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Abstract
Background—Endogenous Granulocyte Macrophage Colony Stimulating Factor (GMCSF) is
released in rheumatoid arthritis patients, who are largely protected from Alzheimer’s disease
(AD). Introducing exogenous GMCSF into an AD mouse model reduced amyloid deposition by
55% and restored normal cognition. No published studies have examined exogenous GMCSF and
cognitive functioning in humans.

Objectives/Design—The goal of the current study was to examine the association between
receipt of GMCSF and cognitive functioning in patients receiving colony stimulating factors as
part of routine supportive care for hematopoietic cell transplantation (HCT).

Setting and Participants—Archived neuropsychological data were examined from a
longitudinal study of cognitive functioning in 95 patients receiving HCT at the Moffitt Cancer
Center.

Intervention—Receipt of GMCSF and/or Granulocyte Colony Stimulating Factor (GCSF) was
ascertained through patient billing records.

Measurements—Patients were assessed with a battery of neuropsychological tests prior to
transplant and 6 and 12 months post-transplant.
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Results—Patients treated with GMCSF and GCSF (n=19) showed significantly greater
improvement in total neuropsychological functioning (TNP) at 6 months than patients treated with
GCSF only (n=76) (p=.04). There was no group difference in TNP at 12 months (p=.24).
Improvement in TNP from baseline to 6 months post-HCT was significant in the GMCSF+GCSF
group (p=.01) but not the GCSF only group (p=.33). Improvement in TNP from baseline to 12
months post-HCT was significant in both groups (ps<.01).

Conclusion—Preliminary data from this study of humans receiving colony stimulating factors
suggest that receipt of GMCSF+GCSF was associated with greater cognitive improvement than
GCSF alone. Randomized controlled trials of the effects of GMCSF on cognitive functioning in
humans are warranted and underway to confirm these findings.

Keywords
Neoplasms; Alzheimer’s disease; Autoimmune diseases; Granulocyte-macrophage colony-
stimulating factor; Neurobehavioral manifestations; Hematopoietic cell transplantation

Introduction
Cognitive decline is a major societal concern due to the aging population of many
industrialized nations. Cognitive decline not only results from the aging process itself, but
also neurodegenerative diseases such as Alzheimer’s disease (AD) and some treatments for
other common age-related diseases, such as cancer [1–3]. Thus far, no effective
pharmacologic treatment that reverses cognitive decline has been developed for any
indication.

One potentially promising treatment is granulocyte macrophage colony stimulating factor
(GMCSF). Clinical interest in GMCSF developed out of the observation that patients with
Rheumatoid Arthritis (RA) are at 8-fold reduced risk of developing AD. This finding was
originally hypothesized to result from patients’ use of Non-Steroidal Anti-inflammatory
Drugs (NSAIDs) [4]. Although early findings showed inflammation proteins playing an
essential role in AD [5], NSAIDs trials in AD were largely negative [6]. Instead,
endogenous factors, specifically several colony stimulating factors (CSFs) released during
RA, might activate the innate immune system and thereby also reduce pathology and
promote neurogenesis and angiogenesis in the AD brain [7].

Experimental research in mice has found that a single injection of GMCSF or granulocyte
colony stimulating factor (GCSF) into one side of the brain reduced amyloid deposition by
up to 40% in 7 days compared to the vehicle injected side, with GMCSF being more
efficacious than GCSF [7,8]. These findings were confirmed by additional experiments
examining neuronal and behavioral outcomes after sub-cutaneous administration of GMCSF
or GCSF [7,8]. Compared to GCSF, GMCSF exhibited greater impact on cognition, which
returned to normal. These findings, along with two decades of excellent safety data from the
administration of recombinant human GMCSF (sargramostim, Leukine) to elderly
leukopenic patients suggests that CSFs, particularly GMCSF, should be tested in
randomized controlled trials as a treatment to halt or reverse cognitive impairment in
humans [7].

The aim of the present study was to provide preliminary observational data in support of
such trials. Because CSFs are routinely administered to cancer patients undergoing
autologous HCT, and HCT is associated with transient cognitive decline [9,10], this
population provides an ideal opportunity to study cognitive functioning related to receipt of
GMCSF. It was hypothesized that HCT patients treated with GMCSF would display greater
increases in cognitive functioning over time compared to patients treated with GCSF.
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Methods and Materials
We examined archived neuropsychological data from a longitudinal study of the cognitive
function of patients at Moffitt Cancer Center [11]. GMCSF and GCSF are used as part of
routine supportive care to mobilize stem cells for autologous HCT, speed engraftment after
autologous HCT, and/or treat neutropenia following allogeneic HCT. Choice of GMCSF
+GCSF versus GCSF alone was based solely on availability and/or reimbursement options
and was not related to clinical or sociodemographic factors or desire of the patient.

Following Institutional Review Board approval, patients were recruited between February
2001 and September 2004. To be eligible for the larger study, patients had to: 1) be between
18 and 75 years of age, 2) have completed at least 8 years of education, 3) be able to speak
and read English, 4) be scheduled to receive HCT, 5) plan to return to Moffitt for follow-up
assessments, and 6) be able to provide informed consent. Prior to stem cell mobilization and
HCT, patients completed a baseline neuropsychological assessment and provided
sociodemographic information [11]. Follow-up neuropsychological assessments were
conducted at 6 months and 12 months post-HCT. Neuropsychological tests are listed in
(Table 1). Patients who completed a baseline neuropsychological assessment and at least one
followup assessment were selected for the current analyses. Patients who received all
administrations of GMCSF and/or GCSF at a location other than Moffitt were excluded
from the analyses.

Data regarding receipt of GMCSF (i.e., sargramostim) and/or GCSF (i.e, filgrastim,
pegfilgrastim) were collected via patient billing records. For the current analyses, total
neuropsychological performance z scores (TNP) were calculated by summarizing the
cognitive domains of memory, executive functioning (i.e., complex cognition), and
attention. Scores indicate change in TNP from pre-transplant baseline. Kruskal-Wallis one-
way analyses of variance were conducted using all available data to compare between-group
changes in TNP by receipt of GMCSF at Times 2 and 3. Wilcoxon signed rank tests were
conducted using all available data to examine within-group changes in TNP by receipt of
GMCSF.

Results
Of 286 participants who signed consent and completed a baseline assessment, 182 had no
follow-up data, 4 had received GMCSF and/or GCSF elsewhere, and 5 had not received
GMCSF or GCSF, leaving a final sample of 95 participants. Of these, 89 participants had
baseline and 6 month follow-up data, 63 had baseline and 12 month data, and 57 had data at
all 3 assessment points. A total of 19 patients received GMCSF+GCSF, and 76 received
GCSF only. No patients received GMCSF only. Patients had a mean age of 51 (range 21–
72), 48% were female, 83% were Caucasian, and 32% had graduated from college. Most
patients were diagnosed with multiple myeloma or non-Hodgkin’s lymphoma (78%) and
received autologous HCT (83%) (Table 2).

Despite a high level of education (average of 13.89 years), participants displayed a
statistically significant cognitive deficit at baseline [11]. The results (Figure 1) show that the
GMCSF+GCSF group performed significantly better than the GCSF only group at 6 months
post-HCT (p=.04), but there were no group difference at 12 months post-HCT (p=.24).
Change in TNP from baseline to 6 months post-HCT was significant in the GMCSF+GCSF
group (p=.01) but not in the GCSF only group (p=.33). Change in TNP from baseline to 12
months post-HCT was significant in both groups (ps<.01). The TNP results were mainly
driven by the memory domain; at 6 months, the GMCSF group performed significantly
better than the GCSF only group on memory (p=.04), but there were no group differences in
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attention and executive function (ps>.48). At 12 months, there were no group differences in
any domain (ps>.26). From baseline to 6 months, the GMSCF group improved in memory
(p<.01) while the GCSF group did not improve in any domain (ps>.07). From baseline to 12
months, both groups improved in memory and executive function (ps≤.01).

Discussion
The current study examined observational data regarding the relationship between receipt of
CSFs and cognition in humans. Findings indicate that receipt of both GMCSF+GCSF was
associated with improved cognition in a variety of cancer patients receiving HCT, with the
inclusion of GMCSF being associated with greater cognitive improvement than GCSF
alone. The improvement in cognition was strongest in the memory domain at 6 months and
extended to the executive domain by 12 months.

Because study participants were not randomly assigned to receive GMCSF+GCSF versus
GCSF alone, and information on cognition of patients with the same diagnosis and who
received neither CSF were not available, the results cannot be interpreted as showing a
cause-effect relationship between receipt of CSF and cognitive improvement. Nevertheless,
because the choice of CSF was based on considerations independent of the disease status of
the patient, there is unlikely to be a consistent bias in drug choice that could explain the
observed differences in cognitive outcome in patients receiving both GMCSF+GCSF vs
GCSF alone. Because the sample size was small, we also cannot rule out the possibility that
results are due to sample variability. However, the positive findings in the current study are
combined with the experimental demonstration that CSFs improve cognition in animals
argue for additional research examining CSFs on cognition in humans. This research should
consist of well-powered randomized clinical trials to examine the causal effects of GMCSF
on cognition in clinical populations. A pilot trial is underway to assess the safety and
efficacy of GM-CSF in the treatment of Alzheimer’s disease.

The mechanism by which GMCSF and GCSF reverse cognitive deficits in mouse models of
AD, and possibly protect RA patients from AD, may be due to reducing amyloid deposition
or stimulating angiogenesis, neurite outgrowth, and/or neuronal survival [7,8]. Amyloid
reduction could result from induced phagocytosis by activated microglia/infiltrating
macrophages and neutrophils [7,8,12,13], with macrophages having greater phagocytic
ability [14], by induction of MMP-9 from infiltrating macrophages/neutrophils [15–17], by
reduced deposition, or by a combination of these mechanisms. In as much as the
inflammatory proteins α1-antichymotrypsin and/or apolipoprotein E are essential for
efficient amyloid formation in vitro and in vivo [5,18,19], it is interesting that GMCSF
reduces macrophages and/or microglia production of apoE by 3.5 fold, and of the ACT and
apoE-inducing cytokine Il-1 by 2 fold [20,21], and that cancer patients also over-express
IL-1 and IL-6 [22,23]. However, because amyloid deposition in normal subjects arises late
in life, the effect of CSF treatment in these cancer patients may be more related to other
targets of the innate immune system such as cell debris or glial scar or may arise from
induced angiogenesis or neurite outgrowth [7]. Because GCSF and GM-CSF are able to
cross the blood brain barrier, the mechanism of cognitive improvement could include both
peripheral and direct CNS activities 25–26. The finding that GMCSF + GCSF was
associated with greater cognitive improvement than was GCSF alone parallels the finding in
AD mice and may reflect the broader cell type recruitment induced by GMCSF, specifically
in the phagocytic monocyte microglial lineage [7,8].

In sum, the data presented here, although preliminary and retrospective, indicate that CSFs,
particularly GMCSF, should be further tested as cognition enhancers for a number of
different indications including cancer and neurodegenerative disease. The current data
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provided the basis for an FDA and IRB approved randomized clinical trial currently
underway in human AD patients to evaluate the safety and potential effects of GMCSF on
cognition. Thus far no serious adverse events have been recorded.
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Figure 1.
Total Neuropsychological Performance in Hematopoietic Cell Transplant Recipients
Receiving GMCSF+GCSF versus GCSF only. The GMCSF+GCSF group performed
significantly better at 6 months post-HCT (p=.04), but there were no group differences at 12
months post-HCT (p=.24). The GMCSF+GCSF group improved significantly from baseline
to 6 months post-HCT (p=.01) and from baseline to 12 months post-HCT (p<.01). The
GCSF group demonstrated no change from baseline to 6 months post-HCT (p=.33) but
significant improvement from baseline to 12 months post-HCT (p<.01).
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Table 1

Neuropsychological Tests Administered.

Cognitive domain Neuropsychological Tests

Memory CVLT-II [26]

WMS-III Logical Memory subtest [27]

WMS-III Visual Reproduction subtest [27]

Executive function WAIS-R Digit Symbol [28]

Trailmaking Test [29]

COWA [30]

Stroop Neuropsychological Screening

Test [31]

Attention CPT – II [32]

Note: COWA: Controlled Oral Word Association Test, CPT-II: Connors’ Continuous Performance Test – II, CVLT-II: California Verbal Learning
Test – II, WAIS-R: Wechsler Adult Intelligence Scale – Revised, WMS-III: Wechsler Memory Test - III.
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Table 2

Categories of gender, race, diagnosis, transplant type need to be moved to the left in a new column so that the
numbers correspond to the column headings of GMCSF+GCSF and GCSF only.

GMCSF+GCSF (n=19) GCSF Only (n=76) p

Age: Mean (SD) 58.06 (8.22) 50.41 (11.90) .01

Years of Education: Mean (SD) 14.11 (2.56) 14.00 (2.96) .59

Estimated Premorbid IQ: Mean (SD) 105.05 (9.22) 105.80 (11.22) .69

Baseline Functional Status ECOG 1.32 (.89) 1.05 (.80) .27

Gender .44

Female 11 (58%) 35 (46%)

Male 8 (42%) 41 (54%)

Race .73

Caucasian 15 (79%) 64 (84%)

Non-Caucasian 4 (21%) 12 (16%)

Diagnosis .09

Multiple Myeloma 17 (89%) 51 (67%)

Acute Myelogenous Leukemia 1 (5%) 3 (4%)

Myelodysplastic Syndrome 0 (0%) 2 (3%)

Acute Lymphoblastic Leukemia 0 (0%) 1 (1%)

Breast Carcinoma 1 (5%) 5 (7%)

Chronic Lymphocytic Leukemia 0 (0%) 1 (1%)

Chronic Myelogenous Leukemia 0 (0%) 2 (3%)

Myeloproliferative neoplasm 0 (0%) 1 (1%)

Hodgkin’s Lymphoma 0 (0%) 2 (3%)

Non Hodgkin’s Lymphoma 0 (0%) 6 (8%)

Aplastic Anemia 0 (0%) 2 (3%)

Transplant type .18

Autologous 18 (95%) 61 (80%)

Allogeneic 1 (5%) 15 (20%)

Note: Kruskal-Wallace one way analyses of variance were used to compare GMCSF+GCSF, and GCSF only groups on age, years of education,
estimated pre-morbid IQ, and ECOG. Fisher’s exact tests were used to compare GMCSF+GCSF and GCSF only groups on gender, race, diagnosis,
and transplant type. Diagnosis was coded as Multiple Myeloma versus other.
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Table 3

Changes in Cognitive Domains from Baseline to 6 and 12 Months Post-HCT.

GMCSF+GCSF GCSF Only

6 Months 12 Months 6 Months 12 Months

TNP .19 (.27) .34 (.43) .03 (.30) .24 (.33)

Memory .45 (.54) .48 (.63) .11 (.53) .40 (.49)

Executive Function .23 (.59) .53 (.72) .12 (.62) .37 (.64)

Attention −.10 (.46) .02 (.40) −.13 (.49) −.04 (.49)

Note: unit of change is standard deviations. HCT: Hematopoietic cell transplant, TNP: total neuropsychological performance
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