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Abstract

Arsenic toxicity has been studied for a long time due to its effects in humans. Although epidemiological studies have
demonstrated multiple effects in human physiology, there are many open questions about the cellular targets and the
mechanisms of response to arsenic. Using the fission yeast Schizosaccharomyces pombe as model system, we have been
able to demonstrate a strong activation of the MAPK Spc1/Sty1 in response to arsenate. This activation is dependent on
Wis1 activation and Pyp2 phosphatase inactivation. Using arsenic speciation analysis we have also demonstrated the
previously unknown capacity of S. pombe cells to reduce As (V) to As (III). Genetic analysis of several fission yeast mutants
point towards the cell cycle phosphatase Cdc25 as a possible candidate to carry out this arsenate reductase activity. We
propose that arsenate reduction and intracellular accumulation of arsenite are the key mechanisms of arsenate tolerance in
fission yeast.
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Introduction

Arsenic is a metalloid which is present in the environment both

naturally and anthropogenically. As in the case of other metals and

metalloids, such as cadmium and chromium, arsenic has been

shown to be a health risk at low concentrations. In nature, arsenic

is presented in many different oxidation states, being the inorganic

ones, arsenite, As (III), and arsenate, As (V), the two main forms.

While arsenite is presented mainly in anaerobic and alkaline

environments, arsenate is more typical of aerobic and acid

environments [1].

According to the World Health Organization (WHO), arsenic

poisoning is one of the major health problems in several undeveloped

countries, although cases have occurred in countries with a higher

level of development [2]. In some areas of countries such as India and

Bangladesh, arsenic poisoning is especially worrying and is usually

caused by groundwater contamination, reaching levels above 10 mg/

L which is the limit established as safe by the United States

Environmental Protection Agency (EPA). There is a clear evidence of

an association between the intake of arsenic and an increased risk of

several types of cancer, miscarriages [3], as well as problems in

cognitive development in growth stages [4,5,6].

At intracellular level, both arsenate and arsenite work differently.

For instance, arsenate can enter the cell via a phosphate transporter

due to its structural similarity to phosphate. For the same reason,

arsenate can also alter several biochemical reactions such as cellular

respiration. On the other hand, several reports have described the

capacity of arsenite to damage DNA since arsenite inhibits base-

and nucleotide-excision repair mechanisms [7,8,9,10].

Throughout the evolution, several mechanisms of response have

been developed by organisms against different stressors. For

instance, in the fission yeast Schizosaccharomyces pombe, the stress

response is mainly directed by MAPKs and more specifically by

the Spc1/Sty1 pathway. Spc1 is analogous to mammalian p38,

and is activated when different types of stress such as UV

radiation, heat shock and hyperosmolarity are present. In

addition, it has been described that p38-like pathways are

activated in response to arsenic stress in both S. pombe and

Saccharomyces cerevisiae [11,12].

Regarding arsenate, several reports have shown that MAPK

pathway is not the only mechanism of response used by eukaryotic

organisms against arsenate. Some organisms can reduce arsenate

to arsenite through the activity of arsenate reductases. Arsenite

resulting from this reduction is removed from the cell through

specific transporters (Escherichia coli Arsb, S. cerevisiae Acr3p, etc).

This reducing capacity has been described in unicellular

organisms, such as Leishmania major and S. cerevisiae, and

pluricellular organisms, such as the fern Pteris vittata and human

[13,14,15,16]. In the latter, arsenic reduction is carried out by the

cell cycle phosphatase Cdc25, which also regulates G2/M

transition by activating dephosphorylation of CDKs (cyclin

dependent kinases) [17].
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Studies about the mechanisms of stress response, signal

transduction and cell cycle regulation using model organisms

such as the yeasts S. pombe and S. cerevisiae have provided an

important framework for investigating analogous mechanisms in

higher eukaryotes.

In this report, we will attempt to unravel the intracellular

mechanisms established in S. pombe in response to arsenic, more

specifically to its pentavalent form. The conclusions drawn from

this paper, taken in conjunction with previous works, could be

useful to achieve a deeper understanding of the mechanisms of

arsenic toxicity and detoxification in higher eukaryotes.

Materials and Methods

Strains and Media
All strains of Schizosaccharomyces pombe used in this study are listed

in table 1. All different strains were cultivated in yeast extract

medium (YES), at a temperature of 30uC with shaking. Deionized

water was used to prepare the media. Media was sterilized in

autoclave at 1 atm/121uC for 15 minutes. A spectrophotometer

Spectronic 20D (Milton and Roy Company, France) was used to

determine the number of cells of each culture (1 OD is about

107 cells/mL).

Viability Assays
For plate survival assays, different concentrations of both

arsenate and arsenite (25 mM to 100 mM) were added depending

on the experiment. Once the culture reached 0.3 OD, serial

dilutions of yeast cultures were spotted in plates. Plates were

incubated at 30uC for 48–72 hours.

Stress Treatment of Cells
Cells were cultivated up to 0.3–0.5 OD as explained before and

arsenate was added at a final concentration of 100 mM. For

immunoblotting analysis and mRNA extraction and quantifica-

tion, cells were harvested by either filtration or centrifugation,

respectively, and immediately stored at 280uC.

Immunoblotting
To purify the Spc1:HA6His protein we followed previously

described protocol [18]. Purified Spc1:HA6His protein was loaded

in SDS-PAGE and phosphorylation detected by immunoblotting.

Phosphorylation was detected using anti-phospho p38 MAPK

antibody (Cell Signaling Technology, USA) and the amount of

Spc1:HA6His loaded was measured with an anti-HA antibody

(Amersham, USA). Immunoreactive bands were revealed with

horseradish peroxidase-conjugated secondary antibodies (Amer-

sham, USA). Cdc25:myc was detected using anti-myc epitope

antibodies (Cell Signaling Technollogy, USA) and actin with anti-

actin antibodies (MP Biomedicals, USA).

mRNA Extraction and Quantification
Cells were harvested by centrifugation at OD = 0.5. Both

mRNA extraction and purification were performed as previously

described [19]. To quantify the amount of Cdc25 mRNA, total

RNA was used as template for reverse transcription and

preparation of total cDNA (Reverse Transcription System,

Promega Corporation, USA). Finally, the S. pombe cdc25 gene

transcription level was determined by a quantitative PCR (qPCR)

using that cDNA as template.

Arsenic Speciation Studies
Arsenic speciation studies were performed as described in [20].

An ultrasonic homogenizer, model SONOPLUS HD 2200

(Bandelin, Germany), equipped with a converter UW 2200, SH

213 G horn as amplifier and sonotrode MS 73 (3 mm titanium

microtip) was used for cell extracts treatment. A centrifuge model

5804 Eppendorf (Hamburg, Germany) was used for phase

separation after the extraction step.

Table 1. Genotypes of Schizosaccharomyces pombe strains used in this work.

Strain Name Genotype Source

PR109 h- leu1-32 ura4-D18 Paul Russell’s laboratory

KS1366 h+ leu1-32 ura4-D18 spc1::ura4 Paul Russell’s laboratory

JM544 h- leu1-32 ura4-D18 wis1::ura4 Paul Russell’s laboratory

KS2136 h- leu1-32 ura4-D18 wis4::ura4 Paul Russell’s laboratory

KS2185 h- leu1-32 ura4-D18 his7-366 win1-1wik1::his7 Paul Russell’s laboratory

PR1337 h- mcs4-13 Paul Russell’s laboratory

KS1376 h- spc1:HA6His Paul Russell’s laboratory

PS2759 h- leu1-32 ura4-D18 spc1:HA6His (ura4) wis1::ura4 Paul Russell’s laboratory

KS1891 h- leu1-32 ura4-D18 spc1:HA6His (ura4) wis1::myc Paul Russell’s laboratory

KS2086 h- leu1-32 ura4-D18 spc1:HA6His (ura4) wis1-AA::myc Paul Russell’s laboratory

KS2149 h+ leu1-32 ura4-D18 his7-366 spc1:HA6His (ura4) win1-1 Paul Russell’s laboratory

KS2138 h- leu1-32 ura4-D18 spc1:HA6His (ura4) wis4::ura4 Paul Russell’s laboratory

KS2189 h- leu1-32 ura4-D18 his7-366 spc1:HA6His (ura4) win1-1 wik1::ura4 Paul Russell’s laboratory

2209 h- leu1-32 ura4-D18 his7-366 spc1:HA6His (ura4) pyp1::leu2 win1-1 wik1::his7 Paul Russell’s laboratory

MR218 h- leu1-32 ura4-D18 his7-366 spc1:HA6His (ura4) pyp2::ura4 win1-1 wik1::his7 Laboratory collection

MR15 h- ura4-D18 cdc25:12 myc Laboratory collection

GL125 h- leu1-32 ura4-D18 cdc2-3w Paul Russell’s laboratory

MR661 h-leu1-32 ura4-D18 cdc2-3w cdc25::ura4 Laboratory collection

doi:10.1371/journal.pone.0043208.t001
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A Perkin-Elmer 4100 ZL atomic absorption spectrometer with a

longitudinal Zeeman background correction, equipped with a

transversely heated graphite tube atomizer (THGA) with L’vov

platforms was used for arsenic quantification. A Perkin Elmer

arsenic electrodeless discharge lamp (EDL) with wavelength

197.3 nm and instrument slit width 0.7 nm was used. A Perkin

Elmer EDL System was used to stabilize the lamp current between

349–351 mA. As alternative analytical technique for the determi-

nation of As, an ICP-MS HP-7700 Plus (Agilent Technologies,

Analytical System, Tokyo, Japan) was used. It was equipped with a

Babington nebulizer, Fassel torch and double pass Scott-type spray

chamber cooled by a Peltier system. Single ion monitoring at m/z

75 was used for data collection.

The chromatographic system employed for As speciation

consisted of a model PU-2080 Plus Pump, (JASCO Corporation,

Tokyo, Japan) and PRP-X100 analytical and guard anion-

exchange column (Hamilton, Reno, NV, USA). The column

effluent was directly introduced into the nebulizer of the ICP/MS

previously described via a PTFE capillary tube (0.5 mm i.d.). The

samples were injected through a six port-valve (Rheodyne 9125,

USA).

Reagents and Standards Employed for As Analysis
High-purity deionized water (Milli-Q Element system, Milli-

pore, USA) was used for sample and standard solutions

preparation. Ten milligrams per liter stock solutions, expressed

as metal, of MMA and DMA, were prepared in 4% HNO3 by

dissolving adequate amounts of CH3AsO3Na2 (MMA) and

(CH3)2AsO2Na?3H2O (DMA), both 98% purity from Merck

(Darmstadt, Germany). Ten milligrams per liter stock solutions of

As (V) and As (III) were prepared fromAs2O5?2H2O (98.5%) from

Merck (Darmstadt, Germany) and As2O3 (99.5%) from J.T. Baker

(Deventer, Holland), respectively. All these solutions were kept at

4uC and stored in high density polyethylene (HDPE) bottles until

use. Working solutions were prepared daily. The Pd(NO3)2 matrix

modifier solution employed for GFAAS analysis was made from a

dilution of 10 g/L Pd solution (Merck, Germany) with water to

2 g/L. HPLC-grade methanol from SDS (Barcelona, Spain) and

(NH4)H2PO4 from Merck (Darmstadt,Germany) were the re-

agents employed as mobile phase of the chromatographic system.

Samples
The samples prepared were kept frozen (280uC) until analysis.

Total arsenic and arsenic species were determined in two types of

samples: yeast Schizosaccharomyces pombe extract and yeast extract

(YES).

Analytical Procedures
Total arsenic was determined in YES by ZGF AAS by diluting

one hundred times and adding five percent of nitric acid to

eliminate matrix effects as well as Pd (NO3)2. It was necessary to

modify the thermal furnace program respect to recommended

conditions by the manufacturer. The furnace program finally

employed is showed in Table 2. A YES volume of 20 mL was

injected together with 3 mL of 2 g/L Pd(NO3)2.

Arsenic speciation was carried out in yeast Schizosaccharomyces

pombe extracts by LC-ICP/MS. The yeast extracts were diluted

two hundred times with deionizer water and introduced into a vial

Teflon. The ultrasonic probe was then introduced into the solution

and sonication was applied during 30 seconds at 30% amplitude.

The extracts were centrifuged at 5000 rpm for 10 minutes and the

supernatant was passed through a 0.22 mm nylon syringe filter

before analysis. The chromatographic conditions were previously

optimized (Sanz et al., 2005). Briefly, a polymeric anion-exchange

column, PRP-X100 and mobile phase of 10 mM HPO4
22/

H2PO4 at pH 8.5 plus 2% of methanol was added to the 10 mM

phosphate mobile. The flow rate was 1 mL/min. Under these

conditions appropriate separation of the four targeted species (As

(III), MMA, DMA and As (V)) in 9 min can be obtained as shown

in a typical chromatogram like figure 1. The instrumental

parameters for total As determination and speciation analysis

have been summarized in table 3.

Results

Spc1 MAPK Pathway Components are Required for the
Response to Arsenate

We have previously described that trivalent arsenic is able to

activate the MAPK Spc1 in Schizosaccharomyces pombe and cells

deficient in this MAPK are sensitive to As (III) [11]. Arsenate, As

(V) is the most abundant form of arsenic in many sources of

drinking water and is thought to be responsible for many of the

chronic effect of arsenic. We decided to study arsenate behavior

and compare it with arsenite effects on cellular physiology using a

simple eukaryote as Schizosaccharomyces pombe as model organism.

First, we monitored the sensitivity to arsenate of different fission

yeast strains deficient in one or more genes participating in the

activation of the MAPK Spc1 (Figure 2A). We compared the

viability under chronic exposure to arsenate of those strains using

serial dilutions in plates containing rich media.

Using this experimental approach we observed that cells

deficient in the MAPKK Wis1 and a double mutant lacking

Table 2. Graphite furnace programme.

Step T (6C) Ramp (s) Hold (s) Flow (mL/min)

1 90 5 10 250

2 110 3 20 250

3 300 20 10 250

4 1100 30 20 250

5 1200 1 2 0

6 2100 0 4 0

7 2300 1 4 250

Figure 1. Typical Chromatogram obtained for a standard
solution of As species at 2.5 mg L21 using the experimental
parameters summarized in Table 3. Peak 1: As (III); Peak 2: DMA;
Peak 3: MMA; Peak 4: As (V).
doi:10.1371/journal.pone.0043208.g001
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MAPKKKs Wis4 and Win1, were very sensitive to arsenate.

However, mutants deficient in Mcs4 or in each one of the

MAPKKKs did not show any increased sensitivity to arsenate.

These results indicate that the activation of the MAPK Spc1 is

essential for the efficient response to arsenate and the activations

requires full function of the MAPKK.

Activation of Spc1 is Wis1 Dependent but can be
Mediated through a MAPKKK Independent Mechanism

We had previously described that arsenite activation of Spc1

was mediated through a mechanism that depends on Wis1

activation, but also on a Wis1-activation independent mechanism

[11]. In order to monitor the presence of a similar mechanism

after arsenate treatment, we took advantage of different fission

yeast mutant strains available. Under arsenate treatment, Spc1 is

strongly activated trough a mechanism that requires Wis1

(Figure 2B). However, this activation was still present when the

treatment was performed in a mutant strain where both activating

phosphorylation sites from Wis1 where changed to the non-

phosphorylable aminoacid alanine (Figure 2B). Similar situation

was observed in mutants lacking either MAPKKK or both. This

result indicates that Spc1 activation under arsenate treatment

depends (like in the case of arsenite), on the presence and

activation of Wis1, but also on a Wis1-activation independent

mechanism.

To further advance in our knowledge of the mechanism of Spc1

activation under arsenate treatment, we also monitored the

activation of Spc1 in mutants lacking Wis4 and Win1 activities

and each of the phosphatases Pyp1 and Pyp2 (Figure 2C).

We reasoned that if the activation of Spc1 was independent of

Wis1 phosphorylation, it may be dependent on Pyp1 or Pyp2

inhibition. As seen in Figure 2C, in mutants lacking Wis4, Win1

and Pyp2 activities, Spc1 activation still occurs in the presence of

arsenate, indicating that its activation depends on other mecha-

nism. However, cells lacking Pyp1 activity in a wis4D win1-1

genetic background showed a decrease capacity to phosphorylate

Spc1 upon arsenate treatment.

This result is consistent with a mechanism where Spc1

regulation is achieved both, through activation of Wis1 and

inhibition of Pyp1.

Fission Yeast Displays Arsenate Reductase Activity
The results described above using arsenate as a stress source,

resemble those previously obtained with arsenite. One possible

explanation for these similar responses could be that arsenate is

transformed into arsenite through a biochemical transformation

performed by the fission yeast Schizosaccharomyces pombe. However,

such arsenate reductase activity has not been described in fission

yeast yet.

We expected that if such arsenate reductase activity existed in

fission yeast, intracellular arsenite should appear in the course of

an experimental treatment. We obtained whole cell extracts of

fission yeast cells treated with As (V) and determined the

intracellular concentrations of As (V) and As (III) at different time

points. As seen in Figure 3A, intracellular As (III) concentrations

increases with time, indicating that the arsenate added to the

media has been transformed into arsenite by a cellular activity.

Cdc25 is Required for Arsenate Response in Fission Yeast
We have determined that fission yeast presents arsenate

reductase activity in vivo. Our next question was what protein or

proteins were carrying out such activity.

One of our approaches was to look for S. pombe genes similar to

known arsenate reductases in other organisms. We found that

arsenate reductases and Cdc25 proteins share similarities in their

catalytic domain. We compared S. pombe Cdc25 sequence with rice

Cdc25 and arsenate reductase Acr2 from Saccharomyces cerevisiae and

human arsenate reductase Cdc25.

As observed in Figure 3B, the similarity between the 4 proteins

in their catalytic domains is very high with a strong conservation in

several key aminoacids.

If Cdc25 is an arsenate reductase we would expect that cells

deficient in Cdc25 would be sensitive to arsenate. However,

Cdc25 is an essential gene that cannot be eliminated in a haploid

wild type genetic background because is indispensable for the

advance of cell cycle through the dephosphorylation and

activation of the CDK, Cdc2. However, it has been described

that cells carrying a hyperactive allele of Cdc2, the cdc2-3w allele,

were able to survive in the absence of Cdc25. We therefore

monitored the sensitivity of cdc2-3w cdc25D strain to arsenate

treatment (Figure 3C).

As observed in Figure 3C, cells deficient in Cdc25 were more

sensitive to arsenate than wild type or cdc2-3w strains. Interestingly

the abundance and mobility of Cdc25 protein was altered after

arsenate treatment (Figure 3D), and the mRNA encoding Cdc25

also suffers fluctuations after arsenate treatment (Figure 3E),

indicating that Cdc25 expression may be regulated by arsenate.

Arsenate Reductase Activity Requires Wild Type Activity
of Spc1, Cdc2 and Cdc25

The results described before indicated that Cdc25 has a role in

the response to arsenate, perhaps through its arsenate reductase

activity. In order to test this hypothesis, we determined the arsenic

species As (III) and As (V) in cellular extracts and growth media

obtained from wild type, spc1D, cdc2-3w and cdc2-3w cdc25D strains

after arsenate treatment.

In Figure 4A, As (V) appears to accumulate in cell extracts from

wild type and mutant strains treated, like spc1D, cdc2-3w and cdc2-

Table 3. Instrumental parameters for As determination by
LC/ICP/MS.

ICP MS

RF power 1550 W

Ar flow rate Plasma gas: 15 L min-1

Nebulizer: 1 L min-1

Isotope monitored 75 As

Integration time 0.1 s (spectrum) per point

Points per peak 3

HPLC

Column PRP-X100 anion Exchange

Dimensions: 250 mm64.1 mm, particle size
10 mm

Guard column PRP-X100 anion exchange

Dimensions: 4.6 mm

Mobile phase 10 mM HPO4
22/H2PO4

2; 2% (v/v) MeOH; pH 8.5

100 mL

Flow rate 1.5 mL min-1

Mode Isocratic

doi:10.1371/journal.pone.0043208.t003
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3w cdc25D strains, after 3 or 9 hours. This accumulation is

specially high in mutants lacking Cdc25, that is consistent with a

role of this phosphatase in As (V) removal from fission yeast

cytoplasm. After 9 hours, all strains have similar As (V) levels in

their cytoplasms. During this period (3–9 hours after treatment),

the growth media did show a slight decrease in the total

concentration of As (V).

In Figure 4B we show the result of quantifying the amount of As

(III) in the same experiment. After 3 hours treatment with As (V),

a noticeable amount of As (III) appeared in the interior of fission

yeast cells. This As (III) resulted from the cellular reduction of As

(V) into As (III). The accumulation of As (III) was significantly

higher in wild type cells than in the other mutants assayed

(Figure 4B, 9 hours). Interstingly, the amount of As (III) present in

the cellular exterior (growth media) was detectable, but very low.

Together with the accumulation of As (III), these results indicate

that Cdc25 might be required for arsenate reductase activity, and

that this activity could be affected by the presence of Cdc2 in the

cell.

Discussion

In this report, several mechanisms by which S. pombe is able to

respond to arsenate have been analyzed. The overall conclusion

from these studies is that the response of fission yeast to arsenate

and arsenite is different to the response to other types of stress like,

for example, high osmolarity. Besides this, we have described for

the first time that S. pombe has an arsenate reductase activity. We

discuss the possible role of Cdc25 phosphatase as the leading

candidate to perform this activity in S. pombe and its possible

functional interaction with Cdc2 kinase.

Figure 2. Spc1 MAPK pathway and the response to arsenate. A. Serial dilutions of wild type, wis1D, mcs4D, wis4D, win1-1 and wis4D win1-1
strains were plated in rich media (YES) or rich media containing 50 mM sodium arsenate. Pictures were taken after incubation at 30uC for 48 hours. B.
Western blotting of purified Spc1 extracts from wild type, wis1D, wis1-AA, win1-1, wis4D, and win1-1 wis4D treated with 100 mM sodium arsenate for 0
to 30 minutes. Antibodies against phosphorylated p38 were used. As a control, antibodies against HA epitope were used. C. Western blotting of
purified Spc1 extracts from wild type, wis1D, win1-1 wis4D, win1-1 wis4D pyp1D and win1-1 wis4D pyp2D treated with 100 mM sodium arsenate for 0
to 30 minutes. Antibodies against phosphorylated p38 were used. As a control, antibodies against HA epitope were used.
doi:10.1371/journal.pone.0043208.g002

Arsenate Reductase Activity in Fission Yeast
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Activation of the Spc1/Sty1 Stress Response Pathway by
Arsenate

Viability under arsenate treatment assays have shown that a

correct Spc1 MAPKs pathway is essential for cell survival against

this type of stress. In contrast to arsenite, S. pombe has a much

higher sensitivity to arsenate, reaching growth inhibition at

micromolar concentrations (This work and [11]).

As observed in Western blotting experiments, it is quite possible

that Spc1 could be activated by alternative mechanisms to the

MAPK pathway, mainly at level of the MAPKK Wis1.

Interestingly, Pyp1 phosphatase appears to be directly involved

in this process. The lack of Pyp1 along with a defective MAPK

Spc1 pathway does prevent further activation of Spc1 when

arsenate is present. In strains with a functional Pyp1, but deficient

in Pyp2, activation of Spc1 seems to occur. Therefore, Pyp1 is a

good candidate to be inhibited by arsenate in vivo.

Comparisons with previous reports studying the role of MAPK

pathways in response to arsenic in S. cerevisiae, showed similar

results to those obtained in our experiments, where MAPK Hog1

is activated in response to arsenite and Slt2 does so in response to

arsenate [12,21]. These results show that this type of arsenic stress

response not only appears in S. pombe, but has been conserved

throughout the evolution, although the mechanisms may be

slightly different, at least at the level of MAPK specificity.

Arsenate Reductase Activity of the Cell Cycle
Phosphatase Cdc25

Arsenite found in the arsenic speciation experiments, raises the

possible existence of alternative response mechanism to the Spc1

pathway, by which S. pombe is able to respond to the stress by

arsenate. This mechanism could be the reduction of arsenate into

arsenite, ability that has already been described in other organisms

[13,14,15]. More recently, experiments focused on the human cell

cycle phosphatase Cdc25 have also described this reducing

capacity for this protein [16].

As observed in our results, arsenate reduction occurs in S. pombe.

This arsenate reduction activity is affected by the presence of Spc1,

Cdc2 and Cdc25.

Like spc1D strain, cdc2-3w, which presents hyperactivated Cdc2,

shows a diminished capacity to reduce arsenate into arsenite in the

cell. Because of this, it could be assumed an inhibitory role to Cdc2

on arsenate recution activity. Interestingly, Cdc25 activates Cdc2

by removing an inhibitory phosphate previously placed by the

kinase Wee1. Given this result, it could be assumed that in the

Figure 3. Cdc25 is essential for the response to arsenate. A. Arsenate to arsenite conversion in fission yeast. Cell extracts from cells treated
with 100 mM sodium arsenate were analyzed for the presence of As (III) at different time points. Graph represents parts per million (ppm) As (III). B.
Protein alignment of a fragment of S. pombe Cdc25, rice Cdc25 and S. cerevisiae Acr2 and human Cdc25. Asterisks indicate full conservation. C. Serial
dilutions of wild type,cdc2-3w and cdc2-3w cdc25D strains were plated in rich media (YES) or rich media containing 25 mM sodium arsenate. Pictures
were taken after incubation at 30uC for 48 hours. D. Western blotting of whole cell extracts from Cdc25:myc strains treated with 100 mM sodium
arsenate for 0 to 180 minutes. Anti-myc antibodies were used to detect Cdc25:myc and anti-actin as a control. E. Total RNA from the experiment
presented in (D) was purified and the total amount of Cdc25 mRNA quantified by qPCR. Actin mRNA was used as an internal control.
doi:10.1371/journal.pone.0043208.g003
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double mutant cdc2-3w cdc25D the kinetics of arsenate reduction

would increase, as Cdc2 would be activated at a lower level. As

observed in the results, the increase does not occur, therefore,

Cdc25 could exert an activating role in this reduction indepen-

dently of Cdc2 activation. On the other hand and despite these

results, still remain to be cleared whether Cdc2 activity is regulated

by Cdc25 in the reduction of arsenate, as has been described in the

cell cycle [22].

These data show the complex mechanism by which S. pombe is

able to reduce arsenate into arsenite. In the model we propose,

Cdc25 and Cdc2 proteins play an activator and inhibitor role in

the regulatory mechanism of the arsenate reduction, respectively.

More studies are required in order to the molecular mechanism

regulating arsenate into arsenite reduction, a key step for cell

survival against this type of stress.

It is also interesting to notice that, although As (III) accumulates

inside the cells, very little As (III) appears to accumulate in the

growth media. This lack of arsenite accumulation could be

explained by two different models:

a) The export of As (III) to the cell exterior is not very efficient.

b) There is an spontaneous oxidation of As (III) to As (V) in the

growth media.

We consider that the second possibility is very unlikely

because we have experienced very different responses in

sensitivity from fission yeast to arsenate to arsenite. If arsenite

would spontaneously oxidized to arsenate, the response to

both forms of arsenic would be identical.

Therefore, we favour a model where the mechanisms of As

(III) removal from the cytoplasm in fission yeast are not based

in extracellular elimination, but on vacuolar accumulation,

like the mechanism described previously [23,24].

We have described the mechanisms that lead to activation of

the MAPK Spc1 by arsenate and the presence of an arsenate

reductase activity in S. pombe. Future research will determine

the regulation of this arsenate reductase activity and the

possible interplay with other cellular stress response mech-

anisms.

Figure 4. Arsenic speciation in different fission yeast mutants. Total cell extracts from 56107 cells and growth media from wild type, spc1D,
cdc2-3w and cdc25D cdc2-3w strains were obtained after treatment for 3 or 9 hours with 100 mM sodium arsenate. Graph shows the amount of As (V)
(A) or As (III) (B) present in the extracts or growth media.
doi:10.1371/journal.pone.0043208.g004
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