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Identifying human immunodeficiency virus (HIV) immune escape mutations has implications for understanding the impact of
host immunity on pathogen evolution and guiding the choice of vaccine antigens. One means of identifying cytotoxic-T-lympho-
cyte (CTL) escape mutations is to search for statistical associations between mutations and host human leukocyte antigen (HLA)
class I alleles at the population level. The impact of evolutionary rates on the strength of such associations is not well defined.
Here, we address this topic using a mathematical model of within-host evolution and between-host transmission of CTL escape
mutants that predicts the prevalence of escape mutants at the population level. We ask how the rates at which an escape muta-
tion emerges in a host who bears the restricting HLA and reverts when transmitted to a host who does not bear the HLA affect
the strength of an association. We consider the impact of these factors when using a standard statistical method to test for an
association and when using an adaptation of that method that corrects for phylogenetic relationships. We show that with both
methods, the average sample size required to identify an escape mutation is smaller if the mutation escapes and reverts quickly.
Thus, escape mutations identified as HLA associated systematically favor those that escape and revert rapidly. We also present
expressions that can be used to infer escape and reversion rates from cross-sectional escape prevalence data.

The human leukocyte antigen (HLA)-restricted cytotoxic
T-lymphocyte (CTL) immune response is thought to make a

significant contribution to the control of human immunodefi-
ciency virus (HIV) (4, 5, 13, 27). A deeper understanding of the
CTL response is important to the development of an HIV vaccine.
One way to study the CTL response is by investigating the way in
which HIV is evolving escape mutants—viral strains that evade
recognition by CTLs. Evidence to support the evolution of CTL
escape mutants has been observed both within individuals (4, 21,
28, 36, 39) and at the population level (3, 9, 17, 23, 25, 33, 38). At
the population level, evidence has been found in the form of sta-
tistical associations between certain HLA class I alleles—the hu-
man genetic determinants of CTL responses—and certain muta-
tions away from the sample/subtype consensus in the HIV
genome (3, 9, 33). The patterns emerge because of heterogeneity
in HLA alleles among the population. Individuals who share HLA
alleles tend to target the same viral antigens (called CTL epitopes)
and therefore drive the same escape mutations. Escape mutations
have been shown to revert to the wild-type form (e.g., back to the
subtype consensus) following transmission to hosts who do not
bear the selecting HLA (28, 29). The combination of these two
factors— escape in “HLA-matched” hosts and reversion in “HLA-
mismatched” hosts—means that although viral mutants can be
transmitted between individuals, any particular escape mutation
should be more prevalent in HLA-matched than in HLA-mis-
matched hosts. Simple statistical tests involving a contingency ta-
ble or logistic regression were originally used to find sites where
this difference in the prevalence of a mutation is greater than can
be expected by chance (6, 33).

In recent years, lists of HLA-associated mutations have been
compiled and compared to data such as epitope maps, epitope-
targeting potency (enzyme-linked immunospot [ELISPOT]
data), in vitro viral fitness measurements, epitope binding assays,
epitope anchor residue sites, viral loads, CD4 counts, escape rates,

and reversion rates (9, 12, 20, 22, 31, 32, 40). These comparisons
are helping to elucidate the sites, pathways, and consequences of
CTL escape while also providing insights into the characteristics of
different immunogens. To correctly interpret the results of such
analyses, however, it is important to understand the nature of the
errors that can be incurred in the identification of CTL escape
mutations. Errors can be classified into two kinds. One kind oc-
curs when a mutation that is not an escape mutation is identified
as an escape mutation. Factors that can lead to this kind of error
include linkage disequilibrium among HLA alleles, codon covari-
ation, and founder effects, whereby if a particular HLA allele and a
particular viral lineage (e.g., HIV subtype) are both more com-
mon among a subgroup of the population (e.g., a racial group),
mutations unique to that lineage (founder virus) could appear to
be associated with the HLA allele. Exposure to antiretrovirals
(ARVs) may also differ (in type and/or coverage) between differ-
ent subgroups of a population, and this could similarly lead to
erroneous associations between ARV-resistant mutations and
HLAs common in a subgroup. Finally, the stochastic nature of the
within- and between-host evolution of HIV and the fact that ob-
servations are taken from only a sample of the population can also
lead to misidentification of an escape mutation. Such errors that
result from random sampling are classified as type I errors. Escape
mutations are identified when the null hypothesis of the statistical
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hypothesis test is rejected according to a fixed bound, called the
significance level or the critical P value, on the type I error prob-
ability.

A second kind of error occurs when a genuine escape mutation
is not identified. Random sampling contributes to this type of
error, as do factors that affect the strength of the signal of escape in
the population (i.e., the signal that would be observed if everyone
in the population was sampled). Signal strength is influenced by
stochasticity in the evolution of escape mutations and by the pres-
ence of additional variation or “noise” in the genome, arising ran-
domly or because of additional selective pressures. Escape and
reversion rates influence the distribution of escape mutations
among HLA-matched and -mismatched hosts and are therefore
also likely to influence the underlying strength of the signal. Tech-
nically, if a signal of escape that is present in the whole population
is not picked up because of random sampling, a type II error oc-
curs. More loosely, failure to identify a true escape mutation can
be regarded as a type II error. The probability of not making a type
II error is called the power of the test.

Rapid progress has been made in recent years in the develop-
ment of mathematical techniques to reduce errors incurred in the
identification of CTL escape mutations through HLA association.
Notably, phylogenetic models, used to infer the evolutionary re-
latedness of different viral strains, have now been incorporated
into HLA association techniques (2, 3, 7, 8, 9, 10, 11, 12, 22, 31,
40). In 2007, Bhattacharya et al. (3) showed how such methods can
reduce misidentification “founder effect” errors, as well as lack of
signal “noise-related” type II errors. Phylogenetically informed
methods to reduce misidentification stemming from codon cova-
riation (12) and linkage disequilibrium among HLA alleles (12)
have also been developed. No studies, however, have yet explored
the relationship between escape and reversion rates on the
strength of statistical associations achieved using either traditional
or phylogenetically corrected techniques. That is, none have ex-
plored how escape and reversion rates are linked to type II errors
or (equivalently) the power of the test.

In this study, we use a mathematical model to address this gap.
We also explain how the model can be used to infer escape and
reversion rates of different escape mutations from data detailing
the prevalence of those mutations in HLA-matched and -mis-
matched hosts. In summary, we address the following two sets of
questions on the relationship between rates of escape and rever-
sion and the prevalence of an escape mutation in HLA-matched
and -mismatched hosts. (i) How do escape rates in HLA-matched
hosts and reversion rates in HLA-mismatched hosts affect the
strength of statistical associations between escape mutations and
HLA alleles? At a fixed sample size, will mutations identified
through HLA association favor those with higher or lower escape
and reversion rates? (ii) How can the escape and reversion rates of
an escape mutation be estimated from measurements of its prev-
alence in HLA-matched and -mismatched hosts?

To address these questions, we used a mathematical model that
describes how within-host evolution and between-host transmis-
sion of CTL escape mutants affect the prevalence of escape mu-
tants in the population (16). Crucially, this model accounts for
heterogeneity with respect to host HLA type and incorporates
three processes relating to a particular mutation: escape in HLA-
matched hosts, transmission of the escape mutant (the strain con-
taining the escape mutation) between hosts, and reversion of the
escape mutation in HLA-mismatched hosts.

We first investigate how escape and reversion rates affect the
strength of associations measured using a standard contingency
table statistical technique (with Fisher’s exact test) (33) in which
phylogenetic relationships between sequences are not corrected
for. We show that with this method, higher rates of escape in
HLA-matched hosts and higher rates of reversion in HLA-mis-
matched hosts both lead to stronger associations between the mu-
tation and the restricting HLA. Thus, mutations identified
through such associations systematically favor those with higher
escape and reversion rates.

Secondly we investigate how escape and reversion rates affect
the strength of associations measured using a method that ac-
counts for phylogenies (3). We show that with this method also,
identified mutations favor those that escape rapidly in HLA-
matched hosts and those that revert rapidly in HLA-mismatched
hosts.

Finally, we provide a description of how to infer rates of escape
and reversion from HLA-typed cross-sectional escape prevalence
data. While the methods we describe have roots in a mathematical
model, they are widely accessible, as they do not require the user to
run model simulations. We demonstrate the use of this technique
in identifying escape mutations that could be missed using HLA
association tests but that are contained in epitopes that could nev-
ertheless be robust vaccine antigens.

MATERIALS AND METHODS
Mathematical model. In this study, we use a mathematical model that
describes how within-host evolution and between-host transmission of
CTL escape mutants affect the prevalence of escape at the population level.
The basic dynamics of the model have been explored elsewhere (17). The
underlying framework of the model is one in which there is frequency-
dependent transmission of an infectious disease with no recovery
throughout a population in which there are births and deaths. This is
commonly known as the susceptible-infected (SI) model with host turn-
over. The model represents the dynamics of escape at a single CTL epitope
or at a single site within an epitope, incorporating host heterogeneity
(with respect to the presence or absence of the HLA that restricts the
epitope) and viral heterogeneity (with respect to the presence or absence
of an escape mutation at the epitope). In mathematical terms, a propor-
tion, �, of the population are HLA matched for the epitope (host type
[h] � 1), and the remainder are HLA mismatched for the epitope (h � 0).
Each infected host is infected and infectious with the wild-type (i.e., sub-
type consensus) strain (virus type [v] � 0) or the escape mutant (v � 1).
Depending upon the host type, within-host evolution takes two forms.
HLA-matched hosts who are infected with the wild-type strain have the
potential to make an immune response to the epitope and drive the emer-
gence of an escape mutant at rate �. In contrast, HLA-mismatched hosts
do not have the potential to make an immune response to the epitope, and
thus, in these individuals, an escape mutation at the epitope does not
confer any benefit on the virus. Escape mutations may impose a fitness
cost on the virus, so in HLA-mismatched hosts infected with an escape
mutant, reversion to the wild type occurs at rate �. At any time, t, the
number of susceptible hosts of host type h is denoted Xh(t) and the num-
ber of infected hosts of host type h and virus type v is denoted Yv

h(t). The
per capita rate at which susceptible hosts become infected with each virus
type, �v(t), is proportional to the portion of the population who are in-
fected with virus type v. Thus, �v(t) is equal to �c(Yv

1(t) plus Yv
0(t))/N(t),

where � is the transmission probability per partnership, c is the rate of
partner change, and

N�t� � �
h�0,1 �Xh�t� � �

v�0,1
Yv

h�t��
is the total population size at time t. The product of the transmission
probability per partnership and the rate of partner exchange, �c, is tradi-
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tionally referred to as the transmission coefficient. Host turnover is mod-
eled by people being born into the susceptible population at a constant
rate B. A proportion, �, of newborns are HLA matched for the epitope;
thus, the fraction of the population who are HLA matched for the epitope
remains constant over time. The death rate of susceptible hosts is �, and
infected hosts die at the higher rate of � � 	. The average life expectancies
of susceptible and infected hosts are therefore 1/� and 1/(� � 	), respec-
tively. This system can be represented using a set of six coupled ordinary
differential equations (equations 1 to 6).

Model equations. The six model equations are as follows: susceptible,
HLA mismatched,

dX0�t�
dt

� �1 � ��B � ��0�t� � �1�t� � ��X0�t� (1)

susceptible, HLA matched,

dX1�t�
dt

� B� � ��0�t� � �1�t� � ��X1�t� (2)

infected, wild type, HLA mismatched,

dY0
0�t�
dt

� �0�t�X0�t� � �Y1
0�t� � �� � ��Y0

0�t� (3)

infected, escape, HLA mismatched,

dY1
0�t�
dt

� �1�t�X0�t� � �Y1
0�t� � �� � ��Y1

0�t� (4)

infected, wild type, HLA matched,

dY0
1�t�
dt

� �0�t�X1�t� � 	Y0
1�t� � �� � ��Y0

1�t� (5)

and infected, escape, HLA matched,

dY1
1�t�
dt

� �1�t�X1�t� � 	Y0
1�t� � �� � ��Y1

1�t� (6)

Patient cohorts. (i) Short-course treatment in acute-infection co-
hort. Escape and reversion rates were measured at the within-host level
(Table 1) from a cohort— described in detail elsewhere (14)— of 189
predominantly Caucasian male acute seroconverters recruited within a

median of 60 days from their estimated date of seroconversion. Each of
these patients was recruited from London, United Kingdom, into one of
two studies into the effects of short-course antiretroviral treatment during
acute infection. One hundred one of these individuals were part of an
initial nonrandomized study, 88 of whom received a short course of treat-
ment (0.5 to 6 months; median, 3.0 months) at seroconversion and then
remained drug naïve until either viral-load, CD4 cell count, or clinical
parameters were met to require formal institution of highly active antiret-
roviral therapy (HAART). The remaining 88 patients were part of a ran-
domized trial that remained blinded at the time of this study. At serocon-
version, patients received either no therapy, 12 weeks of HAART, or 48
weeks of HAART and then remained off therapy according to clinical
need. The median time between the estimated date of seroconversion and
enrollment was 60 days (interquartile range, 39 to 86 days). The criteria
used for acute HIV-1 infection have been described previously (14).
Plasma samples were taken at baseline and various times thereafter so that
across the two studies, patients were followed for a mean further 1.9 years
(range, 0.5 to 5 years). Viral RNA was extracted from patient plasma. The
majority (87%) of patients were found to be infected with a subtype B
strain. Where possible, sequences were obtained for the gag, reverse trans-
criptase (RT), and nef genes. Only patients with sequences at two or more
time points were included in our analysis. This resulted in gag, RT, and nef
sequences from 166, 79, and 116 individuals, respectively. For each indi-
vidual, four-digit human leukocyte antigen (HLA) class I A, B, and C
genotypes were determined by PCR using sequence-specific primers.

(ii) Treatment interruption cohort. The cross-sectional escape prev-
alence data used in Table 2, Fig. 3) and Fig. S3 (see supplemental material)
were gathered from 96 patients from Switzerland recruited into the Swiss-
Spanish Intermittent Therapy Trial (SSITT). This study was devised to
assess the outcome of structured treatment interruptions in individuals
with chronic HIV infection. These individuals have been described and
studied in detail elsewhere (16, 35, 41). Patients were included in the study
only if their CD4 counts were above 300 cells per mm3 at the time of
enrollment and if they had been on continuous antiretroviral therapy
(ART) with a plasma viral load of less than 50 copies per ml for at least 6
months. Although these patients were followed for an average of 14
months, for the present study, only data from a sample taken toward the
end of the study (i.e., while the patients remained off treatment) were

TABLE 1 Demonstration, using known escape mutations, of how escape and reversion rates affect the sample size required to identify escape
mutations through statistical associationa

Epitope for which
the mutation
confers escape
(HXB2 location)

HLA restriction
(prevalence
[�]) in
Caucasians

Epitope amino
acid sequence
and escape site
(underlined)

Avg time (yr) to
escape (1/�)
(HLA matched
with the
subtype
consensus at
first sample)

Avg time (yr) to
reversion (1/�)
(HLA
mismatched
with mutant at
first sample)

Predicted escape
prevalence in
HLA-matched
hosts (
1)

Predicted escape
prevalence in
HLA-
mismatched
hosts (
0)

Avg sample size
required to find
a statistical
association

RT (128–135) B*51 (0.126) TAFTIPSI 0.5 (n � 1) 25 (n � 28) 0.94 0.04 158
p24 gag (15–23) B*57 (0.057) ISPRTLNAW 4.3 (n � 8) 64 (n � 58) 0.58 0.24 596
p24 gag (131–140) B*27 (0.073) KRWILGLNK 11 (n � 17) 15 (n � 9) 0.30 0.07 587
p24 gag (108–117) B*57/58 (0.096) TSTLQEQIGW 1.6 (n � 6) 2.5 (n � 12) 0.71 0.05 83
nef (116–125) B*57 (0.057) HTQGYFPDW 2.3 (n � 5) No reversion

(n � 32)
0.78 0.44 649

nef (134–143) A*24 (0.196) RYPLTFGW 1.9 (n � 11) 6.7 (n � 18) 0.75 0.21 91
a The escape mutations presented here have previously been described in the literature as conferring escape and demonstrated as such in vitro (18, 19, 24, 28, 37). For each
mutation, the average time between infection and escape in HLA-matched hosts (the reciprocal of the escape rate) and the average time between infection and reversion in HLA-
mismatched hosts are provided. These rates are measured from a longitudinal cohort of acute seroconverters (14). Parameterized with these rates and with the estimated prevalence
of the restricting HLA in Caucasians), the deterministic model is used to predict the escape prevalence in HLA-matched and -mismatched hosts 58 years into an epidemic that has a
basic reproductive number of 3 (1). Based upon these escape prevalences, the average sample size required to identify the mutation using a 1-tailed Fisher’s exact test with a critical
P value of 0.0001 is presented. This demonstrates that realistic differences in escape and reversion rates between mutations correspond to noticeable differences in the sample sizes
required to identify those mutations by statistical association. In calculating escape and reversion rates from the longitudinal cohort study, we defined an escape mutation as being
any mutation away from the B-clade consensus amino acid at the identified escape site. The proportion of Caucasians with each HLA type is estimated from allele frequencies
among Caucasians (30), assuming Mendelian genetics. This calculation ignores linkage between alleles.
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analyzed. Proviral DNA from 88 of the Swiss patients was sequenced.
Sixty-seven of them were infected with a subtype B strain, and the remain-
der were excluded from our analysis. Ultimately, gene sequences for the
following numbers of individuals were analyzed: p17 gag, n � 41; p24 gag,
n � 60; RT HXB2 18 to 252, n � 55; RT HXB2 309 to 448, n � 60; and nef,
n � 50. For each individual, four-digit HLA class I A and B genotypes were
also determined by PCR using sequence-specific primers.

(iii) Analysis of the treatment interruption cohort data. We analyzed
the data from the Swiss treatment interruption cohort by first comparing
the HIV gene sequence from each patient to the sample consensus
sequence and identifying where mutations away from the consensus
appeared. We considered all optimal CTL epitopes, as defined by the
Los Alamos Database (http://www.hiv.lanl.gov), that were contained
within the gene regions under study (gag, RT, and nef genes). We then
performed multiple comparisons between all the sites in an optimally
defined epitope and all HLA alleles restricting those epitopes present in
four or more individuals. Some epitopes were restricted by more than
one HLA allele, and in these cases, we also considered combinations of
restrictions. HLA allele restrictions were considered according to their
two-digit specifications. For each site-HLA comparison, we used a

standard contingency table approach to evaluate the strength of the
association between the HLA and the mutation at the site. For this
analysis, Fisher’s exact test was used to generate P values for the test of
whether mutation at the site was more common in HLA-matched than
in HLA-mismatched hosts.

For each site-HLA comparison, we also evaluated the strength of the
association using a method that accounts for phylogenies, as described by
Bhattacharya et al. (3). To do this, for each of our five gene segments, we
created a maximum-likelihood tree under the assumption that nucleotide
sites evolve independently according to the generalized time reversible
model (42). Genes were not stitched because the sample size for each gene
was already relatively small and not all patients had sequences available for
each segment. An algorithm called dnaml (15) that is part of the down-
loadable PHYLIP package (http://evolution.genetics.washington.edu
/phylip) was used for this analysis. It assumes no recombination and a
constant rate of mutation across all sites. The input order of sequences was
jumbled 20 times for each segment. As well as producing a maximum-
likelihood tree, this program also infers the expected sequences at internal
nodes. We then identified mutations away from the sample consensus at
the leaves and the internal nodes. For each site-HLA comparison, we used

TABLE 2 Identification of CTL escape mutations using different techniquesa

Mutation
characteristics

Gene (HXB2 amino
acid sites) of CTL
epitope

HLA restriction
(prevalence
[�]) in
Caucasians

Sample consensus amino
acids of the CTL epitope
(escape site underlined)

Inferred avg
time (yr) to
escape
(1/�)

Inferred avg
time (yr) to
reversion
(1/�)

HLA association P values (q values)

Using a contingency
table

With
phylogenetic
correction

Escape rapidly
(�10 yr) and
revert rapidly
(�10 yr)

p24 gag (108–117) B*57/58 (0.096) TSTLQEQIGW 0.5 3.4 1.6 � 10�6 (0.0014) 0.0070
nef (134–141) A*24 (0.196) RYPLTFGW 0.9 5.0 2.6 � 10�5 (0.0074) 0.033
p24 gag (174–184) B*44 (0.211) AEQASQEVKNW 3.2 5.9 0.0015 (0.26) 0.36
p17 gag (20–28) A*03 (0.224) RLRPGGKKK 4.1 4.8 0.0078 (0.95) 0.036
nef (84–92) A*02 (0.438) AALDLSHFL 4.4 7.8 0.020 0.046
nef (90–97) B*08 (0.143) FLKEKGGL 5.4 9.4 0.041 0.316
RT (392–401) A*32 (0.077) PIQKETWEAW 6.4 2.4 0.0064 (0.92) 0.0064
nef (68–76) B*07 (0.166) FPVRPQVPL 7.2 4.0 0.072 0.025
p24 gag (131–140) B*27 (0.073) KRWIILGLNK 8.7 9.9 0.038 0.010
nef (135–143) B*18/53 (0.140) YPLTFGWCY 9.1 4.1 0.035 0.068
RT (156–166) A*11 (0.133) AIFQSSMTK 9.4 5.6 0.086 0.031

Escape slightly
more slowly
(10–15 yr)
and revert
rapidly (�10
yr)

RT (128–135) B*51 (0.129) TAFTIPSI 12 0.0 0.019 1.0
nef (74–81) B*35 (0.196) VPLRPMTY 12 3.3 0.089 0.089
RT (137–146) B*18 (0.122) NETPGIRYQY 13 2.6 0.052 0.052
p24 gag (84–92) B*07 (0.166) HPVHAGPIA 13 1.7 0.044 0.044
RT (244–252) B*57 (0.057) IVLPEKDSW 14 0.1 0.093 0.093
RT (173–181) A*30 (0.067) KQNPDIVIY 14 0.0 0.091 0.091
p24 gag (197–205) B*08 (0.143) DCKTILKAL 15 2.2 0.056 0.056

HLA association
P value of
�0.05 using
either
technique

p24 gag (131–140) B*27 (0.073) KRWIILGLNK 3.8 16 0.012 0.013
nef (116–124) B*57 (0.057) HTQGYFPDW 0.0 18 5.0 � 10�4 (0.11) 0.0012
RT (128–135) B*51 (0.129) TAFTIPSI 0.9 19 0.0094 0.015
nef (128–137) B*07 (0.166) TPGPGIRYPL 0.0 22 0.046 0.077

a This table shows how our method for estimating escape and reversion rates from cross-sectional data can be used alongside HLA association studies to give a broader overview of
how to classify epitopes of potential benefit in a CTL-inducing vaccine. For this analysis, multiple comparisons were made between sites in optimally defined CTL epitopes in gag,
RT, and nef and their restricting HLAs. For each comparison (n � 862), the strength of the association between the HLA and the mutation at the site was measured using a
standard contingency table approach and an approach that corrects for phylogenies. Fisher’s exact P values are provided and highlighted (boldface) where less than 0.05. As a
measure of association strength under multiple comparison correction, q values estimated using the Benjamini and Hochberg method are provided where available. These can be
used as a rough guide for the relationship between q values and P values using this type of data. Two escape mutations (underlined) remained significant at a value of 0.05 after
correction for multiple comparisons using either the Bonferroni correction (P � 5.8 � 105 � 0.05/862) or false-discovery rate control (q value � 0.05). For each comparison,
escape rates and reversion rates were inferred by fitting the escape prevalence data to the model under the assumption of exponential growth of the epidemic, making use of
equations S1 and S2 in the supplemental material. Mutations—and their corresponding CTL epitopes—were listed if they escape rapidly (average time to escape � 10 years) and
revert rapidly (�10 years). Mutations are also listed if they escape slightly more slowly (10 to 15 years) but revert rapidly (�10 years). Finally, additional mutations with an HLA
association P value of less than 0.05 using either method are listed. More details of the methods and model parameters used for the analysis are provided in Materials and Methods.
Note that mutation away from threonine (T; underlined) in TSTLQEQIGW was also found to be strongly associated with B*57 alone. A standard contingency table approach
returns a P value of 1.5 � 105 and a q value of 0.0065. With phylogenetic correction, the P value is 0.0069, but no q value is returned using the Benjamini and Hochberg method.
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a contingency table approach (with Fisher’s exact test) to test evidence for
“escaping” and “reverting” mutations, as shown in Fig. 1.

Finally, for each site-HLA comparison, we also measured the fraction
of HLA-matched hosts with mutation at the site (
1) and the fraction of
HLA-mismatched hosts with mutation at the site (
0). Only comparisons
where the prevalence of escape was greater in HLA-matched than in HLA-
mismatched hosts (�1 � �0) (n � 142) were considered further. For each
HLA type, the prevalence of the HLA allele in a Caucasian population (�)
was then estimated from Caucasian allele frequencies (28), assuming
Mendelian genetics. This calculation ignores linkage between HLA alleles.
For each comparison, escape and reversion rates were then estimated
using two methods that assume that the epidemic is growing exponen-
tially. The first was by fitting (using least squares) the mutation preva-
lences in the two host types to model predictions of those prevalences
computed using equations S1 and S2 in the supplemental material. These
predictions assume an epidemic duration (i.e., the time to the ancestor of
the sample sequences) of 46 years (t � 46). This was based upon an
estimate that the ancestor of U.S. B-clade strains date to 1954 (26) and the
fact that our samples date to 2000. Finally, the transmission coefficient
(�c) was assumed to equal 0.3 year1. This was calculated from an as-
sumption that the basic reproductive number (R0) of HIV is 3 (1) and that
the life expectancy [1/(� � 	)] of infected hosts is 10 years (34) [for this
model, R0 is equal to �c/(� � 	)]. Escape and reversion rates estimated
using this “fitting” method appear in Fig. S3 (see supplemental material),
Fig. 3 (filled symbols), and Table 2. In Fig. 3 (unfilled symbols) we also
present escape and reversion rates inferred directly using expressions S1

and S2 (see supplemental material). For these estimates, we also used a
transmission coefficient of 0.3 year1.

RESULTS
Escape and reversion rates affect the strength of statistical asso-
ciations. Previous studies have identified CTL escape mutations
by scanning population level HIV sequence data for statistical as-
sociations between mutations and HLA class I alleles (3, 9, 33).
Traditionally, an escape mutation is declared when, for any given
HLA allele, mutation away from the subtype/sample consensus at
a particular site is markedly more prevalent in HLA-matched than
HLA-mismatched hosts (6, 33). This can be tested using a contin-
gency table (using, e.g., Fisher’s exact test) in which patients are
grouped first according to whether they are matched or mis-
matched for the HLA allele and second according to whether they
have the mutation (Fig. 1, contingency table A). Roughly speak-
ing, for any fixed sample size, the contingency table approach
yields stronger associations when the difference in escape preva-
lence between HLA-matched and -mismatched hosts is greater.
Recently it has been shown how this method can be adapted to
consider phylogenetic relationships between sequences, and we
evaluate one such method (3) below. However, to begin, we use a
mathematical model to investigate how the rate of escape and the

FIG 1 Techniques used to identify HLA-associated mutations. These methods are demonstrated on a hypothetical phylogenetic tree with node data. (A) The first
method is a standard contingency table approach whereby, for each HLA-site comparison, patients are grouped according to whether they are matched or
mismatched for the HLA allele and whether they exhibit mutation away from the subtype consensus at that site in their viral sequence. Although a phylogenetic
tree is not required for this analysis, these data are represented on the left as dashed (HLA matched) and solid (HLA mismatched) end branches of the tree and
circles (consensus amino acid [C]) and stars (mutation [M]) at the leaves of the tree. Typically, Fisher’s exact test can be used to determine an association using
this method. When sample sizes are equal, the association is stronger if the difference in the proportions of HLA-matched and HLA-mismatched hosts with the
mutation is greater. (B and C) The second method is an adaptation of the standard approach whereby a consensus phylogenetic tree is first estimated to describe
the evolutionary relationships between the viral sequences isolated from the individuals in the study. Sequences at each of the internal nodes are also inferred. A
contingency table is then used to consider only the mutational changes that occurred over the most recent generation of the tree, i.e., the end branches. (B) To
search for so-called escaping mutations, patients are grouped in a contingency table according to whether they are HLA matched or mismatched and whether the
mutation emerged (Œ¡�) or there was no change from the wild-type state (Œ¡Œ) during the most recent generation of the tree. Any sample patient (a patient
at the leaves of the tree) whose evolutionary “parent” has the mutation (�) is excluded from the analysis. Escaping mutations are defined when escape is
statistically more prevalent in HLA-matched hosts. (C) To search for so-called reverting mutations, patients are grouped according to whether they are HLA
matched or mismatched and, secondly, whether the mutation reverted (�¡Œ) or there was no change from the mutant state (�¡�) during the most recent
generation of the tree. Any sample patients whose evolutionary parent has the consensus strain (Œ) is excluded from the analysis. Reverting mutations are defined
when reversion is statistically more likely in HLA-mismatched than in HLA-matched hosts.
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rate of reversion affect our ability to identify an escape mutation
using a standard contingency table approach.

The model we use here has formerly been used to understand
how within-host evolution and between-host transmission of
CTL escape mutants affects the evolution of escape mutants at the
population level (17). In brief, it models the dynamics of escape at
a single CTL epitope or a single amino acid site within an epitope.
For the purposes of this study, however, we focus on escape at a
single site. The backbone of the model is a standard model of the
frequency-dependent transmission of an infectious disease from
which there is no recovery. In addition, the model includes viral
heterogeneity (wild type/consensus or escape mutation), host het-
erogeneity (HLA matched or mismatched for the epitope), and
two within-host evolutionary processes (escape in HLA-matched
hosts and reversion in HLA-mismatched hosts). The model is de-
scribed in more detail in Materials and Methods and in our pre-
vious publication (17). In that study, we used the model to show
that if an escape mutation reverts in HLA-mismatched hosts, then
throughout the epidemic it will be more prevalent in HLA-
matched than in HLA-mismatched hosts. Furthermore, we
showed how the difference in prevalence between the two host
types is larger when escape in HLA-matched hosts and reversion
in HLA-mismatched hosts are faster. Only mutations that do not
revert in HLA-mismatched hosts continue to increase in preva-
lence and reach fixation in both host types, and this can take a long
time (e.g., it could take over a century for a mutation that appears
an average of 1 month postinfection in HLA-matched hosts, who
make up 10% of the host population, to reach a prevalence greater
than 95% in the whole population).

According to the model, for the foreseeable future, any partic-
ular escape mutation should therefore be more prevalent in HLA-
matched than in HLA-mismatched hosts (see Fig. S1 in the sup-
plemental material), and provided the sample size is large enough,
it should be possible to identify the mutation by statistical associ-
ation. In reality, sample sizes are bounded, and therefore, only
those escape mutations with a large enough disparity in escape

FIG 2 CTL escape mutations identified through HLA associations favor those
that escape rapidly in HLA-matched hosts and those that revert rapidly in
HLA-mismatched hosts. (A) Model predictions show that the difference be-
tween the fractions of HLA-matched (squares) and -mismatched (triangles)

hosts with an escape mutation 58 years into an epidemic (t � 58) is larger when
the mutation escapes rapidly in HLA-matched hosts and when it reverts rap-
idly in HLA-mismatched hosts. Different escape and reversion rates are con-
sidered (fast escape, � � 1 year1; slow escape, � � 1/50 year1; fast reversion,
� � 1 year1; and slow reversion, � � 1/50 year1). (B) Model predictions of
the impact of escape and reversion rates on the average sample size required to
identify an HLA-associated mutation using a traditional contingency table
approach (1-tailed Fisher’s exact test with a critical P value of 0.0001). Muta-
tions with escape rates and reversion rates that fall below each contour line
would, on average (with 50% power), be identified at that sample size. This
representation shows that the average required sample size decreases as the
escape and reversion rates increase. At a fixed sample size, identified mutations
therefore favor those with higher escape and reversion rates. (C) Model pre-
dictions of the impacts of escape and reversion rates on the sample size re-
quired to identify so-called escaping mutations with a critical P value of 0.0001
using a method that corrects for phylogenies. These predictions show that,
with phylogenetic correction, the average sample size required to identify an
association is smaller when escape and reversion are faster. Identified muta-
tions therefore favor those with higher escape and reversion rates. For each of
these panels, we made the following additional assumptions: 10% of the pop-
ulation are HLA matched for the epitope (� � 0.1); the average life expectancy
of infected hosts is 10 years (� � 	 � 1/10 year1) (34); the average life
expectancy of uninfected hosts is 80 years (� � 1/80 year1); the transmission
coefficient (�c) is 0.3, and thus, R0 is equal to �c/(� � 	) is equal to 3 (1); the
population size is 107, and at the start of the epidemic, one individual is in-
fected with the unmutated strain.
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prevalence between HLA-matched and HLA-mismatched hosts
will be identified. The model shows that this disparity is smaller
when escape and reversion are slower (Fig. 2A and Figure S1). In
the case of slowly escaping mutations, this is because the escape
prevalence in both host types is low and thus the difference will
also be small. In the case of slowly reverting mutants, it is because
they persist in HLA-mismatched hosts and will be relatively prev-
alent in these hosts compared to HLA-matched hosts. The sample
size required to find an association therefore increases as the rate
of escape and the rate of reversion decrease. Equivalently, with a
limited sample size, mutations that escape slowly and/or revert
slowly can fail to be identified using a standard contingency table
approach.

This is exemplified in Fig. 2B, a contour plot showing, for dif-
ferent sample sizes, the mutations, defined according to their es-
cape and reversion rates, that will on average (i.e., with 50%
power) be identified using a 1-tailed Fisher’s exact test with a
critical P value of 0.0001. These estimates derive from our model
predictions of the prevalence of escape in HLA-matched and -mis-
matched hosts 58 years into an epidemic. This epidemic duration
parameter assumes sampling from a U.S. B-clade-infected popu-
lation and is estimated from a time-measured phylogeny showing
that the ancestor of the U.S. B-clade epidemic dates back 58 years
to 1954 (26). Other important model assumptions that we make
for this analysis are as follows: 10% of the population are HLA
matched for the epitope, the average life expectancy of infected
hosts is 10 years (34), and the basic reproductive number of HIV is
3 (1). The basic reproductive number can be defined as the average
number of secondary infections caused by one primary infection
in a wholly susceptible population.

Figure 2B shows contour lines representing different sample
sizes. Mutations with escape and reversion rates that fall below
and to the left of a particular contour line would, on average, be
identified at that sample size. Mutations with escape and reversion
rates that fall above and to the right of that contour would not be
identified. For example, for a sample size of 100, the mutations
identified will, on average, take less than 4 years to escape and less
than 8 years to revert. Thus, even rapidly escaping mutations can
be missed if they revert slowly. Likewise, rapidly reverting muta-
tions can be missed if they escape slowly. A corollary of this is that
identified mutations favor those with higher escape and reversion
rates. This is revealed by the observation that as the sample size
increases, the contours expand, showing that mutations with a
greater range of escape and reversion rates (i.e., including those
that escape and/or revert more slowly) will be identified.

There are several points to note about these estimates. The first
is that the stepwise appearance of the contours occurs because the
contingency table requires the input of whole numbers of hosts in
each of the four categories. Estimates of these values are first de-
rived from the model and are then rounded. This compounds the
approximations and results in contours that are not smooth. The
second is that the estimates presented in Fig. 2A predict the sample
size required to identify mutations with a critical P value of 0.0001
and a bounded type II error probability of 0.5 (power of 50%).
Sample sizes required to identify escape mutations assuming dif-
ferent error bounds (critical P value, 0.00001, and type II error
probability, 0.2 [80% power]) are explored further in Fig. S2 in the
supplemental material. Inevitably, the required sample sizes are
larger if the imposed bounds on these errors are smaller. A third
important point is that the critical P values quoted here relate to

the type I error rate of a single (or “uncorrected”) hypothesis test,
yet HLA association studies typically involve multiple compari-
sons between different HLAs and mutations at different sites. Ac-
cording to the Bonferroni correction, critical P values of 0.0001
and 0.00001 are equivalent to specifying an overall critical value of
0.05 while correcting for 500 and 5,000 multiple comparisons,
respectively. Finally, we note that our estimates assume that evo-
lution is governed by the mean field dynamics of our simple
model, and we do not account for stochasticity in the evolution of
escape mutations or “noise” in the genome arising randomly or
because of additional selective pressures. The type II error rates
that we quote, therefore, do not account for all sources of type II
error.

Our finding that escape and reversion rates affect the sample
sizes required to identify a mutation is further explored in Table 1,
where examples of six known escape sites are provided. Mutations
at each of these sites have previously been shown to confer escape
in vitro (18, 19, 24, 28, 37). The rates at which they escape in
HLA-matched hosts and revert in HLA-mismatched hosts, as
measured from a longitudinal cohort of 189 acute seroconverters,
are presented in Table 1. These patients, described in detail else-
where (14, 17), were first sampled a median of 60 days following
their estimated dates of seroconversion and were then followed for
a mean further 1.9 years (range, 0.5 to 5 years). In calculating the
escape and reversion rates at each of the six identified amino acid
sites, we assumed that any mutation away from the B-clade con-
sensus at that site confers escape. By parameterizing the model
with these rates and the relevant population HLA prevalences (Ta-
ble 1) (30), we estimated the fractions of HLA-matched and -mis-
matched hosts with escape 58 years into an epidemic and the cor-
responding average sample size required to identify the escape site
using a standard contingency table approach with a critical P value
of 0.0001. One escape mutation that we consider is in the B*57-
restricted p24 gag (HXB2 15 to 23) epitope, ISPRTLNAW (37). In
HLA-matched patients, mutation away from isoleucine (I) at
HXB2 15 appeared rapidly in HLA-matched hosts (average time
to escape, 4.3 years), but reversion took 64 years averaged across
the 58 patients who had a mutation at that site at their first sample.
Parameterized by these rates, the model predicts that the escape
mutant requires a sample size of 596 individuals to be identified.
In contrast, mutation away from the threonine (T) at HXB2 110 in
the B*57/58-restricted p24 gag epitope TSTLQEQIGW (HXB2
108 to 117) (28) both appears and reverts rapidly, and the escape
mutation is estimated to be identifiable with 50% power in a sam-
ple size as small as 83 hosts.

In Fig. S3A in the supplemental material, we demonstrate fur-
ther how mutations identified by HLA association favor those
with higher escape and reversion rates by demonstrating the effect
on cross-sectional data. For this figure, we analyze HIV-1 gag, RT,
and nef sequences from 67 chronically (B-clade) infected partici-
pants of a Swiss treatment interruption study (35). Using these
cross-sectional data, we performed multiple Fisher’s exact HLA
association tests, comparing each site (subtype consensus amino
acid versus nonconsensus sites) in each optimal CTL epitope to
each HLA allele restricting that epitope. For each comparison, we
also calculated the fraction of HLA-matched and -mismatched
hosts with and without the consensus amino acid. By employing a
method— derived from our model—that we describe below, we
then inferred escape and reversion rates that would yield the mu-
tation prevalence at each site. More details of this analysis and the
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assumed model parameters are provided in Materials and Meth-
ods. Figure S3A in the supplemental material plots the inferred
escape and reversion rates corresponding to each site-HLA com-
parison. Furthermore, different symbols are used to distinguish
the strength of the HLA association (filled circles, P value � 0.05;
open circles, P value 
 0.05) measured using Fisher’s exact test.
Note that, as throughout this analysis, these P values are related to
a single-hypothesis test. In the context of multiple-hypothesis
testing, it is more typical to bound the false-discovery rate (e.g., at
0.05) or to fix a much lower critical P value than was used here. In
our analysis (with 862 comparisons), a critical P value of 5.8 �
105 (equal to 0.05/862) would be appropriate for an overall sig-
nificance level of 0.05 using the Bonferroni correction. Using ei-
ther of these criteria, only two escape mutations would be identi-
fied (see Table 2 for details) as significant. As the intention of this
study was to demonstrate the impact of escape and reversion rates
on association strength rather than to identify mutations through
HLA association, we chose a critical P value that, given the rela-
tively small sample sizes in our study, would be large enough to
show the spread of escape mutations that would be identified at a
fixed sample size. However, we found that irrespective of the crit-
ical P value used, mutations identified through HLA association
favor those that escape and revert more rapidly.

In summary, we found that an escape mutation will appear
more strongly associated with its restricting HLA if it escapes more
rapidly in HLA-matched hosts and reverts more rapidly in HLA-
mismatched hosts. A corollary of this is that escape mutations
identified through statistical association favor those with higher
escape and reversion rates.

Escape mutations identified by phylocorrective methods as
escaping also favor those that escape and revert rapidly. Statis-
tical methods to locate sites under HLA-mediated selection have
recently been adapted to account for evolutionary (phylogenetic)
relationships between viral strains, thereby reducing subtype-re-
lated errors, as well as type II “noise” errors. Phylogenetic correc-
tion was not designed to reduce the impact of escape and reversion
rates on type II “inherent lack of signal” errors, and no studies
have yet explored the link between evolutionary rates and type II
error rates (or the power of the study) using this method.

Bhattacharya et al. (3) were the first to correct for phylogenies.
They described a method that first uses a maximum-likelihood
algorithm, in which nucleotide sites were assumed to evolve inde-
pendently according to the general reversible model, to infer a
phylogenetic tree of the evolutionary relationships between the
viruses isolated from each of the patients in the study. For each
HLA type and each amino acid at a particular site under consid-
eration, the presence or absence of that amino acid in each patient
was noted and marked against its respective position at one of the
leaves of the tree (Fig. 1). Similarly, the inferred presence or ab-
sence of that amino acid at each internal node was also marked on
the tree. Whether each patient was HLA matched or mismatched
for the HLA under consideration was also noted. The tree and the
amino acid states were then used to infer the probable changes
that have occurred over the most recent generation of the tree and
to assess whether those changes are indicative of HLA-mediated
selection. More specifically, the technique was used to identify
so-called escaping and reverting HLA-associated mutations. Here,
we discuss the definitions of escaping and reverting mutations
used in that study and explore how escape and reversion rates
affect the mutations identified.

The phylocorrective approach identifies the most likely amino
acid state at each of the nodes preceding the leaves of the tree (i.e.,
prior to the most recent branching event). To identify HLA-asso-
ciated escaping mutations, mutational changes that occurred over
the most recent generation on the tree were compared statistically.
A contingency table was used to group the sample hosts (those at
the leaves of the tree) according to whether they were matched or
mismatched for the HLA allele under consideration and whether
during the most recent generation of the tree the mutation es-
caped (Œ¡�) (i.e., mutated away from the subtype consensus)
or whether there was no change from the consensus at that site
(Œ¡Œ). This method, illustrated on a hypothetical tree in Fig. 1
(contingency table B), is employed to reduce potentially con-
founding signals caused by mutational changes that occur during
earlier generations of the phylogenetic tree. However, because
population studies normally sample only a portion of the hosts
from the population, even the most recent generation of the in-
ferred tree will, on average, represent more than one true trans-
mission generation (i.e., the passage of the virus between several
individuals). Over this shorter time period, escape and reversion
rates influence the distribution of an escape mutation among
HLA-matched and -mismatched hosts—and thus the average
sample size required to identify an association—in the same man-
ner we have described for the whole epidemic duration. The pre-
cise extent of their influence, however, varies because the period
over which they can influence the distribution of the mutation
between the two host types is shorter and because the phylocor-
rective method inherently reduces the data in the contingency to
only those patients linked in the previous generation to a consen-
sus strain.

This is shown in Fig. 2C, in which we used the model to assess
how escape and reversion rates affect the sample size required to
identify an HLA-associated escaping mutation using this method.
As for the analysis in Fig. 2B, we assumed that the duration of the
epidemic among the population is 58 years. Based upon measure-
ments from the same phylogeny, we also assumed that the average
duration of the most recent generation of the tree is 25 years (26).
We first used the model to estimate the fraction of HLA-matched
and -mismatched hosts who have a strain with the consensus
amino acid (Œ) after 33 years of an epidemic to represent all but
the most recent generation of the tree. We then used the model to
consider the fraction of HLA-matched and -mismatched hosts
with the escape mutation 25 years later (year 58), whose infection
would have descended from a strain with the consensus amino
acid at year 33. This gave an estimate of the fraction of HLA-
matched and -mismatched hosts displaying a change from the
consensus amino acid to the escape mutant (Œ¡�) or no change
from the consensus (Œ¡Œ) over the last generation of the tree.
We then used a contingency table (Fig. 1, contingency table B) to
test whether a change from consensus to escape occurred more
frequently than no change from the consensus in HLA-matched
compared to HLA-mismatched hosts.

Figure 2C shows that the average sample size required to iden-
tify an escaping mutation under phylogenetic correction remains
smaller for mutations that not only escape faster, but also revert
faster. Mutations identified as escaping, therefore, also favor those
with higher escape and reversion rates. For mutations that escape
and revert rapidly, the average required sample size is approxi-
mately the same using both methods. For mutations that escape
and revert more slowly, the required sample sizes are a little
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smaller using the phylocorrective method. This is because, in ef-
fect, we are comparing the footprints of HLA-mediated selection
that emerge over a 25-year period to those over a 58-year period.
Over a 58-year period, there is more time for the signal of escape to
become blurred by the spread of mutants between hosts.

To demonstrate these findings on data, we repeated the analy-
sis shown in Fig. S3A in the supplemental material, but for each of
the site-HLA comparisons, we measured the strength of the HLA
association according to the phylocorrective method employed by
Bhattacharya et al. (3) (see Materials and Methods for details).
The results, shown in Fig. S3B in the supplemental material, con-
firm that mutations identified as escaping using phylogenetically
corrected HLA association tests favor those that escape and revert
more rapidly.

Bhattacharya et al. (3) also described a complementary tech-
nique to use phylogenetic correction to identify so-called revert-
ing mutations. With this method (Fig. 1, contingency table C), a
contingency table was used to group the sample hosts according to
whether they were matched or mismatched for the HLA allele
under consideration and whether during the most recent genera-
tion of the tree the amino acid under consideration reverted to-
ward consensus (�¡Œ) or whether there was no change at that
site (�¡�). A reverting mutation was defined as when reversion
was statistically more common in HLA-mismatched than HLA-
matched hosts. We performed this technique on the cross-sec-
tional data from the Swiss treatment interruption cohort to ex-
plore the impacts of escape and reversion rates on the strength of
reverting HLA associations (see Fig. S3C in the supplemental ma-
terial). The relatively small sample sizes in the Swiss data set yield
large P values across all comparisons, but irrespective of the criti-
cal P value chosen, we found that this technique would miss some
rapidly reverting mutations and identify some mutations that re-
vert more slowly. This effect, which occurs because internal node
sequences inferred using the maximum-likelihood method inev-
itably do not precisely match the true internal sequences, is also
seen when we do not restrict comparisons only to sites in opti-
mally defined epitopes (see Fig. S3D in the supplemental mate-
rial). Incorrect inference of internal sequences particularly con-
fuses the signals of reversion (more so than escape) because the
models used to infer internal nodes do not explicitly model rever-
sion. This finding reveals that using association techniques to
identify so-called reverting mutations may yield misleading re-
sults, identifying some escape mutations that revert slowly while
missing others that revert rapidly.

How to estimate escape and reversion rates from cross-sec-
tional escape prevalence data. Estimating escape and reversion
rates of mutations could prove a useful tool in understanding
more about CTL responses. Previously, we have demonstrated
how the model used in this study can also be used to estimate the
rates at which CTL escape mutations appear in HLA-matched
hosts and revert in HLA-mismatched hosts using HLA-typed
cross-sectional escape prevalence data (17). In that study, we esti-
mated escape and reversion rates for previously defined escape
mutants in gag, RT, and nef using data from the Swiss treatment
interruption cohort described here. We found these estimates to
be in close agreement with the rates measured directly from lon-
gitudinal data gathered from the London cohort of acute serocon-
verters (also described here). We also showed how model predic-
tions of changes in the prevalences of escape mutants among the
population are in close agreement with the changes that have been

observed. These results support the estimation of escape and re-
version rates from cross-sectional data as a means for understand-
ing more about CTL antigens. Understanding the rates at which
different sites escape and revert might be directly relevant to the
choice of vaccine antigens. It might also prove useful for testing
hypotheses (31).

The method for estimating rates that we described previously
requires model simulations to be run. The model is used to predict
the prevalence of escape in HLA-matched and -mismatched hosts
at a specific time in the epidemic for different escape and reversion
rates. The observed prevalence of the escape mutation in HLA-
matched and -mismatched hosts is then compared to the different
model predictions. The paired escape and reversion rates that best
match the observations are then identified. Here, we present de-
tails of how model-derived analytic expressions defining the es-
cape prevalences in HLA-matched and -mismatched hosts can be
used to simplify the estimation process, thus making the method
broadly accessible. The trade-off using these simplifications is that
they require additional assumptions and that some level of error is
incurred when these assumptions are not upheld. We investigate
the extent of these errors by applying our methods to data. In the
supplemental material, we provide the derivation of these expres-
sions and discuss more theoretically the reasons for the associated
errors.

To estimate escape and reversion rates using the methods dis-
cussed here, one must first consider whether the underlying epi-
demic can approximate a growing epidemic (technically, one
growing exponentially). In our previous study, where we showed
our escape and reversion rate estimates to be in good agreement
with independent longitudinal data, we made this assumption im-
plicitly through our parameter assumptions. As we demonstrate,
however, whether or not this assumption is upheld will, at most,
change the magnitude of the inferred rates. Importantly, it will not
affect the relative rates at which different sites are estimated to
escape and revert.

Under the assumption that the epidemic is growing, expres-
sions S1 and S2 (provided in the supplemental material and in the
supplemental material of our previous publication [17]) can be
used to estimate the escape and reversion rates of different escape
mutations. Respectively, these expressions predict the escape
prevalence in HLA-matched (
1) and -mismatched (
0) hosts
under assumptions about the rate at which the mutation escapes
in HLA-matched hosts (�) and reverts in HLA-mismatched hosts
(�). The term “escape prevalence” is used here to mean the frac-
tion of hosts who are infected with a strain containing the escape
mutation. For estimation of the escape and reversion rates of a
particular mutation, observations of the prevalence of the muta-
tion among HLA-matched and HLA-mismatched hosts in the
population at a specific point in time measured in a cross-section
of the population are required. In addition, three parameters must
be provided: the prevalence of the restricting HLA in the popula-
tion (�), the duration of the epidemic in the population (t), and
the transmission coefficient (�c), a parameter defining the trans-
missibility of the virus. More precisely, it can be defined as the
multiple of the average rate of partner exchange (c) and the trans-
mission probability per partnership (�). Neither of these param-
eters is simple to estimate directly, but their combined value (�c)
can be inferred from two quantities about which more is known.
First, the death rate of infected hosts (� � 	)— or the reciprocal of
the average life expectancy of infected hosts—and, second, the
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basic reproductive number (R0), since for our model, �c is equal
to (� � 	)R0 (17). We discuss the estimation of these parameters
in more detail in Materials and Methods, where we demonstrate
the use of this method Table 2, Fig. 3, and Fig. S3 in the supple-
mental material.

With these three parameters (�, t, and �c) fixed, expressions S1
and S2 (see the supplemental material) reveal that escape preva-
lences in HLA-matched and -mismatched hosts both strictly in-
crease with higher escape rates and lower reversion rates; thus, any
unique pair of escape and reversion rates correspond to a unique
pair of escape prevalences in the two host types. In order to esti-
mate escape and reversion rates, expressions S1 and S2 in the
supplemental material can be used to calculate pairs of escape
prevalences that correspond to different pairs of escape and rever-
sion rates spanning the nonnegative real numbers. Least squares
can then be used to find the unique pair of escape and reversion
rates that minimizes the difference between the observed and ex-

pected escape prevalences. If necessary, this calculation can be
performed using a standard spreadsheet program, making it ac-
cessible to a broad range of users.

In Table 2, we demonstrate the use of this method in identify-
ing escape mutations in HIV. We show how escape and reversion
rate estimation can be used alongside HLA association measure-
ments to provide a broader understanding of the characteristics of
different epitopes. Such knowledge may inform the identification
of epitopes that could prove to be useful components of a CTL-
inducing vaccine. Although the ideal characteristics of a vaccine
epitope remain unclear, we speculate that epitopes with escape
mutations that revert rapidly may be preferable because they
could robustly induce CTL responses over many generations.
Whether high escape rates are also an indication of a good vaccine
epitope is uncertain. Rapid escape indicates that an epitope in-
duces a strong response but that the response may be short-lived.
Epitopes that escape at a slower pace may induce weaker but lon-
ger-lived responses and may therefore also be important, yet they
may not typically be identified as being of interest by HLA associ-
ation methods. To demonstrate this, in Table 2 we identify two
groups of epitopes (and their corresponding escape mutations) in
gag, RT, and nef that could prove to be robust components of an
HIV vaccine. These escape mutations were identified by first per-
forming multiple comparisons between sites in optimally defined
epitopes and their restricting HLA alleles and, for each compari-
son, inferring escape and reversion rates as described previously
(see Fig. S3 in the supplemental material). Escape mutations were
then classified according to two criteria: (i) those that escape rap-
idly (average time to escape, �10 years) and revert rapidly (aver-
age time to reversion, �10 years) and (ii) those that escape at a
slightly slower pace (average time to escape, 10 to 15 years) and
revert rapidly (average time to reversion, �10 years). For compar-
ison, we also list additional escape mutations that would be iden-
tified using standard or phylocorrective association tests with a
critical P value of 0.05. P values of less than 0.05 are highlighted in
Table 2. Using this approach, we found 11 mutations that escape
and revert rapidly and a further 7 mutations that escape at a slower
pace but revert rapidly. We speculate that these epitopes could be
important for the development of a robust CTL-based vaccine, yet
most of those in the slower-escape bracket (10 to 15 years) would
not be identified by HLA association techniques with a critical P
value of 0.05. Four additional mutations (in two additional
epitopes), however, would be identified by HLA association tech-
niques. Most of them escape very rapidly but revert comparatively
slowly, and their corresponding epitopes may be less robust in the
context of a vaccine. We note once again that in the context of
multiple-hypothesis tests, a critical P value lower than 0.05 would
typically be used for association tests, but given the relatively small
sample sizes of our study, we use this higher bound to demon-
strate, by comparison, the application of our method. Neverthe-
less, for completeness, we also highlight two escape mutations that
remain significant at a level of 0.05 after correction for multiple
comparisons, using either the Bonferroni correction (P � 5.8 �
105 � 0.05/862) or false-discovery rate control (q value � 0.05).
q values (the false discovery rate analogue of P values) estimated
using the Benjamini and Hochberg algorithm are provided where
they exist and can be used as a rough guide for the relationship
between q values and P values using this type of data.

A further simplification for estimating escape and reversion
rates under the assumption of an exponentially growing epidemic

FIG 3 Escape and reversion rates inferred from escape prevalence data using
expressions 7 and 8 are broadly consistent with the rates inferred by fitting the
model to the data. Escape and reversion rates for possible escape mutations
inferred using two methods derived from our model are compared. The rates,
inferred from cross-sectional escape prevalence data, are provided for all com-
parisons between sites in optimally defined epitopes in gag, RT, and nef and
their restricting HLA alleles (see Materials and Methods for more details).
Both sets of estimates assume exponential growth of the infection prevalence.
For each HLA-site comparison, the filled circles represent the rates—pre-
sented in terms of their reciprocals and the average times to escape and rever-
sion—inferred by fitting our model to the escape prevalence data using equa-
tions S1 and S2 in the supplemental material. The same results would be
achieved by fitting the model, under the assumption of exponential growth, to
the data (17). The data are presented on a linear scale from 0 to 10 years and on
a log scale beyond 10 years. The open circles represent the rates inferred using
direct expressions 7 and 8. Lines connect the rates inferred using both meth-
ods. Where the inferred rates are the same using both methods, only the filled
symbol is visible. This representation shows that both methods yield broadly
consistent results. For HLA comparisons yielding reversion rates measured in
years (or faster), the inferred rates are entirely consistent. Only for HLA com-
parisons yielding very low reversion rates (average time to reversion, �20
years) are the inferred rates less consistent. Thus, overall, both expressions
accurately differentiate between rates measured in years or decades, as well as
accurately demonstrating the relative rates at which different mutations escape
and revert. The parameter assumptions used for these estimates are discussed
in Materials and Methods.
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is to estimate them directly using analytic expressions 7 and 8. The
derivation of these formulae is provided in the supplemental ma-
terial. Fortunately, the use of these expressions requires estima-
tion and substitution of the HLA prevalence (�) and only one
epidemic parameter (the transmission coefficient, �c). Moreover,
these expressions show that the inferred escape and reversion rates
are proportional to the transmission coefficient. Thus, even ac-
knowledging the uncertainty surrounding estimation of the trans-
mission coefficient, this method is useful for ranking the escape
and reversion rates of different epitopes. The trade-off using these
simple analytic formulae is that they are an approximation to the
rates yielded by fitting the data to the model during the exponen-
tial growth phase of the epidemic. In Fig. 3, however, we show
that, broadly speaking, both methods yield the same results. In the
figure, cross-sectional sequence data from HLA-typed partici-
pants of a Swiss treatment interruption cohort were analyzed. As
described more fully in Materials and Methods and Table 2 and in
Fig. S3 in the supplemental material, comparisons were made be-
tween all sites in optimally defined epitopes and their restricting
HLAs. For each site-HLA comparison where the prevalence of
mutation away from the sample consensus was greater in HLA-
matched than HLA-mismatched hosts, we inferred the rates of
escape and reversion using both of these methods. This represen-
tation shows that most escape rates and reversion rates measured
in years are consistent using both methods. Reversion rates mea-
sured in decades, however, are slightly underestimated. Neverthe-
less, both expressions differentiate between rates measured in
years and decades and consistently estimate the relative rates at
which different mutations escape and revert. All of the rapidly
reverting escape mutations that we show in Table 2 (average time
to escape, �15 years, and average time to reversion, �10 years)
have the same inferred rates irrespective of the method used. Put
in the context of other potential sources of error in the estimation
of escape and reversion rates, e.g., from sampling errors, estima-
tion of the transmission coefficient, and more complex dynamics
underpinning the evolution of escape mutations than are included
in our model, we expect that errors incurred through the use of
these direct formulae are unlikely to be significant. The formulae
are as follows: inferred escape rate,

	 � �c�1 � ����1 � �0

1 � �1 � (7)

inferred reversion rate,

� � �c���1 � �0

�0 � (8)

Depending upon the population under study, the assumption
that we have made thus far that the epidemic is growing exponen-
tially may or may not be valid. We note, however, that at most this
assumption would affect the magnitude of the estimated rates. It
would not influence the rank estimates corresponding to different
escape mutations. This is apparent from expressions 9 and 10 for
estimating escape and reversion rates under the assumption that
the entire system—the escape prevalence as well as the epidemic
dynamics— has reached equilibrium. These expressions are iden-
tical to expressions 7 and 8 except that they have the death rate of
infected hosts, � � 	 (equal to 0.1 year1 in our calculations) as a
multiplying factor in place of the transmission coefficient, �c
(equal to 0.3 year1 in our calculations). Irrespective of the un-
derlying epidemic dynamics, the value of this multiplying factor is

therefore the primary assumption that needs to made about the
epidemic for these calculations. In our previous publication, we
used assumed a value of 0.3 year1 and found this to yield results
consistent with independent data sets. If a smaller parameter value
was used, the inferred rates would be lower. For example, if 0.1
year1 was used, as might be appropriate under the assumption
that the system has reached equilibrium, the inferred rates would
be a third of the size: inferred escape rate,

	 � �� � ���1 � ����1 � �0

1 � �1 � (9)

inferred reversion rate,

� � �� � �����1 � �0

�0 � (10)

In summary, we provide analytic expressions that can be used
to estimate escape and reversion rates from HLA-typed cross-sec-
tional escape prevalence data without the need to run model sim-
ulations. These expressions yield results broadly similar to the
rates inferred by fitting the model to the data. Estimation using
these expressions requires only one assumption about the epi-
demic in the form of a single parameter. Furthermore, irrespective
of the assumed parameter, the relative rates inferred for different
escape mutations will remain fixed.

DISCUSSION

In this study, we first asked how different factors affect our ability
to detect HIV CTL escape mutations by looking for sites under
HLA-mediated positive selection. We first considered a tradi-
tional contingency table approach to find associations. We have
shown that the average sample size required to find an association
is smaller when the mutation escapes rapidly in HLA-matched
hosts and when it reverts rapidly in HLA-mismatched hosts. As a
result, escape mutations identified by statistical association sys-
tematically favor those with higher escape and reversion rates.
Recently, association studies have accounted for phylogenies.
While these new techniques have been used to separately identify
so-called escaping mutations and reverting mutations, they do not
account for escape and reversion occurring simultaneously in the
population. As a result, identified escaping mutations also favor
those with higher escape and reversion rates. Our analysis also
indicates that phylocorrective methods to identify reverting mu-
tations are likely to miss some rapidly reverting mutations while
identifying others that revert more slowly. This effect, which stems
from imperfect estimation of sequences at internal nodes, could
yield misleading results.

It is worth noting that the approach for identifying escaping
and reverting mutations investigated here was not the only phy-
locorrective approach described by Bhattacharya et al. (3). In a
second approach, for each association tested, two models were
formally compared. The null model, in which the observations are
generated by the phylogenetic tree alone, and the alternative
model, in which an additional selective pressure acts at the leaves
of the trees. This technique has been described in other publica-
tions (12, 31), where it has also been used to separately identify
escaping and reverting mutations. The models used do not ordi-
narily account for escape and reversion occurring simultaneously
in the population. Instead, they use different models to assess
evidence for each process separately. Any such approach will, by
definition, be unable to disentangle the signals of escape and re-
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version within the data. We therefore expect that escape and re-
version rates influence the mutations identified through this sec-
ond approach in a manner similar to that described for the first
approach, but further analysis would be required to test this for-
mally.

We have described how expressions derived from our model
can be used to estimate escape and reversion rates of different
mutations using cross-sectional escape prevalence data from
HLA-typed individuals. Escape and reversion rate estimates are
useful for understanding the characteristics of different epitopes.
We demonstrate the use of this method by identifying immuno-
genic epitopes that are more likely to remain robust in the context
of a CTL-based vaccine. Escape and reversion rate estimates could
also be used in testing hypothesis by, for example, comparing
them with other immunological and virological markers. As our
model simultaneously accounts for escape in HLA-matched hosts,
reversion in HLA-mismatched hosts, and the transmission of es-
cape mutants between hosts, our estimates therefore inherently
also account for these processes. Nonetheless, our model is still a
simplified representation of the way in which escape mutations
evolve and spread through the population. For example, it as-
sumes that escape mutations cannot revert in HLA-matched
hosts, that escape and reversion rates are homogeneous through-
out the duration of infection, that individuals are equally infec-
tious throughout their infection, that individuals are infected with
a single viral strain, and that epitopes are independent entities that
do not overlap each other. We have intentionally used this simple
representation to allow a transparent explanation of the assump-
tions that we have made. As we have discussed in detail previously
(17), although these factors could affect the pace at which escape
mutations are changing in prevalence in the population, they
would not change our qualitative predictions about how their
prevalence is influenced by escape and reversion rates, indicating
that additional factors are unlikely to significantly affect our es-
cape and reversion rate estimates. Parameter estimates (notably
the transmission coefficient, �c) also influence the inferred es-
cape and reversion rates but also do not affect the relative in-
ferred rates of different mutations. Furthermore, comparisons
between within-host data and population level data using the
model yield consistent results from both quantitative and qual-
itative perspectives (17), suggesting that our estimates are
largely robust to the assumptions of the model. However, our
mean field approach does not explicitly make use of all the
information about the evolutionary history of the virus embed-
ded throughout the sequences, and we therefore advocate the
development of new methods that can exploit such informa-
tion.

Our qualitative inferences about how escape and reversion
rates affect the strength of HLA associations are also likely to be
robust to the model assumptions. We note, however, that our
methods for estimating the sample sizes required to identify HLA
associations require additional assumptions that could affect our
quantitative predictions. Our method for investigating phylocor-
rective techniques assumes that the inferred tree is an accurate
representation of the evolutionary relationships and that across
the tree, the most recent generation is 25 years. If this period was,
on average, longer than 25 years, it would yield results closer to
those observed without phylocorrection—the required sample
sizes for slowly reverting mutations would be larger. If the period

was shorter (i.e., the population was more heavily sampled), the
required sample sizes would be smaller.
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