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Aberrant expression of regulatory receptors programmed death-1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) is linked
with dysregulation and exhaustion of T lymphocytes during chronic human immunodeficiency virus type 1 (HIV-1) infection;
however, less is known about whether a similar process impacts B-lymphocyte function during HIV-1 infection. We reasoned
that disruption of the peripheral B cell compartment might be associated with decreased neutralizing antibody activity. Expres-
sion of markers that indicate dysregulation (BTLA and PD-1), immune activation (CD95), and proliferation (Ki-67) was evalu-
ated in B cells from HIV-1-infected viremic and aviremic subjects and healthy subjects, in conjunction with immunoglobulin
production and CD4 T cell count. Viral load and cross-clade neutralizing activity in plasma from viremic subjects were also as-
sessed. Dysregulation of B lymphocytes was indicated by a marked disruption of peripheral B cell subsets, increased levels of
PD-1 expression, and decreased levels of BTLA expression in viremic subjects compared to aviremic subjects and healthy con-
trols. PD-1 and BTLA were correlated in a divergent fashion with immune activation, CD4 T cell count, and the total plasma IgG
level, a functional correlate of B cell dysfunction. Within viremic subjects, the total IgG level correlated directly with cross-clade
neutralizing activity in plasma. The findings demonstrate that even in chronically infected subjects in which B lymphocytes dis-
play multiple indications of dysfunction, antibodies that mediate cross-clade neutralization breadth continue to circulate in
plasma.

Infection with human immunodeficiency virus type 1 (HIV-1)
leads to widespread dysfunction of the immune system, includ-

ing B lymphocytes. One sign of B cell dysfunction in HIV-1 infec-
tion is an increase in the production of IgG, or hypergam-
maglobulinemia (8, 21, 29). B lymphocytes of HIV-1-infected
persons also exhibit signs of polyclonal activation and autoreac-
tivity (46) and impaired responses to both T-dependent and -in-
dependent antigenic stimuli or immunization (19, 20, 36, 39).
These dysfunctions have been attributed, in part, to an imbalance
of four major subsets within the B cell compartment (31, 32).
Combination antiretroviral therapy (cART) only partially restores
the balance, even after 12 months of treatment (31).

Since first introduced by Ascher and Sheppard in the late
1980s, the concept of immune activation as a causative mecha-
nism of HIV-1 pathogenesis/AIDS has garnered immense consid-
eration and experimental evaluation (1). The degree of immune
activation has been implicated in disease progression pace (15).
Normally, a delicate interplay among several regulatory receptors
tightly governs activation of the immune system. Recently, the
importance of programmed death-1 (PD-1, CD279) has been em-
phasized in the development of hyperimmune activation and ex-
haustion within T lymphocytes during chronic viral infections,
including HIV-1 (2, 6, 7, 17, 18, 52). Less is known about the role
of PD-1 in the maintenance of B cell function, but a recent study
demonstrated that PD-1 expression on activated memory B cells
in simian immunodeficiency virus (SIV) infection was associated
with rapid disease progression (49). Similar to PD-1, B- and T-
lymphocyte attenuator (BTLA, CD272) is another member of the
B7/CD28 superfamily (51). This regulatory receptor is decreased
on CD4 and CD8 T cells during chronic HIV-1 infection, and its
expression is inversely correlated with disease progression (53).

Thus, aberrant expression of PD-1 and BTLA on T cells in HIV-1
infection has been associated with disease progression.

Antibodies that can mediate neutralization of heterologous
HIV-1 viruses are desirable from a vaccine perspective, but it is
unclear how they arise or if they provide any benefit to the patient.
Furthermore, these types of neutralizing antibodies (nAbs) are
detected only after several years of infection and in only a subset of
infected individuals (3, 5, 10, 13, 14, 35, 42, 47, 50). Factors that
have been suggested to promote the development of neutraliza-
tion breadth include prolonged exposure to antigen, higher enve-
lope diversity, and plasma viral load (9, 12, 14, 34, 37, 42). Never-
theless, neutralization breadth does not delay disease progression
(13, 14, 37). Others have demonstrated that peripheral B cell de-
cline and other perturbations do not necessarily impede nAb ac-
tivity as measured in vitro (4, 35), but to date no one has measured
neutralization breadth in a cohort of HIV-1-infected subjects for
which multiple aspects of B cell dysfunction have been evaluated
in parallel.

Here we evaluated the state of the peripheral B cell compart-
ment in chronically HIV-1-infected individuals, infected but
aviremic subjects treated with cART, and healthy controls by eval-
uating levels of PD-1 and BTLA expression on total B cells and
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within peripheral B cell subsets. Aberrant expression of these re-
ceptors was observed in viremic individuals and was correlated
with increased levels of immune activation, proliferation, IgG
production, and CD4 T cell decline. We also investigated whether
individuals experiencing these signs of B cell dysfunction pos-
sessed antibody-mediated neutralization capacity against pseu-
dotyped heterologous HIV-1 envelope (Env) glycoproteins.
Strong cross-clade neutralizing antibody activity was detected in
the plasma of a subset of these infected individuals, even though
the B cell compartment was perturbed.

MATERIALS AND METHODS
Study subjects. In compliance with procedures approved by the Emory
University Institutional Review Board (IRB), 41 individuals were enrolled
with informed consent for this study. Participants were categorized into
three groups: healthy controls (HC, n � 12) included persons without
HIV-1 infection or any clinical symptoms at the time of enrollment; vire-
mic subjects (VI, n � 16) had clinical records of HIV-1 infection but were
cART naïve and had plasma viral loads greater than 1,000 copies/ml; and
aviremic subjects (AV, n � 13) were HIV-1 infected and currently on
cART with a plasma viral load of fewer than 100 copies/ml. Median age,
CD4 T cell count, and viral load, as well as the gender and ethnicity of the
study participants, are listed in Table 1.

PBMC isolation. Approximately 50 ml blood was collected from each
participant in acid-citrate-dextrose (ACD)-containing BD-Vacutainer
blood collection tubes, with informed consent from the donor. Peripheral
blood mononuclear cells (PBMCs) were isolated from fresh blood by
standard Ficoll-Paque density gradient centrifugation (Ficoll-Paque Plus,
GE Healthcare). PBMCs were then aliquoted and cryopreserved in liquid
nitrogen (�160°C) until needed for flow cytometry.

Flow-cytometric analysis of peripheral B cells. PBMCs were thawed
and washed twice with phosphate-buffered saline (PBS) and then resus-
pended in fluorescence-activated cell sorter (FACS) buffer (PBS with 1%
bovine serum albumin [BSA] and 0.1% sodium azide). Two million cells
were used for surface staining with the following antibodies: yellow
fluorescent reactive dye (live/dead stain), anti-CD3 V500 (SP34-2), anti-
CD14 V500 (M5E2), anti-PD-1 APC (EH12.2H7), anti-BTLA PE (J168-
540), anti-CD19 Qdot655 (SJ25C1), anti-CD10 APC-Cy7 (HI10a), anti-
CD21 PE-Cy5 (B-ly4), anti-CD27 PE-Cy7 (1A4CD27), and anti-CD95

FITC (DX2). Following live/dead cell staining, PBMCs were incubated
with antibodies at 4°C for 30 min; cells were fixed, and any contamination
of red blood cells (RBC) was removed by incubation in 1� lysing solution
(BD Bioscience) for 10 min at room temperature. For intracellular stain-
ing, PBMCs were further washed twice with FACS buffer and permeabil-
ized with 1� permeabilizing solution (BD Bioscience) for 30 min at room
temperature. Anti-Ki-67 Alexa Fluor 700 (B56) antibody was used for the
intracellular staining at room temperature for 30 min. After washing
twice, cells were resuspended in 400 �l FACS buffer containing 1% para-
formaldehyde. Fluorescence minus one (FMO) negative controls were
included for staining. An LSR-II cell analyzer (BD Bioscience) was used to
acquire data. Lymphocytes were gated based on forward versus side scat-
ter profile, and B lymphocytes were gated as CD19� cells after exclusion of
dead, CD3�, and CD14� cells. Data were analyzed using FlowJo software
(version 9.3.1; TreeStar Inc., USA).

ELISA for plasma IgG. Total IgG concentration in plasma was mea-
sured by using a human IgG enzyme-linked immunosorbent assay
(ELISA) quantitation set (Bethyl Laboratories Inc.) according to the man-
ufacturer’s directions. Plasma was heat inactivated (56°C for 60 min) and
then diluted to 1:100,000 for the experiments. Endpoint absorbance was
measured at 450 nm with a BioTek Synergy multidetection microplate
reader, and data were analyzed with KC4 v3.4 software. A human refer-
ence serum was used to normalize total IgG concentrations in plasma.

ELISA for binding to monomeric gp120. Immulon microtiter 96-well
plates were coated with 100 �l of HIV-1 BaL gp120 diluted to 5 �g/ml in
coating buffer (Institute of Human Virology, �Quant Facility). Plates
were washed 3 times and then blocked for 30 min at 37°C. Following
washing, 100 �l of heat-inactivated plasma was added to each well and
incubated for 1 h. Plates were washed 3 times, and 100 �l of horseradish
peroxidase (HRP)-conjugated goat anti-human IgG was added to each
well. After a 1-h incubation at 37°C, plates were washed, and 3,3=,5,5=-
tetramethylbenzidine (TMB) substrate was added. After 10 min, reactions
were stopped with 4 N H2SO4, endpoint absorbance was measured at 450
nm with a BioTek Synergy multidetection microplate reader, and data
were analyzed with KC4 v3.4 software.

Neutralization assay. The ability of plasma from 16 viremic individ-
uals to neutralize a cross-clade panel of 13 HIV-1 envelope (Env) pseu-
dotyped virions was measured using the Tzm-bl luciferase assay as de-
scribed previously (22, 27, 40, 41). Each plasma-Env combination was
analyzed independently at least two times with duplicate wells. The neu-
tralization 50% inhibitory concentration (IC50) for each plasma-Env
combination was calculated using linear regression analysis in GraphPad
Prism version 5.0. IC50s that were less than the highest dilution of plasma
tested (1:100) were assigned a score of 1:50. Neutralization breadth was
calculated as the number of pseudoviruses neutralized with an IC50 of
greater than 1:100, and potency was defined by (i) dividing the IC50 for
each given plasma-Env combination by the median IC50 for that pseudo-
virus against all plasma samples and (ii) adding the scores for each plasma
sample, as described in reference 26. Higher scores indicate greater
breadth and potency. All Env clones were obtained from the AIDS Re-
search and Reference Reagent Program, Division of AIDS, NIAID, NIH:
6535.3, SS1196.1, TRO.11, AC10.0.29, and PVO.4 are from the standard
reference panel for subtype B HIV-1 Env clones (23); ZM197M.PB7,
Du172.17, Du156.12, ZM109F.PB4, CAP45.2.00.G3, and ZM214M.PL15
are from the subtype C HIV-1 reference panel of Env clones (24); subtype
A Env clones Q23ENV17 (38) and Q769ENVd22 (25) were contributed
by Julie Overbaugh.

Blood CD4 T cell count and plasma HIV-1 viral load. Blood CD4 T
cell count was measured by the Emory University CFAR Immunology
core, and plasma viral load was quantified by the Virology core. Briefly,
the absolute number of peripheral blood lymphocytes was calculated
from the total white blood cell (WBC) count determined with an auto-
mated hematology analyzer, and the percentage of CD4 T-lymphocyte
population was determined by flow cytometry. The plasma HIV-1 RNA
level was measured using the Cobas Amplicor HIV Monitor test (version

TABLE 1 Characteristics of the study participants

Characteristic HC AVa,b VIb

No. of subjects 12 13 16

Gender
Male 8 9 14
Female 4 4 2

Ethnicity
Caucasian 5 0 2
African American 3 13 14
Asian 2 0 0
Mixed 2 0 0

Median age, yr (range) 32 (20–56) 46 (33–65) 37 (22–50)

Median CD4 count,c

cells/�l (range)
632 (375–1,094) 329 (31–988) 104 (4–465)

Median viral load,
copies/ml
(range)

NAd �100 129,092 (4,189–676,811)

a The duration of the cART regimen was greater than 6 months for all aviremic
subjects.
b All HIV-1-infected subjects (aviremic and viremic) were classified as CDC stage C3.
c P � 0.05 for HC versus VI and AV versus VI.
d NA, not applicable.
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1.5; Roche) or the Abbott Real Time HIV-1 assay on an automated m2000
system, according to the manufacturer’s directions.

Statistical analysis. Nonparametric one-way analysis of variance (1-
way ANOVA, Kruskal-Wallis with Dunn’s posttest) and Spearman’s rank
correlation tests were performed with GraphPad Prism version 5.0 to
evaluate the data. A P value of less than 0.05 (95% confidence level) was
considered significant.

RESULTS
Regulatory receptors PD-1 and BTLA are aberrantly expressed
on B lymphocytes during chronic HIV-1 infection. To investi-
gate dysregulation within the B cell compartment during chronic
HIV-1 infection, expression of the inhibitory receptors PD-1 and
BTLA was assessed by flow cytometry and compared among
healthy controls (HC), aviremic subjects (AV), and viremic sub-
jects (VI) (Fig. 1). In HC, only a minor proportion of B cells
expressed PD-1 (Fig. 1A), consistent with what is observed in T
lymphocytes (7, 52). In VI, expression of PD-1 was significantly

increased (Fig. 1A, P � 0.001). AV subjects had PD-1 expression
levels that were significantly lower than those of VI (Fig. 1A, P �
0.001) but were not significantly different from HC. Thus, active viral
replication in VI is associated with a significant increase in PD-1 ex-
pression on B cells, which is alleviated by cART. Despite a greater
percentage of B cells expressing PD-1 in VI, the level of receptor ex-
pression per CD19� PD-1� cell was not different from that of HC or
AV (Fig. 1B). Instead, comparable mean fluorescence intensity (MFI)
values were observed across the three groups.

The majority of B cells in HC expressed BTLA on their surface
(Fig. 1C). However, VI showed a significant decline in BTLA ex-
pression compared to HC (Fig. 1C, P � 0.001). AV individuals
had intermediate levels of BTLA expression that were significantly
different from that of both HC and VI (Fig. 1C, P � 0.05), repre-
senting only partial restoration of normal BTLA levels. In addition
to the decrease in percentage of BTLA-expressing B cells in VI and
AV, the MFIs of individual CD19� BTLA� cells were significantly

FIG 1 Expression of PD-1 and BTLA by B lymphocytes. (A and C) Percentages of total B cells (CD19�) that express PD-1 (A) and BTLA (C) in HC, AV, and VI
subjects. (B and D) Mean fluorescence intensity (MFI) for PD-1 (B) and BTLA (D) expression by individual PD-1� or BTLA� CD19� B cells. Each point
represents data from a single subject. Horizontal bars within the point plots indicate the median percentage for each group. Significance between groups
determined by 1-way ANOVA is indicated above the groups: *, P � 0.05; **, P � 0.01; ***, P � 0.001. (E) Correlation between percentages of total B cells that
express PD-1 and BTLA. Spearman’s rank correlation coefficient (r) and level of significance (p) are indicated within the graph. Open diamonds, HC; closed
triangles, AV; closed circles, VI.
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lower in VI and AV than in HC (Fig. 1D, P � 0.001 and P � 0.05,
respectively). Thus, modulation of BTLA expression by HIV-1
infection occurred at both the population and single-cell level and
remained depressed even when viral replication was suppressed by
cART. HIV-1 infection exerts a differential effect on B cell expres-
sion of PD-1 and BTLA, as evidenced by the strong inverse corre-

lation between the two receptors (Fig. 1E, P � 0.0001). The aber-
rant expression of these receptors in VI indicates that homeostasis
within the B cell compartment is significantly disrupted.

Peripheral B cell subsets are dysregulated during chronic
HIV-1 infection. We next examined whether altered PD-1 and
BTLA expression levels in the total B cells of VI were reflected

FIG 2 Distribution of B-lymphocyte subsets and expression of PD-1 and BTLA. (A) Flow cytometry gating strategy for separating B cell subsets. Within the B
lymphocytes (CD19�), cells were further gated into four subsets, defined as immature (CD10�CD27�), mature (CD10�CD21lo), naive (CD10�CD21hiCD27�),
and memory (CD10�CD21hiCD27�). (B) Mean proportions of naive, immature, mature, and memory subsets within the total B cell population in HC, AV, and
VI subjects. (C and D) Percentages of naive, immature, mature, and memory B cells that express PD-1 (C) and BTLA (D) in HC, AV, and VI. Each point
represents data from a single subject. Horizontal bars within the point plots indicate the median percentage for each group. Significance between groups
determined by 1-way ANOVA is indicated below the groups: *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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in specific B-lymphocyte subsets. Figure 2A displays the strat-
egy used for separating total B cells (CD19�) into 4 phenotypic
subsets: immature (CD10�CD27�), mature (CD10�CD21lo),
naïve (CD10�CD21hiCD27�), and classical memory
(CD10�CD21hiCD27�), as described previously (31). Similar
to a published study by Moir et al. (31), a decrease in the pro-
portion of naïve and memory B cells and an increase in the
immature and mature populations were observed in VI com-
pared to HC (Fig. 2B). The change in the proportion of mature
B cells was dramatic, increasing from 8% in HC to 43% in VI.
Likewise, a substantial decline in the memory B cell subset,
from 36% in HC to 8% in VI, was observed. Thus, mature B
cells came to dominate the peripheral B cell compartment in
VI. The balance within B cell subsets in AV was partially re-
stored, falling somewhere between the proportions seen in HC
and in VI.

The B cell subsets differed in their respective PD-1 and BTLA
expression patterns (Fig. 2C and D, respectively). In HC, low PD-1
expression was observed in all subsets, but particularly within na-
ive and memory B cells (Fig. 2C). In VI, PD-1 expression was
significantly increased in the naive and immature subpopulations
of B cells compared to HC (Fig. 2C, P � 0.01 and P � 0.001,
respectively). However, PD-1 expression on naive and immature
B cells in AV was not different from HC, indicating some partial
restoration (Fig. 2C). BTLA expression in VI was significantly de-
creased in the naive, immature, and memory B cell subsets com-
pared to HC and AV (Fig. 2D, P � 0.001 and at least P � 0.05,
respectively). BTLA expression in AV was not different from that
of HC except in immature B cells, where it remained significantly
lower than in HC (Fig. 2D, P � 0.05). In the mature B cell subset,
significant differences in the expression of PD-1 and BTLA were

not detected among HC, AV, and VI. However, because the ma-
ture B cell subset is expanded in VI (Fig. 2B), these B cells may
contribute disproportionately to the overall increase in PD-1 and
decrease in BTLA expression.

PD-1 and BTLA expression on B lymphocytes is correlated
with markers of immune activation, proliferation, and disease
progression. Because generalized immune activation is an impor-
tant factor in determining the course of HIV-1 infection, we also
investigated whether PD-1 and BTLA expression was associated
with Ki-67 or CD95 on total B cells. A strong positive correlation
was found between PD-1 expression and Ki-67 (P � 0.0001) and
CD95 (P � 0.0004) (Fig. 3A and B, respectively), whereas BTLA
exhibited an inverse correlation with these markers (Fig. 3C and
D, P � 0.0001 and P � 0.006, respectively). These results suggest
a direct link between dysregulation and immune activation in the
B cell compartment.

The relationship between PD-1 and BTLA expression on total
B cells and two indicators of disease progression, plasma viral load
and blood CD4 T cell count, was also assessed. PD-1 or BTLA
expression on B lymphocytes was not significantly associated with
plasma viral load in VI (Fig. 4A and B, respectively). However, a
significant correlation was observed between CD4 T cell count
and PD-1 or BTLA expression, including data from the three sub-
ject groups (Fig. 4C and D, respectively, P � 0.0001). PD-1 ex-
pression on total B cells was inversely correlated with CD4 T cell
count, while the correlation for BTLA expression and CD4 T cell
count was direct.

PD-1 and BTLA expression on B lymphocytes is correlated
with plasma IgG level. Hypergammaglobulinemia is a direct
manifestation of B cell dysfunction during HIV-1 infection. We
therefore examined the relationship between PD-1 and BTLA ex-

FIG 3 Correlation of PD-1 and BTLA expression on B lymphocytes with Ki-67 and CD95. (A and B) Correlations between percentages of total B cells (CD19�)
that express PD-1 and percentages expressing Ki-67 (A) or CD95 (B). (C and D) Correlations between BTLA and Ki-67 (C) or CD95 (D) expression. Spearman’s
rank correlation coefficient (r) and level of significance (p) are indicated within each graph. Each point represents data from a single subject. Open diamonds, HC;
closed triangles, AV; closed circles, VI.
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pression on B cells and plasma total IgG level for each group of
subjects. Concurrent with previous reports, a significant increase
in the plasma total IgG level was observed in VI compared to both
AV and HC (Fig. 5A, P � 0.05 and P � 0.001, respectively). Viral
suppression mediated by cART resulted in lower levels of total IgG
production. In addition, highly significant direct and indirect cor-
relations between total IgG level and PD-1 or BTLA expression on
B cells were identified (Fig. 5B and C, P � 0.0005 and P � 0.0001,
respectively). Thus, regulatory receptor expression is linked with
this functional anomaly of the B cell compartment.

Total IgG level in plasma but not immune dysregulation is
associated with HIV-1 neutralization breadth in viremic indi-
viduals. We next investigated if heterologous neutralizing activity
was present in VI with established B cell dysfunction and if nAb
breadth was dependent upon the level of B cell activation or dys-
function. Plasma samples from VI were tested for their ability to
neutralize a panel of 13 HIV-1 envelope (Env) pseudotyped viri-
ons from clades A, B, and C, which included three tiers of sensi-
tivity, as determined by Seaman et al. (45). While HIV-1 subtypes
were not determined, our cohort of viremic subjects was most
likely infected with subtype B, as this viral clade predominates in
the southeastern United States. The neutralization IC50 was calcu-
lated for each plasma-Env combination, and these data were used
to calculate a breadth (how many Envs were neutralized) and po-
tency (the strength of neutralization) score for each plasma sam-
ple, as described in reference 37. Infectivity curves for each plasma
sample are shown in Fig. S1 in the supplemental material. A range
of neutralization breadth was observed in these 16 subjects: three
plasma samples (19%) demonstrated widespread neutralizing ac-
tivity against this panel of Envs, while five subjects (31%) exhib-

ited a complete lack of detectable neutralization at the lowest di-
lution of plasma tested (1:100) (Fig. 6A). No correlation was
observed between neutralization breadth or potency and param-
eters of B cell dysfunction (PD-1, BTLA), immune activation (Ki-
67, CD95), or disease progression (CD4 T cell count, plasma viral
load) (data not shown). However, the level of total IgG in each VI
plasma sample was significantly correlated with both neutraliza-
tion breadth and potency (Fig. 6B and C, P � 0.009 and P � 0.02,
respectively). We next quantitated the level of antibodies that bind
to the monomeric form of a subtype B Env gp120 (HIV-1 BaL) in
each VI plasma sample and determined whether antibodies with
this specificity were correlated with nAb breadth or potency. Like
total IgG, anti-gp120 antibodies were positively correlated with
nAb breadth and potency, but in this case the correlations only
trended toward significance (Fig. 6D and E, respectively, P � 0.09
for both). Anti-gp120 antibodies did not correlate with parame-
ters of B cell dysfunction, immune activation, disease progression,
or total IgG level. These findings suggest that gp120 binding and
other IgG antibody specificities contribute to nAb breadth, but
neither is overtly influenced by perturbations in the B cell com-
partment during chronic HIV-1 infection.

DISCUSSION

An effective humoral immune response, in concert with cell-me-
diated immunity, may contribute to the control of HIV-1 replica-
tion. Several lines of evidence from SIV and simian-human im-
munodeficiency virus (SHIV) infection of nonhuman primates
and from studies of HIV-1 infection support the importance of B
lymphocytes. A suboptimal antibody response can influence dis-
ease progression and even lead to a fatal outcome during SIV/

FIG 4 Correlation of PD-1 and BTLA expression on B lymphocytes with markers of HIV-1 disease progression. (A and B) Correlations between plasma viral load
(HIV-1 RNA copies/ml) and percentage of total B cells (CD19�) that express PD-1 (A) or BTLA (B). (C and D) Correlations between blood CD4 count (CD4
T cells/�l) and percentage of total B cells (CD19�) that express PD-1 (C) or BTLA (D). Spearman’s rank correlation coefficient (r) and level of significance (p)
are indicated in each graph. Each point represents data from a single subject. Open diamonds, HC; closed triangles, AV; closed circles, VI.
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SHIV infections (11, 43, 44, 48, 49, 54). Furthermore, studies of
HIV-1 infection have shown that B-lymphocyte dysfunction cor-
relates with markers of disease progression (28, 30, 33). In one
HIV-1-infected individual, monoclonal antibody-mediated de-
pletion of B cells resulted in a decrease in neutralizing antibody
titer and an increase in plasma viral load, which was reversed when
the neutralizing antibody titer recovered to the pretreatment level
(16). Thus, strategies to reverse or limit B cell dysfunction during
HIV-1 infection could potentially limit disease progression.

Here we have demonstrated that PD-1 and BTLA, previously
recognized mainly for their effects on T cells, are also aberrantly
expressed on B lymphocytes during chronic HIV-1 infection. Our
data demonstrate that expression of PD-1 was increased and that
of BTLA decreased on B lymphocytes during persistent HIV-1
viremia and that alteration in PD-1 and BTLA expression on B
cells is comparable to the patterns observed in T cells (7, 52, 53).
Expanded analysis into the four major subsets of B lymphocytes
revealed that PD-1 expression was notably higher in naive and
immature B cells, and BTLA was lower in naive, immature, and
memory B cells in VI. Interestingly, the mature B cell subset ex-
hibited the least quantifiable differences in expression of these
regulatory markers among VI, AV, and HC but was the most af-
fected with respect to the peripheral B cell subset distribution.

Plasma viral load in VI was not significantly correlated with
either PD-1 or BTLA expression on B cells. In contrast, other
studies have reported correlations between PD-1 or BTLA expres-
sion on T cells and plasma viral load (7, 53). These studies also
demonstrated that the CD4 T cell count was inversely correlated
with PD-1 expression and directly correlated with BTLA expres-

sion on T cells (7, 53). Similarly in our study, peripheral blood
CD4 T cell count was also indirectly and directly correlated with
PD-1 and BTLA expression, respectively, on B lymphocytes. Thus,
an imbalance in immune homeostasis, rather than simply the
presence of persistent viral antigen, could be reflected in the aber-
rant expression of these regulatory receptors on B cells. A strong
correlation was also observed between PD-1 and BTLA expression
on B cells and markers of cell proliferation and activation. These
findings suggest a possible role for aberrant PD-1 and BTLA ex-
pression in driving increased B cell activation. Finally, this report
is among the first to link B cell dysregulation with the extent of
hypergammaglobulinemia, a functional measure of B cell dys-
function in HIV-1 infection.

Having established multiple tiers of disruption within the B cell
compartment in the VI cohort, we investigated whether plasma
from these individuals contained nAbs with cross neutralizing ca-
pacity. Broad and potent neutralization was observed in 3 of the 16
subjects analyzed here. This frequency of 19% is consistent with
that reported for individuals possessing greater nAb breadth in
other cohorts. These three individuals did not systematically differ
from the others exhibiting less nAb activity with regard to mea-
sures of immune activation, dysregulation, CD4 T cell count, or
plasma viral load. Instead, in this cohort of typical progressor
patients, nAb breadth and potency were associated directly with
the level of hypergammaglobulinemia and gp120 binding anti-
bodies, even though the latter did not reach statistical significance.
A recent study from Oballah et al. demonstrated that the absolute
B cell count in a subtype A HIV-1-infected cohort in Uganda was
inversely correlated with neutralizing activity against heterolo-

FIG 5 Correlation of PD-1 and BTLA expression on B lymphocytes with total plasma IgG levels. (A) Concentrations of total IgG (mg/ml) in the plasma of HC,
AV, and VI subjects. Horizontal lines within the boxes indicate the median value for each group. Boxes represent the 25th to 75th percentiles, and brackets
represent the minimum to maximum values in each group. Significance between groups by 1-way ANOVA is indicated above the groups: *, P � 0.05; ***, P �
0.001. (B and C) Correlations between total IgG concentration (mg/ml) in plasma and percentage of total B cells (CD19�) that express PD-1 (B) or BTLA (C).
Spearman’s rank correlation coefficient (r) and level of significance (p) are indicated within each graph. Each point represents data from a single subject. Open
diamonds, HC; closed triangles, AV; closed circles, VI.
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gous Envs (35). In our study, we did not find a correlation between
total B cell count and nAb breadth or potency (data not shown).
However, consistent with their results, we did observe that rela-
tively strong and broad nAbs are present in individuals that ex-
hibit B cell dysregulation and hypergammaglobulinemia. Others
have reported that the time since infection (14, 42) and plasma

viral load or CD4 T cell count were associated with nAb breadth
(9, 13, 37, 42). It is likely that these associations did not emerge in
our study because of the smaller cohort size, which was targeted
toward facilitating an extensive flow-cytometric analysis of B cells
in addition to measuring nAb breadth.

In summary, this paper is among the first to demonstrate ab-

FIG 6 Neutralization breadth of plasma from VI subjects correlates with total IgG level. Sixteen plasma samples from VI were evaluated for their neutralization
breadth and potency against a cross-clade panel of 13 HIV-1 Env pseudotypes. (A) The neutralization IC50 was calculated for each plasma-Env combination using
linear regression. IC50s of less than 1:100 were assigned a value of 1:50. Color shading indicates the potency of neutralization: red � dark orange � light orange �
green. HIV-1 Envs are listed along the top and are grouped by subtype. The tier designation for each Env (1B, 2, or 3) is shown and represents overall
neutralization phenotype, as described in reference 45. Tier 1B viruses are “easy” to neutralize; tier 2 viruses are representative of most patient viruses; tier 3
viruses are “difficult” to neutralize. Higher breadth and potency scores indicate greater neutralization capacity. (B and C) Correlations between neutralization
breadth (the number of Env pseudotypes neutralized) or potency (the sum of IC50s for each plasma-Env combination divided by the median IC50 for that virus
against all plasma samples) and total IgG level for each plasma sample. (D and E) Correlations between nAb breadth and potency and the level of anti-gp120
binding antibodies in plasma, detected by ELISA (plotted as the optical density reading at 450 nm). Spearman’s rank correlation coefficient (r) and level of
significance (p) are indicated within each graph. Results given in panels D and E showed positive r values and trended toward significance but did not reach a level
of P � 0.05.

Boliar et al.

8038 jvi.asm.org Journal of Virology

http://jvi.asm.org


errant expression profiles of the regulatory receptors PD-1 and
BTLA on peripheral B cells, as well as within individual B cell
subsets, during HIV-1 infection. These receptors were associated
with activation, proliferation, and dysfunction in B cells in viremic
subjects. Despite this, broad and potent nAbs were produced in
some individuals, and their activity was possibly augmented
through increased IgG production. The observations reported
here provide new insight into peripheral B cell dysfunction in
chronic HIV-1 infection, supporting its impact on immune acti-
vation and disease progression but revealing a less dramatic effect
on nAb activity and breadth.
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