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The relationship between the azole preexposure of 86 patients and the genotype, azole susceptibility, and cyp51A polymorphisms
of 110 corresponding Aspergillus fumigatus isolates was explored. Isolates carrying serial polymorphisms (F46Y and M172V
with or without N248T with or without D255E with or without E427K) had higher itraconazole MICs (P = 0.04), although <2
pg/ml using the EUCAST methodology, were associated with two genetic clusters (P < 0.001) and with voriconazole preexpo-
sure of patients (P = 0.016). Voriconazole preexposure influences the distribution of A. fumigatus isolates with selection of iso-
lates carrying cyp51A polymorphisms and higher itraconazole MICs.

Azole resistance in environmental and clinical Aspergillus fu-
migatus isolates has become a major preoccupation since
emerging azole resistance was described in The Netherlands (26)
and the United Kingdom (9, 18). The prevalence of azole-resistant
isolates was found to be 5.3% in The Netherlands in 2011 (28) and
5.8% in the ARTEMIS global surveillance study (22). The major
mechanism involved in azole resistance is modification of the az-
ole target, the Cyp51A protein (14 alpha-demethylase), with sev-
eral mutations in the cyp51A gene responsible for various resis-
tance phenotypes (19). Numerous polymorphisms have also been
described in azole-sensitive isolates (14, 19). We took advantage of
our single-center, hospital-based cohort study of consecutive A.
fumigatus isolates prospectively collected from patients in the he-
matology department of our hospital between 2006 and 2009 (3)
to study the impact of azole preexposure of patients on the isolates
recovered by analyzing cyp51A gene polymorphism, in vitro azole
susceptibility, and the distribution of genotypes based on micro-
satellite markers. We analyzed 110 isolates from 86 patients after
excluding isolates with mixed genotypes (n = 4) and those with
identical genotypes from the same patient (n = 4) to rule out the
possibility of testing the same isolate several times. For each iso-
late, the whole cyp51A gene and promoter were sequenced as pre-
viously described (3) and genotyping was performed by using four
previously described microsatellite loci (7).

(This work was presented in part at the 51st Interscience Con-
ference on Antimicrobial Agents and Chemotherapy, 17 to 20
September 2011, Chicago IL [poster M-293].)

MIC susceptibility testing using Etest (AB bioMérieux) re-
vealed that one isolate from an azole-naive patient was itracona-
zole resistant (MIC, 16 pg/ml) and had its own genotype (3). The
109 remaining isolates were considered azole sensitive (itracona-
zole and voriconazole MICs of <2 pg/ml and posaconazole MICs
of <0.25 pg/ml) (30). Unique single nucleotide polymorphisms
(SNPs) were observed in three isolates: t173a, t1167a (N248K),
and g1207t (D262Y). Several (8 to 12) synonymous and nonsyn-
onymous SNPs were observed in 13 isolates (referred to here as
sSNP isolates for serial SNP isolates) recovered from nine patients
and classified into four groups on the basis of their cyp5I1A se-
quences (Table 1). After random selection, 10 of these sSNP iso-

4948 aac.asm.org

Antimicrobial Agents and Chemotherapy p. 4948-4950

lates were compared to 10 isolates with the wild-type (WT) cyp51A
sequence (GenBank accession no. AY048754) by using EUCAST
methodology for itraconazole, voriconazole, and posaconazole
sensitivity testing. The itraconazole MICs were significantly
higher although <2 pg/ml and with <2-fold dilution differences
for sSNP isolates (Table 1) than for WT isolates (Wilcoxon rank-
sum test, P = 0.04; sum of ranks = 132.78 versus 78; U = 23.00),
with no significant difference in the other azole MICs.

Genotyping of the 110 isolates revealed 95 different genotypes.
Forty-nine genetically different isolates were recovered from 50
patients. Genetically identical isolates (n = 25) were collected
from 23 patients (2 to 5 patients per genotype) who had or had not
received azole therapy. Thirteen patients had iterative pulmonary
isolates (n = 36; range, 2 to 7), some collected before or after azole
therapy. For all of these 13 patients, the genotypes of the subse-
quent isolates were different from those of the first isolates, as
already reported for pulmonary samples from hematology pa-
tients (4, 6, 12, 29).

The genetic variability of sSNP isolates compared with WT
isolates was studied by the minimum spanning tree (MST)
method (BioNumerics software v6.5) to group genotypes into ge-
netic clusters (GCs) with the most stringent definition of GCs, i.e.,
tolerating only an allele difference in one marker, as already re-
ported (8, 13, 16, 20, 23). Principal-component analysis (PCA)
and unweighted-pair group method using average linkages (UP-
GMA) clustering analysis were also performed (MeV v4.6.1 soft-
ware [24]). These three analyses highlighted the fact that sSNP
isolates belong to distinct clouds (PCA) or clusters (MST, UP-
GMA tree) compared to WT isolates (data not shown). Among
the sSNP isolates, two distinct GCs (GC1, n = 6; GC2, n = 3) and
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TABLE 1 Substitutions in the Cyp51A protein, EUCAST MICs, and cyp51A sequence genotypes of 13 A. fumigatus sSNP isolates recovered from

nine patients

No. of sSNP MIC range (jg/ml)’ Microsatellite marker

isolates Substitutions in Cyp51A protein® ITC VRC PSC Patient no. Gt A B C D GC?

8 F46Y, M172V, E427K 0.5-1 0.25-0.5 0.125 6 89 150 110 170 72 GC1
1 90 154 110 170 72 GCl1
7 90 154 110 170 72 GC1
8 91 154 110 172 72 GC1
3 92 154 118 172 72 GCl1
9 93 158 110 170 72 GC1
9 94 158 110 170 74 GC1
5 79 130 114 172 72 S¢

1 F46Y, M172V, N248T, E427K 0.5 0.25 0.0625 3 77 126 118 164 92 N

3 F46Y, M172V, N248T, D255E, E427K 1 0.25-0.5 0.125 2 76 124 158 164 94 GC2
4 78 126 158 164 94 GC2
5 78 126 158 164 94 GC2

1 F46Y, M172V, N248T, D255E 1 26 104 128 118 96 s¢

“ The substitutions t18c, c283t, t489a (F46Y), c560t, c619t, g690a (M172V), a937g, and a1497g SNPs in the cyp51A gene were common to all isolates, while al166¢ (N248T), c1188g

(D255E), g1702 (E427K), and t1785¢ were inconsistently found.
b Gt, genotype. The values correspond to the genotypes of the isolates and are arbitrary.

¢ The values correspond to the lengths in base pairs of the PCR products of the four microsatellite markers (A to D) and are a function of the number of repeats of the microsatellite

at each locus.

@ The GCs were determined for all isolates using MST, PCA, and UPGMA clustering. GC1 and GC2 were genetically distinct from WT isolates using these three analyses.
¢ The isolates that had more than one allelic mismatch with the other isolates were considered singletons (S).

F1ITC, itraconazole; VRC, voriconazole; PSC, posaconazole.

three genetically unrelated isolates were identified (Table 1). The
sSNP isolates were significantly associated with GC1 and GC2 GCs
compared with WT isolates (P < 0.0001, odds ratio [OR] = 225
[11.53 to 4,392], and P = 0.005, OR = 29 [2.7 to 303.7], respec-
tively [Fischer exact test]).

To investigate whether azole preexposure affects A. fumigatus
populations in patients, we analyzed azole preexposure at the time
of recovery of each isolate. Twenty-six (24%) isolates were recov-
ered from 14 patients undergoing voriconazole therapy for inva-
sive aspergillosis (for 10 days to >2 years). Voriconazole preexpo-
sure was significantly associated with sSNP isolates (Fischer exact
test; P = 0.016, OR = 4.3 [1.35 to 13.91]). Since different geno-
types were recovered iteratively from 13 patients, some before and
some after azole therapy, the patient-based analysis did not show
any significant association between patients with sSNPs and vori-
conazole preexposure (P = 0.159, OR = 3.0 [0.65 to 13.80]).

Along with the association between voriconazole preexposure
and sSNP isolates, we found higher itraconazole EUCAST MICs
for sSNP isolates than for WT sequence isolates. Although this
slight difference in MICs could be dismissed as nonsignificant
since the MICs remained below the accepted threshold (2 pg/ml)
for resistant isolates (30), this finding is consistent with a better
tolerance of azole drugs by these isolates. This could explain why
these sSNP isolates are less likely to acquire high-level azole resis-
tance than WT isolates (15) despite the fact that they have been
described with (19) or without (14, 19) hot-spot mutations re-
sponsible for high-level azole resistance. Our findings are consis-
tent with those of Escribano et al., who reported a MIC of 2 wg/ml
for three out of four such sSNP isolates that belonged to GCs
distinct from those of WT isolates (14). It is unlikely that such
serial polymorphisms appear in different individuals during med-
ical azole therapy; a more plausible hypothesis is the environmen-

September 2012 Volume 56 Number 9

tal pressure exerted by the massive use of 14 alpha-demethylase
inhibitors in agriculture (1, 2, 21, 25). This could explain the ob-
served clonal expansion of sSNP isolates in distinct GCs, as re-
ported for azole-resistant TR/L98H isolates (10, 22, 26). Since
azole resistance can be associated with lower virulence in mice (5),
there is a need to study the virulence of these sSNP isolates.

The treatment of invasive aspergillosis has changed consider-
ably during the past few years, with numerous modifications in its
management, especially the prescription of azoles as first-line
therapy (17) or as prophylaxis (11, 27). Since voriconazole might
select A. fumigatus isolates with specific Cyp51A polymorphisms
associated with slightly better in vitro tolerance of itraconazole,
our findings suggest that this phenomenon warrants continual
surveillance.
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