP-28 �-lactamases

Antibiotic

MIC (�g/ml)a for:

K. oxytoca
HGUGM21530 (IMP-28)

E. coli
TG1 PBGS18-pCTX IMP-28

E. coli
TG1 PBGS18-pCTX IMP-1

E. coli
TG1 PBGS18-pCTX

Ampicillin 32 64 512 2
Cefoxitin 256 256 1,028 1
Cefotaxime 64 256 256 0.06
Ceftazidime 64 128 512 0.06
Cefepime 2 32 128 �0.12
Aztreonam �0.25 �0.25 �0.25 �0.25
Imipenem 1 0.5 2 0.12
Meropenem 1 4 16 �0.03
a The results were confirmed in three independent experiments.

TABLE 2 Kinetic data for the pure IMP-28 and IMP-1 �-lactamasesa

Antibiotic

kcat (s�1) Km (�M) kcat/Km (�M�1 s�1)

IMP-1 IMP-28 IMP-1 IMP-28 IMP-1 IMP-28

Nitrocefin 63 � 10 35.86 � 12 27 � 3 17.6 � 4 2.3 2.03
Ampicillin 950 � 50 0.649 � 0.14 200 � 25 359 � 172 4.8 1.8 10�3

Cefoxitin 16 � 1 0.75 � 0.07 8 � 1 7 � 0.3 2 0.1
Cefotaxime 1.3 � 5 0.98 � 0.042 4 � 0.5 9.4 � 0.5 0.35 0.104
Ceftazidime 8 � 1 0.35 � 0.046 44 � 3 112 � 10 0.18 3 10�3

Cefepime 7 � 0.5 0.145 � 0.01 11 � 1 72 � 9 0.66 2 10�3

Imipenem 46 � 3 8.66 � 0.17 39 � 4 90 � 21 1.2 0.096
Meropenem 50 � 5 3.05 � 0.1 10 � 2 14.4 � 0.4 5 0.21
a Data are means � standard deviations (where applicable) and are from Laraki et al. (8).
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ends of this loop are not specific to the IMP-28 –IMP-1 pair, un-
like the His306Gln mutation.

The His306Gln mutation is of the greatest interest. In IMP-1,
the glutamine side chain is involved in two hydrogen bonds with

residues of the L3 loop, which defines one side of the active-site
cleft (Fig. 2B). Therefore, replacement of this amino acid with a
shorter bulkier histidine may induce significant modifications of
the L3 loop and thus of substrate accessibility and hydrolysis. In

FIG 1 Alignment of the amino acid sequences of some representative members of the IMP �-lactamase family (IMP-1, GenBank accession number, S71932; IMP-3,
AB010417; IMP-5, 290912; IMP-6, AB040994; IMP-12, AJ420864; IMP-18, AY780674; IMP28, JQ407409; IMP-29, HQ438058). Asterisks indicate strictly conserved
amino acids. The catalytic residues are shown in blue. Amino acids of IMP-28 differing from those of IMP-1 are shown in red. Residues of IMP enzymes known to affect
substrate hydrolysis (relative to IMP-1) are highlighted in yellow. Alignment was performed with the CLUSTAL W program of EMBL-EBL.

FIG 2 (A) Molecular representation of the structure of IMP-1 (Protein Data Bank code 1DDK). The 15 residues that are different in IMP-28 are shown as orange
sticks, surface residues are black, internal hydrophobic residues are blue, and polar internal residues are red. (B) Enlarged view of the L3 loop of IMP-1 (green).
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summary, a new IMP variant has been characterized that shows
low overall activity, probably due to a His306Gln modification.
Laboratory studies are under way to clarify this point.

Nucleotide sequence accession numbers. The nucleotide se-
quence of the class 1 integron harboring blaIMP-28 in K. oxytoca
strain HGUGM21530 has been deposited in the GenBank data-
base under accession number JQ407409.
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