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Abstract
In a conventional brain–computer interface (BCI) system, users perform mental tasks that yield
specific patterns of brain activity. A pattern recognition system determines which brain activity
pattern a user is producing and thereby infers the user’s mental task, allowing users to send
messages or commands through brain activity alone. Unfortunately, despite extensive research to
improve classification accuracy, BCIs almost always exhibit errors, which are sometimes so
severe that effective communication is impossible.

We recently introduced a new idea to improve accuracy, especially for users with poor
performance. In an offline simulation of a “hybrid” BCI, subjects performed two mental tasks
independently and then simultaneously. This hybrid BCI could use two different types of brain
signals common in BCIs – event-related desynchronization (ERD) and steady-state evoked
potentials (SSEPs). This study suggested that such a hybrid BCI is feasible.

Here, we re-analyzed the data from our initial study. We explored eight different signal processing
methods that aimed to improve classification and further assess both the causes and the extent of
the benefits of the hybrid condition. Most analyses showed that the improved methods described
here yielded a statistically significant improvement over our initial study. Some of these
improvements could be relevant to conventional BCIs as well. Moreover, the number of illiterates
could be reduced with the hybrid condition. Results are also discussed in terms of dual task
interference and relevance to protocol design in hybrid BCIs.
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Brain–computer interface (BCI); Electroencephalogram (EEG); Event-related desynchronization
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1. Introduction
Brain–computer interfaces (BCIs) allow communication without movement. Users can send
messages or commands through direct measures of brain activity (Wolpaw et al., 2002).
Most noninvasive BCIs measure brain activity through electroencephalographic (EEG)
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sensors placed on the head (Mason et al., 2007). Four types of noninvasive BCIs have been
described in the literature, categorized according to the type of brain activity used for control
(Wolpaw et al., 2002; Allison et al., 2007): P300s (Farwell and Donchin, 1988), steady-state
evoked potentials (SSEPs) (Middendorf et al., 2000; Müller-Putz et al., 2006), slow cortical
potentials (SCPs) (Birbaumer et al., 1999), and event-related desynchronization (ERD)
(Kalcher et al., 1996; Pfurtscheller and Lopes da Silva, 1999).

It might also be possible to combine two or more BCIs so that subjects produce two or more
of these different brain activities. A BCI could also be combined with a device based on
other physiological signals such as breathing or heart rate (Scherer et al., 2007). BCIs might
also be integrated with conventional interfaces such as keyboards, mice, or joysticks (Nijholt
et al., 2008). More recent work showed that an SSVEP BCI could be combined with a new
type of ERD BCI called a “brain switch” (Pfurtscheller and Solis-Escalante, 2009; Solis-
Escalante et al., 2010; Pfurtscheller, 2009).

In our recent paper (Allison et al., in press), we introduced a dual task paradigm relevant to a
hybrid BCI that combines visual attention and imagined movement. Subjects performed
three different tasks: ERD-only (by imagining left or right hand movement to produce
ERD); SSVEP-only (by focusing on one of two flickering LEDs to produce SSVEPs); and a
hybrid condition with both tasks. This hybrid condition provides a classifier with two
different types of brain signals. The additional signal could improve accuracy. This
improvement might be especially important for subjects who are not proficient with BCIs
based on one of these signals (either ERD or SSVEP), a phenomenon called “BCI illiteracy”
by some researchers (Kübler and Müller, 2007).

While the initial study collected data offline and thus did not use a BCI, results seemed
promising for future hybrid BCI systems. However, this study left open many questions
about how to best analyze and combine ERD and SSVEP signals, and we wanted to explore
some of these questions before an online implementation. Indeed, due to the novelty of
hybrid BCI systems, many opportunities for improvement have not been investigated. For
example, our paper noted that the hybrid condition might have improved accuracy by
providing the classifier with more information, and/or by producing EEG activity that was
easier to classify.

The principal goal of the present study was to explore eight possible avenues for improving
classification accuracy based on the data recorded from our offline simulation of a hybrid
ERD/SSVEP BCI (see also Fig. 1).

First, we consider improving classification in the SSVEP-only runs by including harmonics
of the SSVEP stimulation frequencies. We also assess a harmonic phase coupling (HPC)
approach that could also improve SSVEP classification accuracy. Second, we extend the
first analysis to the hybrid runs. Third, we simulate an “artificial” hybrid BCI by combining
features of the ERD-only and SSVEP-only runs. By comparing this to the original hybrid
data, we can determine whether the hybrid condition yielded stronger ERD activity than the
ERD-only runs, and stronger SSVEP activity than the SSVEP-only runs. The fourth and
fifth analyses assess whether performing two tasks simultaneously affects task performance.

In the sixth analysis, we compare the three conditions (ERD-only, SSVEP-only, and hybrid)
using some of the new methods introduced here. The seventh and eighth analyses both
assessed the relevance of the feature pool size across the different run types. We wanted to
explore the hypothesis that the improvement in the hybrid condition occurred because more
features, and/or different feature types, were available to the classifier.
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While the main goal was to improve accuracy, we also interpret these results in terms of
relevance to dual task interference and simultaneous task performance. Did the addition of a
second task (such as a motor task) impair performance in the primary task (such as a visual
attention task)? If so, how much? How could hybrid BCIs best combine two or more tasks?

2. Methods
The materials and methods used to collect and analyze the data are briefly reviewed here.
We then describe the new signal processing techniques introduced in this study (Fig. 1
presents an overview of all analyses).

2.1. Subjects
Fourteen healthy subjects (six women and eight men, age range 17–31 years) participated in
this study. No subjects previously used any BCI. Subjects sat in front of a 17 inch flat
screen. Red LEDs were attached below the screen on the left and right side and flickered at
8Hz and 13 Hz, respectively. Fig. 2(a) shows the apparatus for stimulus presentation used in
this study.

2.2. EEG recording
Three bipolar electrodes over the motor cortex (C3, Cz, C4) and two bipolar electrodes over
the primary visual cortex (O1, O2) were recorded. A ground electrode was placed on Fpz.
All impedances were kept below 5 kΩ. The EEG signals were bandpass-filtered between
0.5–100 Hz, amplified with a g.BSamp amplifier (g.tec OEG, Graz, Austria), and sampled at
250 Hz (16 bit DAQ card National Instruments NI6031E). Sensitivity was set to 50 µV.

2.3. Experimental paradigm
Subjects performed three different tasks. During the first two runs, called ERD-only,
subjects imagined moving the left or right hand to produce ERD. Subjects were instructed to
imagine moving the hand (first-person movement imagery) instead of imagining observation
of hand movement (third-person movement imagery), since the former yields stronger ERD
activity (Neuper et al., 2005). During the next two runs, called SSVEP-only, subjects
focused on one of two flickering LEDs to produce SSVEPs. During the last four runs, called
hybrid, subjects were instructed to perform both tasks simultaneously. During each run, 20
left and 20 right cues in the form of an arrow were presented in random order. Each of these
40 trials proceeded as follows: first, a fixation cross appeared on the screen. After two
seconds, the subjects viewed an arrow that pointed either to the left or right. They had to
perform the corresponding task until the arrow disappeared after another four seconds. Then,
the screen was blank for two seconds, followed by a break of 0.5–1.5 s before the next trial.
Subjects did not receive feedback. Fig. 2(b) illustrates the timing scheme of the experimental
paradigm.

2.4. Analysis 1: improved SSVEP feature extraction in the SSVEP-only runs using
harmonics and harmonic phase coupling

In our first analysis, we addressed whether SSVEP classification could be improved by
using more sophisticated feature extraction methods than in our original paper. In a
preliminary step, all data sets were visually inspected, and the trials containing muscle
artifacts were discarded. Most conditions in this analysis relied on logarithmic band power
features with 1Hz bands centered around the stimulation frequencies 8Hz and 13 Hz. Signals
from both O1 and O2 were used. The signals were bandpass-filtered, squared, and smoothed
with a moving average filter. After that, the logarithms of these signals were used as band
power features. Earlier work showed that some subjects produce distinct SSVEP activity at
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the second or third harmonic in addition to the fundamental frequency (Müller-Putz et al.,
2005, 2008; Allison et al., 2008). Our approach in this paper is equivalent to the well-
established harmonic sum decision (HSD) approach using three harmonics (Müller-Putz et
al., 2005). Accordingly, we extracted features using the fundamental frequencies (first
harmonics), second harmonics, and third harmonics. We calculated these band power
features with three different smoothing windows (0.5 s, 1 s, and 1.5 s), hereafter called
HSD1–HSD3. The size of the feature vector did not depend on the length of the smoothing
window; each feature vector comprised 12 features (two electrodes with three bands each).

The fourth condition used a technique called harmonic phase coupling (HPC). Our earlier
work showed that this approach improved accuracy in about half of the subjects tested
(Krusienski and Allison, 2008). HPC exploits amplitude and phase coupling of the
harmonically related sinusoidal components by constructing a matched filter template MF(n)
according to the following equation (Krusienski et al., 2007; Krusienski and Allison, 2008):

where n is the template sample number, fs is the sampling frequency (250 Hz in our case), ff
is the fundamental frequency (or first harmonic) of the template, N is the number of
harmonics to be modeled, and ak and Φk are the amplitude and phase of the individual
harmonics, respectively. These model parameters can be simply obtained from the FFT
spectrum of the user’s normalized characteristic waveform at each frequency as determined
by a phase-aligned average.

Each incoming data epoch is circularly convolved for one period of the MF template in
order to evaluate the template at discrete phase shifts, essentially determining the optimal
phase correlation between the data segment and the template. The square root of the
maximum value of the circular convolution, corresponding to the optimal alignment, is the
feature for the data segment. The result is a continuous amplitude analysis, similar to that
produced by a single frequency bin of a conventional spectral analysis technique.

We determined separate MF templates with N = 3 harmonics for each of the two channels
(O1 and O2) at each of the two stimulation frequencies (ff = 8Hz and 13 Hz) and the
corresponding second harmonic of each stimulation frequency (ff = 16 Hz and 26 Hz),
resulting in eight features. We computed the model parameters of each MF template using
the trials of the first run with a target stimulation frequency (or second harmonic of this
frequency) corresponding to the fundamental frequency of the template.

The fifth condition was taken directly from our first paper for comparison. It uses a feature
selection algorithm (sequential floating forward selection, SFFS) to select the optimal
feature set consisting of up to five features. The feature pool consisted of eleven non-
overlapping logarithmic band power features (width 2 Hz, between 8–30 Hz) for each of the
two electrodes O1 and O2.

All five conditions in this analysis are summarized in Table 1. Features extracted from all
methods were subjected to a linear classifier (Fisher’s linear discriminant analysis, LDA). In
a first step, we determined the optimal 0.5 s time segment to train the classifier with a so-
called running classifier (Müller-Gerking et al., 2000). From this optimal time segment, we
used five equally-spaced samples every 0.1 s. We employed a 10 × 10 cross-validation
procedure to avoid overfitting. The performance measure of the various methods was the
maximum of the cross-validated classification accuracy within a trial.
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We compared the performance measures of the five different conditions with a one-way
repeated measures analysis of variance (ANOVA). We checked the sphericity assumption
and performed Greenhouse–Geisser correction when necessary. The ANOVA used the
independent factor “condition” with five levels (see Table 1) and the dependent variable
“classification accuracy”. If the ANOVA indicated significant differences, we conducted a
Newman–Keuls post hoc test to analyze the differences in more detail.

2.5. Analysis 2: improved SSVEP feature extraction in the hybrid runs using harmonics
and harmonic phase coupling

The second analysis extended the previous investigation to the hybrid runs. We explored
whether an improved SSVEP feature extraction also has a beneficial effect on classification
accuracy in the hybrid condition. Here, we compared the results from our previous paper to
band power features with three harmonics and HPC. We calculated the band power method
with the same three smoothing windows also used before. In short, we used HSD1, HSD2,
HSD3, and HPC as listed in Table 1.

We also used logarithmic band power features to quantify ERD over electrodes C3 and C4.
We extracted two standard bands (10–12 Hz and 16–24 Hz) for all subjects. In contrast to
our previous paper, we excluded the central site Cz, because the main activity for left and
right hand motor imagery can be found on contralateral sites C3 and C4 (Pfurtscheller and
Berghold, 1989; Pfurtscheller and Lopes da Silva, 1999). Furthermore, since a BCI should
function with the fewest possible electrodes, we repeated many analyses in this study with
Cz included. However, we found that including site Cz did not substantially improve
performance. As with our SSVEP analyses above, we used three different smoothing
windows. Hereafter, the three different ERD feature types will be referred to as ERD1
(smoothing length 0.5 s), ERD2 (1 s), and ERD3 (1.5 s).

In summary, we compared seven conditions in this analysis by combining the SSVEP
methods with the ERD feature extraction procedure to analyze the hybrid condition. These
seven conditions are listed in Table 2. Again, we conducted a one-way repeated measures
ANOVA with the independent factor “condition” and the dependent variable “classification
accuracy”.

2.6. Analysis 3: true versus artificial hybrid condition
In the third analysis, we compared the hybrid condition with an artificial hybrid condition.
We developed the artificial hybrid condition by combining ERD features extracted from the
ERD-only runs and SSVEP features extracted from the SSVEP-only runs, where subjects
did not perform two tasks simultaneously. In this analysis, we used ERD1, ERD2, and
ERD3 to extract ERD features and HSD1, HSD2, and HSD3 to extract SSVEP features with
three harmonics and combined them accordingly to form three artificial conditions (with
three different smoothing windows). We compared this artificial hybrid condition to the real
hybrid conditions H1, H2, and H3 as defined in Table 2. That is, we used the ERD features
with three smoothing windows in combination with SSVEP features using three harmonics.
In total, we analyzed six different conditions with a one-way repeated measures ANOVA.
As usual, the independent factor was “condition” and the dependent variable was
“classification accuracy”.

We also used amore fine-grained running classifier in this analysis. Specifically, we split up
a trial into segments with 125 ms length and applied a running classifier to estimate the
separability of the data of the different conditions.
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2.7. Analysis 4: ERD-only and hybrid runs using only ERD features
The fourth analysis assessed whether performing two tasks simultaneously affects motor
imagery activity measured with ERD. We compared the performance in the ERD condition
analyzed with ERD features ERD1, ERD2, and ERD3 to the performance in the hybrid
condition with the same ERD features. As before, those three ERD features correspond to
logarithmic band power features at electrodes C3 and C4 using two frequency bands 10–12
Hz and 16–24 Hz, combined with a smoothing window with lengths 0.5 s, 1.0 s or 1.5 s. In
summary, we compared six different conditions with a one-way repeated measures
ANOVA.

We also used grand average ERDS maps of the ERD-only and hybrid condition in this
analysis. The maps were calculated with 2 Hz bands from 5–40 Hz in steps of 1 Hz (plotted
along the y-axis) and within the time segment of 0–8 s in steps of 0.05 s (plotted along the x-
axis). As a first step, we subtracted the evoked components from the EEG signals for each
condition and subject (Kalcher and Pfurtscheller, 1995). Next, the signals were bandpass-
filtered, squared and smoothed with a moving average filter (Graimann et al., 2002). Finally,
the resulting power values were normalized to the mean power in a reference period
between 0.5–1.5 s. The maps are scaled from − 100% (red, ERD) to + 150% (blue, ERS,
event-related synchronization). By averaging over all subjects in this study, we obtained
grand average ERDS maps.

2.8. Analysis 5: SSVEP-only and hybrid runs using only SSVEP features
Analogous to the previous investigation, this analysis assessed whether performing two
tasks at the same time affects visual attention, based on SSVEP activity. Accordingly, we
compared the performance in the SSVEP condition analyzed with SSVEP features HSD1,
HSD2, HSD3 (band power with three harmonics), and HPC (see also Table 1) to the
performance in the hybrid condition with the same SSVEP features. In total, we compared
eight different conditions with a one-way repeated measures ANOVA.

2.9. Analysis 6: comparison of ERD-only, SSVEP-only, and hybrid conditions
Analysis 6 investigated whether the hybrid condition yielded better results than the ERD and
SSVEP conditions. We analyzed the ERD condition with the three ERD feature types
ERD1, ERD2, and ERD3 (corresponding to the three different smoothing windows).
Similarly, we extracted bandpower features with three harmonics (HSD1, HSD2, HSD3)as
well as HPC features for the SSVEP condition. Finally, we combined those ERD and
SSVEP features to analyze the hybrid runs, yielding six different hybrid conditions in total
(see also Table 2). In summary, we compared 13 different conditions (ERD1, ERD2, ERD3,
HSD1, HSD2, HSD3, HPC, H1, H2, H3, H4, H5, H6) with a one-way repeated measures
ANOVA.

2.10. Analysis 7: ERD-only runs using only ERD features and both ERD and SSVEP
features

Analysis 7 explored whether a potential improvement in the hybrid condition could be due
to the increased size of the feature pool (both ERD and SSVEP features are available to the
classifier in this condition). In other words, we questioned if a potential performance
improvement could be spuriously caused by the larger pool of different features and feature
types. On the other hand, we hypothesized that if an improved performance was actually due
to the subjects performing two tasks simultaneously, we should not see higher classification
accuracies in the ERD and SSVEP runs using both ERD and SSVEP features. To this end,
we analyzed the ERD-only condition with ERD features only and both ERD and SSVEP
features (band power with three harmonics) as in the hybrid condition. In summary, we
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compared six conditions ERD1, ERD2, ERD3, H1, H2, and H3 (see Table 2) with a one-
way repeated measures ANOVA.

2.11. Analysis 8: SSVEP-only runs using only SSVEP features and both ERD and SSVEP
features

The last analysis is similar to the previous one, but it used data from the SSVEP-only runs
instead. We compared the performance when using only SSVEP features HSD1, HSD2, and
HSD3 (see Table 1) to using both ERD and SSVEP features H1, H2, and H3 (see Table 2).
For statistical evaluation, we once again employed a one-way repeated measures ANOVA.

3. Results
3.1. Analysis 1: improved SSVEP feature extraction in the SSVEP-only runs using
harmonics and harmonic phase coupling

The cross-validated maxima of the classification accuracy for all methods are listed in Table
3. In general, all new methods yielded improved results. Subjects S4, S9, S10, S11, S13, and
S14 showed the greatest improvement. HSD3, based on band power features with a
smoothing window of 1.5 s, was the best method for seven out of 14 subjects, whereas HPC
performed best in five subjects.

We found a highly significant difference between the five SSVEP feature extraction
methods (F4,52 = 9.68, Greenhouse–Geisser adjusted p < 0.01). A Newman–Keuls post hoc
test revealed that the SSVEP method using SFFS from our first paper was significantly
worse than all other improved methods. In addition, HPC and HSD3 (smoothing length 1.5
s) were both significantly better than HSD1 (smoothing length 0.5 s). There was no
significant difference between HSD3 and HPC, although the mean of the former method
was slightly higher. On the other hand, HPC outperformed HSD3 by over 5% in subjects S1
and S8. Fig. 3(a) summarizes the results of the post hoc tests.

3.2. Analysis 2: improved SSVEP feature extraction in the hybrid runs using harmonics
and harmonic phase coupling

In contrast to the SSVEP condition, there is only a marginally significant difference between
the methods in the hybrid runs (F6,78 = 3.30, Greenhouse–Geisser adjusted p = 0.060). The
means of the seven conditions H1–H6, SFFS (as listed in Table 2) are as follows: 83.1, 85.2,
86.1, 83.4, 84.3, 84.7, and 81.0. Clearly, the old method performs worst, but the difference is
not large enough to be significant. Interestingly, subjects S1 and S8 performed best when
using the method based on SFFS, whereas the classification accuracy of all other subjects
improves when using the new SSVEP feature extraction methods.

3.3. Analysis 3: true versus artificial hybrid condition
There was no significant difference between the true hybrid and artificial hybrid conditions
(F5,65 = 1.64, Greenhouse–Geisser adjusted p = 0.215).

Nevertheless, when comparing the separability of the data with a running classifier, it
appears that the artificial hybrid condition resulted in a higher discriminability than the true
hybrid condition throughout the whole trial (see Fig. 4). Moreover, the real hybrid condition
yielded a slightly higher separability than the SSVEP condition, whereas the ERD data was,
in general, poorly separable. The shapes of the true and artificial hybrid classification time
courses are almost identical. Therefore, we cannot answer the question if the two task in the
true hybrid condition were performed simultaneously or sequentially from this analysis.
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3.4. Analysis 4: ERD-only and hybrid runs using only ERD features
This analysis showed that ERD performance decreases when a visual attention task is added
to the motor imagery task. The ANOVA yielded a significant difference of the six
conditions (F5,65 = 4.38, Greenhouse–Geisser adjusted p < 0.05). The performance in the
ERD runs was generally higher than in the hybrid runs when using only ERD features. More
specifically, a Newman–Keuls post hoc test revealed significant differences for ERD1 in the
ERD condition versus ERD1, ERD2, and ERD3 in the hybrid condition, respectively. In
addition, ERD2 in the ERD runs yielded a significantly higher accuracy than the same
feature type in the hybrid condition (see also Fig. 5(left)). The results of the post hoc test are
summarized in Fig. 3(b).

The decreased ERD performance in the hybrid condition is also apparent in the ERDS maps
of the motor channels C3 and C4 (Fig. 6, first and third row). Clearly, the contralateral ERD
in the lower alpha band (around 8–10 Hz) starting shortly after the cue is more lateralized in
the ERD condition than in the hybrid condition. We hypothesize that this resulted in a
decreased ERD performance in the hybrid runs.

3.5. Analysis 5: SSVEP-only and hybrid runs using only SSVEP features
In contrast to the previous analysis with ERD features, the performance in a visual attention
task (SSVEP) did not decrease when a motor imagery task (ERD) was performed
simultaneously (F7,91 = 2.75, Greenhouse–Geisser adjusted p = 0.066). In fact, the means
between the SSVEP and hybrid condition are almost identical (82.81 and 82.59,
respectively). We confirmed this with a two-way ANOVA with the factors “condition” (two
levels “SSVEP” and “hybrid”) and “method” (four levels). While the factor “method” was
highly significant (F3,39 = 8.82, p < 0.01), the more interesting factor “condition” was not
significant (F1,13 = 0.03, p = 0.868), as expected.

These results are corroborated by ERDS maps shown in Fig. 6 (second and fourth row). In
contrast to the ERD features (analysis 4), there is no obvious difference between the
SSVEP-only and hybrid condition when examining the SSVEP channels O1 and O2. This
was reflected in an identical SSVEP performance in both the SSVEP-only and hybrid runs.

3.6. Analysis 6: comparison of ERD-only, SSVEP-only, and hybrid conditions
The comparison between the ERD-only, SSVEP-only, and hybrid conditions resulted in a
highly significant difference (F12,156 = 11.64, Greenhouse–Geisser adjusted p < 0.01). A
Newman–Keuls post hoc test revealed that the ERD condition (for all three feature types,
ERD1, ERD2, and ERD3) is significantly worse than both the SSVEP and the hybrid
condition (see Fig. 5(right)). There was no significant difference between the hybrid and
SSVEP conditions. In nine of 14 subjects, our classifier could most accurately distinguish
left versus right tasks in the hybrid condition. Our classifier was most accurate for four
subjects in the SSVEP condition, and one subject in the ERD condition.

The hybrid condition had the fewest illiterates, followed by the SSVEP and then the ERD
conditions. By definition, an illiterate subject cannot effectively control a BCI, meaning that
the classification accuracy is below a certain threshold. We used a threshold of 70% in our
offline simulation, a value often used in the literature (Perelmouter and Birbaumer, 2000;
Kübler and Birbaumer, 2008). Specifically, there were 11 illiterates in the ERD condition, 3
in the SSVEP condition, and 1 in the hybrid condition (averaged over the different methods
used within a condition). We conducted a non-parametric Cochran test to assess the
differences between the number of illiterates in the three conditions. This test was highly
significant (Q = 15.27, p < 0.01). Subsequently, we used a Bonferroni-corrected non-
parametric McNemar test to assess pairwise differences between the conditions. The number
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of illiterates was significantly lower (p < 0.01) in the hybrid condition than in the ERD
condition. We did not find statistically significant differences between hybrid and SSVEP as
well as ERD and SSVEP conditions, respectively.

3.7. Analysis 7: ERD-only runs using only ERD features and both ERD and SSVEP features
This analysis compared the ERD condition with either ERD features only or both ERD and
SSVEP features. The ANOVA did not yield a significant difference between the conditions
(F5,65 = 1.00, p = 0.426). This implies that a greater number of features (and also feature
types) could not improve classification accuracy in the ERD condition.

3.8. Analysis 8: SSVEP-only runs using only SSVEP features and both ERD and SSVEP
features

Similar to the previous investigation, this analysis compared the SSVEP condition when
using either SSVEP features only or both ERD and SSVEP features. Surprisingly, the
ANOVA resulted in a highly significant difference (F5,65 = 8.08, Greenhouse–Geisser
adjusted p < 0.01). However, the Newman–Keuls post hoc test revealed significant
differences between the pairs HSD3–HSD1, HSD3–HSD2, H1–HSD3, H2–HSD3, H3–
HSD1, and H3–H1. From these results, we could not conclude whether there actually was a
difference between using only SSVEP features versus using both SSVEP and ERD features.
Therefore, we conducted another ANOVA with two factors (first factor “features” with two
levels “SSVEP” and “SSVEP and ERD”, second factor “smoothing window” with three
levels 0.5 s, 1.0 s, and 1.5 s). This time, the factor that was most interesting for this analysis
(“features”) was not significant (F1,13 = 1.36, p = 0.265), which implies that using both
feature types and/or more features did not improve performance. The factor “smoothing
window” was highly significant (F2,26 = 13.48, p < 0.01), whereas the interaction between
the two factors turned out to be not significant (F2,26 = 0.31, p = 0.738).

4. Discussion
In summary, the results lead to four conclusions. First, the newer techniques in this study
could improve classification accuracy. Second, the addition of a secondary task produced no
significant effect on SSVEP activity, and led to less discriminable ERD patterns. However,
our third conclusion is that, despite this latter result, this ERD impairment was overcome by
the benefit of adding SSVEP activity that could improve classification. Our fourth
conclusion is that the hybrid BCI approach might reduce illiteracy, although there was no
significant difference in classification accuracy between the SSVEP and hybrid condition.

We could significantly improve accuracy in the SSVEP condition by using more advanced
techniques. The harmonic phase coupling approach (HPC) and the band power method with
three harmonics and a smoothing window of 1.5 s performed particularly well. The
improved SSVEP methods could also improve classification accuracy in the hybrid runs,
although this improvement was only marginally significant.

The hybrid condition did not yield significantly higher classification accuracies than the
SSVEP condition. However, the classifier yielded the highest classification accuracies in the
hybrid condition for nine out of 14 subjects. This underscores an important benefit of the
hybrid approach, which is also apparent from other analyses. Our study, like most BCI
studies, revealed significant inter-subject differences. Some subjects might not benefit from
the hybrid approach. This is consistent with results from our initial study, in which one
subject (S7) attained 100% accuracy in the SSVEP-only condition, and thus gained no
improvement from adding an imagined movement task and resulting ERD activity.
Although this analysis showed that the hybrid condition produced no significant
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improvement over all subjects, it also yielded a considerable benefit for some subjects.
Therefore, although a hybrid BCI based on our current dual task approach might not help
some subjects, it could substantially help other subjects. It could effectively reduce the
number of illiterates from 11 in the ERD condition and 3 in the SSVEP condition to 1 in the
hybrid condition (averaged over the different methods).

The hybrid condition described here was essentially a dual task paradigm, which leads to
two questions. Does the addition of a second task distract subjects, yielding less
discriminable ERD and/or SSVEP activity? Second, if the classification accuracy resulting
from one of the two brain signals (ERD or SSVEP) declines, would overall classification
accuracy necessarily decline as well? Analyses 4 and 5 addressed the first question by
showing that ERD activity was less apparent when an SSVEP task was added, but that
SSVEP activity was not significantly affected by a secondary ERD task. The third analysis
addressed the second question. An artificial hybrid condition, which combined ERD-only
and SSVEP-only conditions, showed no significant difference from the true hybrid
condition, in which subjects performed two tasks. The second and sixth analyses further
suggested that the hybrid condition was comparable to or better than either of the other two
conditions. Therefore, even though the dual task approach diminished ERD activity, the
supporting information available from a secondary brain signal (at least) made up for any
resulting classification reduction.

Distraction is a concern with any BCI system, especially in real-world settings. BCI users
must perform intentional mental tasks to accomplish goals. If the user is distracted by
external events or other tasks – including tasks required to generate additional brain signals
in a hybrid system – then BCI performance may decline. SSVEP activity is reduced when
subjects must divide activity among multiple tasks or different regions (Müller et al., 2003;
Toffanin et al., 2009). Similarly, work involving event-related potential (ERP) measures of
visual attention found that the amplitude of the P300 and other ERPs may diminish when
subjects must perform a secondary task, including a visual or motor task (Isreal et al., 1980;
Wickens et al., 1983; Sirevaag et al., 1989; Kok, 2001; Matthews et al., 2006, 2009).

However, our study found that simultaneous performance of an imagined movement task did
not impair classification of SSVEP activity. This apparent inconsistency with prior literature
may stem from the low “distraction quotient” of the secondary task in this study. The dual
task studies mentioned above, and other work, typically note that the destructive interference
introduced by a secondary task may be reduced if the secondary task involves a different
modality or processing resources, and/or seems easy or automatic to the user. Hybrid BCIs
should draw on existing principles of dual task integration and strive to minimize destructive
interference between the different tasks used to convey information. For example, a P300
BCI that required users to imagine pressing a button instead of counting might be difficult to
combine with an ERD BCI based on imagined hand movement. However, a P300 BCI based
on imagined counting might be difficult to combine with a BCI that requires users to
perform a math task, such as inMillán et al. (2004). Had we instructed subjects to imagine
movement observation (third-person imagery) instead of movement execution (first-person
imagery) (Neuper et al., 2005), they might have had more trouble focusing visual attention
on the LEDs, and thus exhibited worse SSVEP performance in the hybrid condition.
Subjects’ dual task performance, and the separability of their associated EEG patterns, might
improve with training.

Finally, the seventh and eighth analyses showed that the improvement in the hybrid
condition did not result from additional features and/or feature types. This result was not
surprising. The SSVEP BCI literature has confirmed results from earlier SSVEP research:
SSVEP activity is strongest over occipital sites at the fundamental frequency of the
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oscillating stimuli and its harmonics (Müller-Putz et al., 2005, 2008; Allison et al., 2008).
Therefore, we hypothesized that adding features from central sites at different frequencies
would not improve performance. Similarly, the ERD BCI literature, like earlier ERD
literature, showed that ERD activity resulting from imagined hand movement is strongest
around 9–13 Hz in central sites (Pfurtscheller et al., 1996; Pfurtscheller and Lopes da Silva,
1999).

The tasks described here could lead to a hybrid BCI system that combines ERD and SSVEP
BCIs in a particular fashion to improve accuracy. Many other task combinations and
potential hybrid BCIs are possible. Different tasks might increase the number of signals or
dimensions available, and/or reduce the time per selection, instead of increasing accuracy.
When subjects perform two tasks, the EEG activity elicited by either task might be weaker,
stronger, or about the same as the EEG activity that either task would have produced in
isolation. Novel task combinations might even yield constructive interference, such as by
helping subjects to focus on each task. For example, if the left LED were replaced with an
oscillating image of a hand grasping, then this visual image might help people focus more
strongly on left hand motor imagery. Furthermore, the grasping hand could change with the
user’s brain activity, thus providing a realtime feedback mechanism.

Hybrid BCIs should minimize the “distraction quotient” of the additional task by avoiding
task combinations that confuse subjects, overburden a particular sensory modality or mental
process, or create conflicts between automatic and controlled tasks (Stroop, 1935; Shiffrin
and Schneider, 1984). Subjects might perform two tasks sequentially rather than
simultaneously (Pfurtscheller, 2009; Pfurtscheller et al., 2010), which could substantially
reduce dual task interference. Indeed, it is impossible to rule out the possibility that subjects
were rapidly switching between ERD and SSVEP tasks in our current paradigm, and this
possibility also merits further study.

In conclusion, a hybrid BCI based on our current protocol and analysis methods might
improve accuracy and/or reduce the number of illiterate subjects relative to a comparable
simple BCI based on only one task and associated brain signal. This improvement would
likely vary across subjects. Hence, some subjects could benefit considerably from this
hybrid approach, possibly enough to attain proficiency even if their accuracy with a
comparable simple BCI is not adequate for effective communication. This hypothesis should
be explored with a BCI (that is, an online system with realtime feedback). We hope that our
work also encourages research with other hybrid BCI approaches.
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Fig. 1.
Overview of all eight analyses in this study.

Brunner et al. Page 14

J Neurosci Methods. Author manuscript; available in PMC 2012 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
(a) Computer screen and flickering LEDs (below screen) used in this study. (b) Timing of
each trial.
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Fig. 3.
(a) Results from the post hoc test in analysis 1. Shaded boxes mark significant differences,
and the “<” or “>” signs indicate if the condition on the left was smaller or greater than the
condition on top. White boxes indicate non-significant differences. (b) Results from the post
hoc test in analysis 4.
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Fig. 4.
Time course of classification accuracies obtained by a running classifier in 0.125 ms
segments. The plots show results for the three different smoothing windows 0.5 s, 1.0 s, and
1.5 s (from left to right). The three conditions ERD (red, dotted), SSVEP (blue, dashed), and
hybrid (magenta, solid) are shown; in addition, the artificial hybrid condition is plotted in
green (dash-dotted).
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Fig. 5.
Left: Error bars indicating the ERD performance in the ERD-only and hybrid runs (analysis
4). The crosses mark the mean classification accuracy, while the bars denote the 95%
confidence intervals around the means. Right: Classification performance in the three
conditions ERD-only, SSVEP-only, and hybrid (analysis 6).
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Fig. 6.
Grand average ERDS maps of the three conditions ERD (C3, C4), SSVEP (O1, O2), and
hybrid (C3, C4, O1, O2). The vertical line at second 2 denotes the occurrence of the cue. For
a detailed description, see main text.
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Table 1

The five conditions in the first analysis. HSD1, HSD2, and HSD3 differ only in the length of the smoothing
window. The HPC condition uses harmonic phase coupling, and the SFFS condition is identical to the analysis
in our initial paper.

Method Harmonics Smoothing window

HSD1 3 0.5 s

HSD2 3 1.0 s

HSD3 3 1.5 s

HPC 3–4 1.0 s

SFFS Variable 1.0 s
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Table 2

The seven conditions in the second analysis. The SFFS condition is identical to the analysis in our initial
paper.

Method ERD method SSVEP method

H1 ERD1 HSD1

H2 ERD2 HSD2

H3 ERD3 HSD3

H4 ERD1 HPC

H5 ERD2 HPC

H6 ERD3 HPC

SFFS SFFS SFFS
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