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Abstract

Integrating high-throughput data obtained from different molecular levels is essential for understanding the mechanisms of
complex diseases such as cancer. In this study, we integrated the methylation, microRNA and mRNA data from lung cancer
tissues and normal lung tissues using functional gene sets. For each Gene Ontology (GO) term, three sets were defined: the
methylation set, the microRNA set and the mRNA set. The discriminating ability of each gene set was represented by the
Matthews correlation coefficient (MCC), as evaluated by leave-one-out cross-validation (LOOCV). Next, the MCCs in the
methylation sets, the microRNA sets and the mRNA sets were ranked. By comparing the MCC ranks of methylation,
microRNA and mRNA for each GO term, we classified the GO sets into six groups and identified the dysfunctional
methylation, microRNA and mRNA gene sets in lung cancer. Our results provide a systematic view of the functional
alterations during tumorigenesis that may help to elucidate the mechanisms of lung cancer and lead to improved
treatments for patients.
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Introduction

Cancer is a systems biology disease [1] that involves the

dysregulation of multiple pathways at multiple levels [2]. High-

throughput technologies, such as genomic sequencing and

transcriptomic, proteomic and metabolomic profiling, have

provided large quantities of experimental data. However, systems

biology requires not only new high-throughput ‘‘-omics’’ data-

generation technologies but also integrative analysis methods that

may shed light on the potential mechanisms of complex diseases.

Lung cancer is one of the leading causes of cancer death

worldwide [3]. There are currently known genetic, epigenetic,

transcriptomic, proteomic, metabolomic, and microRNA markers

of lung cancer [4]. Because epigenetic changes occur early during

tumorigenesis, methylation markers should be considered [4]. The

protein is the final, functional form of the genetic information;

therefore, proteomic markers are also important. Transcriptomic

markers are easy to measure, and mRNA levels are frequently

used as a proxy for protein abundance [5]. MicroRNA, as an

important regulatory contributor, is also an excellent lung cancer

biomarker [6,7]. Whether a methylation marker, mRNA marker,

or microRNA marker is considered, these markers function by

affecting biological pathways or networks. The functional path-

ways are the common bridges between various markers and the

disease.

Currently, there are several studies on multi-dimensional data

integration [8–11]. Most of them were based on regression

between different dimensions [10] and require each sample to

have multiple level data [11]. The dysfunctional pathways were

identified by enrichment analysis of aberrant genes [9].

In this study, we directly analyze dysfunctions of non-small-cell

lung cancer (NSCLC) by comparing the functional sets of

methylation, microRNA and mRNA data between lung cancer

tissues and normal lung tissues. Each functional set corresponds to

one Gene Ontology (GO) [12] term. Three sets of this functional

unit are defined: the methylation set, the microRNA set and the

mRNA set. The Matthews correlation coefficient (MCC), evalu-

ated by leave-one-out cross-validation (LOOCV), is used to

represent the discriminating ability of each gene set. The MCC

ranks of each methylation set, microRNA set and mRNA set are

analyzed. Six groups of GO sets are classified, and 20 dysfunc-

tional methylation, microRNA and mRNA gene sets in lung

cancer are identified. These dysfunctional sets characterize the

processes of tumorigenesis. With an accurate characterization of

tumorigenesis, we may better understand the mechanisms of lung

cancer and improve the early diagnosis, treatment efficiency

evaluation, and prognosis of lung cancer.
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Materials and Methods

Data sets
We downloaded the methylation profiles of 1,413 genes in 57

NSCLC patients and 52 control samples [13] from GEO (Gene

Expression Omnibus) with the accession number GSE16559. The

microRNA expression profiles of 549 microRNAs in 187 NSCLC

patients and 188 control samples [14] were retrieved from GEO

with the accession number GSE15008. The mRNA gene

expression profiles of 19,700 genes in 46 NSCLC patients and

45 control samples [15] were obtained from GEO with the

accession number GSE18842.

Since the methylation data, microRNA data and mRNA data

were obtained from different NSCLC studies, we compared the

clinical information of patients from these three studies. The two

kinds of clinical information that were given in at least two studies

were age and grade of differentiation. The clinical information

from these three studies is shown in Table 1. The average age of

patients from the methylation study is 68.2 and their standard

deviation is 11.4; meanwhile, the average age of patients from the

microRNA study is 59.9 and the standard deviation is 9.8. The

ages of patients in these two studies are similar. The percentages of

well-, moderately- and poorly-differentiated cancer patients in the

microRNA study and the mRNA study

were52:0 : 41:9 : 6:1and50:0 : 43:5 : 6:5, respectively. The distri-

butions of grades of differentiation in these two studies were very

similar. Based on the available clinical information on these

NSCLC patients, we think that these three data sets may represent

some common dysfunctions of NSCLC.

The target genes of microRNAs
We define the target genes of the microRNAs to be those that

were predicted by at least three out of the following six software

tools: miRBase [16] (http://microrna.sanger.ac.uk/targets/v5/),

TargetScan [17] (http://www.targetscan.org/), miRanda [18]

(http://www.microrna.org/microrna/), TarBase [19] (http://

diana.cslab.ece.ntua.gr/tarbase/), mirTarget2 [20] (http://

mirdb.org/miRDB/download.html), and PicTar [21] (http://

pictar.mdc-berlin.de/). Table S1 gives the microRNA - target

gene pairs that are predicted by at least three tools.

The GO gene sets for methylation, microRNA and mRNA
For each GO term, we define three gene sets to represent it:

first, the methylation gene set, which consists of the genes that are

annotated to the GO term and for which the methylation level has

been measured; second, the microRNA gene set, which consists of

the microRNAs that have target genes annotated to this term; and

third, the mRNA gene set, which consists of all the genes

annotated to this term.

The discriminating ability of gene sets
We evaluated the discriminating ability of gene sets by

constructing a prediction model. First, the Nearest Neighbor

Algorithm (NNA) [5,22–30] was applied to build the prediction

model. Next, the prediction models were tested using LOOCV

[5,22–31]. Finally, the Matthews correlation coefficient (MCC)

[26,30] of LOOCV was used as the measurement of the gene set’s

discriminating ability.

The NNA [5,22–30] is a widely used machine learning method.

The NNA makes its prediction by comparing the distances

between the query sample and the samples with known classes, i.e.,

the lung cancer samples or control samples. The query sample was

predicted to have the same class as its nearest neighbor, i.e., the

sample with known class that has the smallest distance. In this

analysis, the distance between two samples A~(a1,a2,:::,an) and

B~(b1,b2,:::,bn) was defined as one minus the cosine similarity

between the two samples [5,23–27,30,32–34]:

D(A,B)~1{

Pn
i~1

aibiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

a2
i

s ffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

b2
i

s ð1Þ

The NNA program can be downloaded from http://pcal.

biosino.org/NNA.html.

During LOOCV [32,35,36], each sample in the benchmark

dataset will be chosen as the test set once and tested by the

prediction model trained by the rest of the samples.

The Matthews correlation coefficient (MCC) is a balanced

measurement of prediction performance that considers both

sensitivity and specificity [26,30]. It is calculated using the

following formula:

MCC~
TP|TN-FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)|(TNzFP)|(TPzFP)|(TNzFN)
p ð2Þ

in which TP, TN, FP and FN are the numbers of true lung cancer

samples, true control samples, false lung cancer samples and false

control samples, respectively.

Classification of gene sets based on their dysfunctional
level: methylation, microRNA or mRNA

After we calculated the MCC of each gene set at each level, we

ranked the gene sets of each level based on their MCCs and

compared the ranks of the three levels, methylation, microRNA

and mRNA, in each gene set. With certain values proving to be

equal, their ranks were replaced by their mean ranks. As an

example of a GO term, if its methylation level had changed

between normal and cancer tissue, but its microRNA and mRNA

Table 1. Clinical information for NSCLC patients in three data sets.

Methylation data microRNA data mRNA data

Age: Mean (Standard Deviation) 68.2 (11.4)s 59.9 (9.8) -

Differentiation: Well, % - 52.0 50.0

Differentiation: Moderate, % - 41.9 43.5

Differentiation: Poor, % - 6.1 6.5

doi:10.1371/journal.pone.0043441.t001

Dysfunctions in Lung Cancer

PLOS ONE | www.plosone.org 2 August 2012 | Volume 7 | Issue 8 | e43441



levels had not changed, it was defined as a methylation

dysfunctional GO gene set. Similarly, we can define other types

of GO gene sets. In total, we defined six groups of gene sets, one

for each possible rank ordering of methylation, microRNA and

mRNA.

The work flow of dysfunctional methylation, microRNA
and mRNA gene set analysis

Our strategy of dysfunctional methylation, microRNA and

mRNA gene set analysis is demonstrated in Figure 1. First, for

each GO term, we defined three sets: the methylation set, the

microRNA set and the mRNA set. Next, we calculated each gene

set’s MCC, as evaluated by LOOCV. We ranked the MCCs in the

methylation sets, the microRNA sets and the mRNA sets. Next, we

compared the MCC ranks of methylation, microRNA and mRNA

in each GO term and classified the GO sets into six groups based

on these ranks. Finally, we identified the dysfunctional methyla-

tion, microRNA and mRNA gene sets in lung cancer.

Results and Discussion

The GO gene sets of methylation, microRNA and mRNA
We cross-referenced the three data sets that measured the

methylation, microRNA and mRNA of lung cancer tissues and

control tissues with GO and found 4,381 GO gene sets that have

methylation, microRNA and mRNA data. The three levels of gene

sets for these 4,381 GO terms were compiled as follows: the

methylation set for each GO term consists of the genes that had

methylation data and were annotated to this term, the microRNA

set consists of the microRNAs that had target genes annotated to

this term, and the mRNA set consists of all of the genes that were

annotated to this term. The 4,381 GO sets of mRNA, microRNA

and methylation can be found in Dataset S1, Dataset S2 and

Dataset S3, respectively.

The discriminating ability of the methylation, microRNA
and mRNA gene sets

We measured the ability of the gene sets to discriminate

between cancer and normal tissue using the Matthews correlation

coefficient (MCC) of the NNA prediction model evaluated by

LOOCV. We compared the MCCs of methylation, microRNA

and mRNA. Figure 2 shows the MCC distributions of the

Figure 1. The work flow of dysfunctional methylation, microRNA and mRNA gene set analysis. First, for each Gene Ontology (GO) term,
we defined three gene sets: the methylation set, the microRNA set and the mRNA set. Next, we calculated the Matthews’s correlation coefficient
(MCC), as evaluated by leave-one-out cross-validation (LOOCV), for each gene set. Next, we ranked the MCCs in the methylation sets, the microRNA
sets and the mRNA sets, and we compared the MCC ranks of methylation, microRNA and mRNA for each Gene Ontology (GO) term and classified the
GO sets into six groups. Finally, we identified the dysfunctional methylation, microRNA and mRNA gene sets in lung cancer.
doi:10.1371/journal.pone.0043441.g001

Dysfunctions in Lung Cancer
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methylation, microRNA and mRNA gene sets. The mean MCCs

of the mRNA, microRNA and methylation gene sets are 0.897,

0.702 and 0.561, respectively. The one-side-greater t-test p-value

for the mRNA and microRNA sets is less than 2.2e-16. The one-

side-greater t-test p-value for the microRNA and methylation sets

is also less than 2.2e-16. These results indicate that the MCCs of

the mRNA sets are significantly greater than the MCCs of the

microRNA sets, which are, in turn, significantly greater than the

MCCs of the methylation sets.

Classification of gene sets based on their dysfunctional
level: methylation, microRNA or mRNA

By comparing the MCC ranks of the gene sets at the

methylation, microRNA or mRNA level, we defined six groups

of gene sets. There are 960 gene sets in which methylation rank ,

microRNA rank , mRNA rank; 638 gene sets in which

methylation rank , mRNA rank , microRNA rank; 721 gene

sets in which microRNA rank , methylation rank , mRNA rank;

684 gene sets in which microRNA rank , mRNA rank ,

methylation rank; 584 gene sets in which mRNA rank ,

methylation rank , microRNA rank; and 794 gene sets in which

mRNA rank , microRNA rank , methylation rank. Table S2
shows the methylation, microRNA and mRNA dysfunction groups

of the 4,381 GO gene sets.

The dysfunctional gene sets in lung cancer
We ranked the dysfunctional gene sets in lung cancer based on

the summed MCC ranks of methylation, microRNA and mRNA.

The top 20 dysfunctional gene sets in lung cancer shown in

Table S3 were analyzed. These 20 dysfunctional gene sets in lung

cancer are GO:0048585 (negative regulation of response to

stimulus), GO:0007517 (muscle organ development),

GO:0048514 (blood vessel morphogenesis), GO:0051146 (striated

muscle cell differentiation), GO:0001525 (angiogenesis),

GO:0045595 (regulation of cell differentiation), GO:0007162

(negative regulation of cell adhesion), GO:0060191 (regulation of

lipase activity), GO:0006275 (regulation of DNA replication),

GO:0061061 (muscle structure development), GO:0022008 (neu-

rogenesis), GO:0008543 (fibroblast growth factor receptor signal-

ing pathway), GO:0035107 (appendage morphogenesis),

GO:0035108 (limb morphogenesis), GO:0001568 (blood vessel

development), GO:0005576 (extracellular region), GO:0050793(

regulation of developmental processes), GO:0010648 (negative

regulation of cell communication), GO:0023057 (negative regula-

tion of signaling), and GO:0019216 (regulation of lipid metabolic

processes). Many of these GO terms have been reported to be

associated with lung cancer. We analyze several GO sets as

examples.

GO:0045595 (regulation of cell differentiation, ranked 6th)

and GO:0050793 (regulation of developmental processes,

ranked 17th). Developmental processes and cell differentiation

are regulated by a series of similar genes in normal tissues.

Therefore, changes in these genes are frequently associated with

carcinogenesis. Naveen Babbar et al. reported that TNFa can

activate NFkB signaling in NSCLC cells [37], which results in

decreased cell growth and increased apoptosis [37]. A role for

FGF/FGFR family members has also been indicated in lung

cancer. For example, frequent amplification of FGFR1 was

identified in human squamous cell lung cancer [38]. Additionally,

somatic mutations in several of these genes were identified in lung

carcinomas, including FGFR1, FGFR2, and FGF2/10 [39–42].

Usually, tumor suppressor genes, such as P53, CDKN2A/B, and

STK11, are downregulated, and oncogenes (such as KRAS and

ERBB2/4) are upregulated in lung cancer [40]. MicroRNAs are

involved in lung cancer due to the epigenetic changes that occur in

cancer cells. The low expression of miR-200 and miR-205 is

associated with the epithelial-mesenchymal transition (EMT) and

stem-cell-like properties of cancer cells and promotes invasion and

translocation [43–45]. The enforced expression of miR-29 family

members in lung cancer cells can restore normal patterns of DNA

methylation, induce the re-expression of methylation-silenced

tumor suppressor genes, such as FHIT and WWOX, and inhibit

tumorigenicity [46].

GO:0022008 (neurogenesis, ranked 11th). Several genes

annotated to this GO term are associated with acantha and brain

metastases; for example, mutations in activating epidermal growth

factor receptor (EGFR) were found in many lung cancer patients

[47]. Human lung cancer features extensive alterations of

microRNA expression that may deregulate cancer-related genes;

for example, hsa-miR-125a-5p silencing unregulated ROCK1,

miR-34b methylation caused c-Met overexpression, and miR-200c

was silenced by methylation and downregulated TCF8 and E-

cadherin, which resulted in cancer invasion and deterioration [48–

50]. Demethylation and mutation of genes (ERBB2, KRAS) can

also cause carcinogenesis [51,52]. Methylation of the Death-

associated protein kinase (DAPK) promoter and the opioid

binding protein/cell adhesion molecule-like gene (OPCML) has

been found in both adenocarcinoma and squamous-cell carcinoma

[53,54].

GO:0005576 (extracellular region, ranked

16th). Epithelial Mesenchymal Transition (EMT) is the main

process required for tumor invasion and translocation. Mutations

in TIMP3, LAMA/B/C, TMEFF2, CDH13 and other genes are

involved in lung cancer deterioration [55]. IL-8 can initiate an

airway epithelial signaling pathway, and deregulation of this gene

may cause tobacco-related lung cancer [56]. Five microRNAs

(hsa-miR-155, hsa-miR-17-3p, hsa-let-7a-2, hsa-miR-145, and

hsa-miR-21) are seen to be expressed differently in lung cancer

Figure 2. The MCC boxplot of methylation, microRNA and
mRNA gene sets. The mean MCCs of the mRNA, microRNA and
methylation gene sets were 0.897, 0.702 and 0.561, respectively. The
MCCs of the mRNA sets were significantly greater than the MCCs of the
microRNA sets with a one-sided t-test p-value of less than 2.2e-16, and
the MCCs of the microRNA sets were, in turn, significantly greater than
the MCCs of the methylation sets with a one-sided t-test p-value of less
than 2.2e-16.
doi:10.1371/journal.pone.0043441.g002

Dysfunctions in Lung Cancer
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tissues versus the corresponding noncancerous lung tissues. Among

these microRNAs, let-7a can regulate RAS activity [57].

Epigenetic activation of human kallikrein 13 (KLK13) enhances

the malignancy of lung adenocarcinoma by promoting N-cadherin

expression and laminin degradation [58]. Recently, MMP1 was

reported to be associated with lung cancer. The -16071G-2G

polymorphism of MMP1 results in transcriptional up regulation

[58]. X Xiang et al. reported that the stable expression of miR-155

significantly reduces the aggressiveness of tumor cell dissemination

by preventing the EMT of tumor cells in vivo [59]. Furthermore,

miR-155 directly suppresses the expression of the transcription

factor TCF4, which is an important regulator of EMT [59].

The high frequency genes and microRNAs in the top
dysfunctional gene sets

We calculated the frequency of genes or microRNAs in the top

300 dysfunctional gene sets. The genes in either mRNA or

methylation gene sets with frequency higher than 50 were defined

as high frequency genes. Similarly, the high frequency microRNAs

were defined as microRNAs that have frequency higher than 50 in

the top 300 dysfunctional gene sets. The high frequency genes and

microRNAs are given in Table S4.

We tested the discriminating ability of these high frequency

genes in an independent data set which includes 58 lung cancer

samples and 58 adjacent normal samples. The independent data

set was downloaded from GEO with the accession number

GSE32863. It was found that the high frequency genes can

perfectly differentiate the lung cancer tissues from adjacent normal

tissues. The prediction MCC was 1, which means that all samples

were correctly classified in their actual group, tumor or normal.

The heatmap of the high frequency genes and the tumor/normal

samples is shown in Figure 3. The tumor and normal samples

were clearly differentiated by the high frequency genes.

We did a hypergeometric test [5,24,25,32,36] to investigate

whether the high frequency genes are significantly overlapped with

the KEGG pathway ‘‘hsa05223 Non-small cell lung cancer’’. The

hypergeometric test p value was a highly significant 1.61E-26. This

Tumor
Normal

5

0

5

10

Figure 3. The heatmap of the high frequency genes and the tumor/normal samples. The green bars indicate the tumor samples and the
blue bars indicate the normal samples. The tumor and normal samples were clearly differentiated by the high frequency genes.
doi:10.1371/journal.pone.0043441.g003
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result suggests that many higher frequency genes are known

‘‘hsa05223 Non-small cell lung cancer’’ genes.

In Figure 4, we highlighted the high frequency genes we

discovered in the KEGG pathway ‘‘hsa05223 Non-small cell lung

cancer’’. Many hub genes of the KEGG pathway ‘‘hsa05223 Non-

small cell lung cancer’’ were high frequency dysfunctional genes,

such as KRAS, EGFR, ERBB2, CDKN2A and RB1. And the hub

high frequency genes tend to be dysfunctional at both the

methylation and mRNA levels. It is known that KRAS can initiate

tumorgenesis by affecting the endodermal progenitor [60]. The

copy number alterations of KRAS are strongly associated with

clinical outcomes of lung cancer patients [61]. EGFR is a receptor

of the epidermal growth factor family. Binding of EGFR to a

ligand will induce cell proliferation [62]. EGFR mutations are very

common in lung cancer [63] and are associated with prognosis of

NSCLC [64]. They can alter the signaling cascades of NSCLC

[65]. ERBB2 is mutated in 4% of NSCLC [66] and its

polymorphisms increase the risk of lung cancer [67]. Methylation

of CDKN2A occurs more frequently in NSCLC tissues than in

non-tumor tissues [68]. CDKN2A is involved in the p16/pRb/

Figure 4. The high frequency genes and microRNAs of the KEGG pathway ‘‘hsa05223 Non-small cell lung cancer’’. The green nodes
denote high frequency microRNAs. The red nodes denote high frequency genes in both methylation and mRNA dysfunctional sets. The yellow nodes
indicate high frequency genes in mRNA dysfunctional sets only. There is no specific high frequency gene in methylation dysfunctional sets. The white
nodes indicate non-high frequency genes. The black edges show interactions from the KEGG pathway ‘‘hsa05223 Non-small cell lung cancer’’. The
green edges show regulation by high frequency microRNAs on their target genes.
doi:10.1371/journal.pone.0043441.g004

Dysfunctions in Lung Cancer
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cyclin-D1 pathway [69]. RB1 can regulate cell proliferation,

differentiation, and apoptosis in human NSCLC [70]. In advanced

NSCLC patients, the frequency of Rb loss is high [71].

In Figure 4, there are some high frequency microRNAs, such

as hsa-miR-495, hsa-miR-96, has-miR-106a, has-miR-137, has-

miR-372, hsa-miR-183, hsa-miR-182, hsa-miR-203, hsa-miR-

15a, hsa-miR-15b and hsa-miR-7. hsa-miR-495 regulates two

high frequency dysfunctional genes, STK4 and PRKCB. It was

reported that miR-495 is upregulated in KRAS-positive NSCLC

[72]. hsa-miR-96 is downregulated in NSCLC [73]. has-miR-106a

is related to lung cancer patient survival [56]. Patients with high

expression of has-miR-106a tend to have a worse prognosis [56].

has-miR-137 and has-miR-372 are both upregulated in NSCLC

and their expression levels are associated with survival and relapse

in NSCLC patients [74]. has-miR-183 is a potential metastasis-

inhibitor of lung cancer and can regulate migration and invasion

genes [75]. hsa-miR-183 and hsa-miR-182 were reported as the

most differentially expressed microRNAs between lung cancer

tissues with adjacent normal tissues [76]. hsa-miR-203 is

upregulated in lung cancer tissues [56]. hsa-miR-15a is frequently

deleted or down-regulated in NSCLC [77] and its expression

inversely correlates with the expression of cyclin D1[77]. hsa-miR-

15 b is differentially expressed in tumor necrosis factor (TNF)-

related apoptosis-inducing ligand (TRAIL) resistant NSCLC cells

[73]. hsa-miR-7 is downregulated in lung cancer and it can

regulate epidermal growth factor receptor signaling [78].

The advantages and limitations of our methods
Obtaining a systematic understanding of pathological change is

an essential problem in medical and pharmaceutical studies.

Tumorigenesis involves alterations to many proteins, molecules

and pathways. Eventually, however, all these changes cause cancer

through functional effects. In this study, we used GO to describe

biological functions and stratified the functions into three levels:

methylation, microRNA and mRNA. In each level, we calculated

and ranked the discriminating ability of the functional set for this

level that was measured by the MCC correctly classifying cancer

and normal tissues. For each functional set, we compared the

MCC rank of each level, and we subsequently grouped the

functional sets into six patterns based on the relationships of the

MCC ranks of the different levels. Some functional sets may

function at the methylation level; others may function at the

microRNA level. Taking all three levels into consideration, we

ranked the functional sets based on their overall ranks on the three

levels. The overall ranking of the functional sets appears

reasonable and is consistent with several published studies.

There are still several limitations to this research. Firstly, the

methylation, microRNA and mRNA data for lung cancer and

normal tissues are obtained from different studies, which may

affect the results. Ideally, all of the data would be derived from the

same study. To partially overcome this problem, we used the

MCC rank, instead of the MCC itself, when comparing among the

different levels. Secondly, the links between microRNAs and their

target genes are based on predictions. Due to the low proportion of

experimentally confirmed microRNA and target gene pairs, we

used the microRNA and target gene pairs that were predicted by

at least three popular microRNA target-gene predictors. Thirdly,

not all functional sets were analyzed. The methylation, microRNA

and mRNA data we used were generated with microarray

technology. Certain genes or microRNAs were not measured,

especially with respect to the methylation status of genes. With the

development of sequencing technology and sequence capture

technology, increasing numbers of genes can be measured,

allowing us to analyze more functional sets and obtain a more

comprehensive view of tumorigenesis.

Overall, our methods provide a means of performing ‘‘multi-

omics’’ dysfunctional set analysis, which could be useful in the

study of complex diseases. Our results yield a systematic view of

tumorigenesis that may shed light on the diagnosis and prognosis

of lung cancer.
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