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Exact Green’s function of the reversible diffusion-influenced reaction
for an isolated pair in two dimensions
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We derive an exact Green’s function of the diffusion equation for a pair of disk-shaped interacting
particles in two dimensions subject to a backreaction boundary condition. Furthermore, we use the
obtained function to calculate exact expressions for the survival probability and the time-dependent
rate coefficient for the initially unbound pair and the survival probability of the bound state. The
derived expressions will be of particular utility for the description of reversible membrane-bound
reactions in cell biology. [http://dx.doi.org/10.1063/1.4737662]

Diffusion, or Brownian motion, and its microscopic ba-
sis, random walks, are key concepts of non-equilibrium sta-
tistical mechanics and the theory of stochastic processes.
Their ubiquity renders them applicable in numerous areas of
physics and beyond, for instance, engineering, chemistry, bi-
ology, and mathematical finance, see, for example, Refs. 1
and 2 and references therein.

In the theory of diffusion-influenced reactions,3 solutions
of the diffusion equation which satisfy certain boundary con-
ditions can be used to investigate different types of chemical
reactions. Among those solutions, Green’s functions (GF) en-
joy a privileged role because they permit calculating the solu-
tion for any given initial distribution and can be used to derive
important other quantities, for instance survival probabilities
and time-dependent reaction rate coefficients.4–6 In this sense,
knowledge of the GF is tantamount to a “completely solved”
problem. However, in most cases, an analytical representation
of the GF remains elusive, a notable exception being the case
of an isolated pair. Here, GFs and derived quantities have not
only been important from a conceptual point of view but have
also been used to fit experimental data for a diffusion model
with reversible reactions7 and to investigate how the reduced
parameter set could be determined from experimental data de-
scribing geminate recombination.8

Motivated by the desire to understand the influence
of stochastic fluctuations and spatial heterogeneities on
the behavior of biochemical networks, the last decade has
witnessed an increased interest in theoretical approaches de-
scribing diffusion-influenced reactions at the molecular level.
Analytical representations of GFs describing an isolated pair
figure prominently in a number of proposed particle-based
stochastic simulation algorithms, because a reaction network
may be thought of as composed of unimolecular and bi-
molecular reactions A + B → products. In this context, GFs
can be used to enhance the efficiency of Brownian dynamics
simulations.9–11 Moreover, the knowledge of exact analytical
expressions permits to validate newly devised stochastic
simulation algorithms.12
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Exact analytic expressions for the GF of an isolated pair
that can undergo a reversible reaction have been derived for
the one and three dimensional cases,4, 6 whereas a correspond-
ing expression in the time domain for the two dimensional
case has been lacking and analytical approaches were lim-
ited to approximations13, 14 in spite of its broad applicabil-
ity to surface phenomena. The two dimensional case is of
particular importance in cell biological applications, provid-
ing the basis for a better understanding of processes such
as signal-induced inhomogeneities and receptor clustering on
cell membranes15 where small diffusion constants govern the
lateral motion of receptors and diffusion represents a less ef-
ficient mixing mechanism than in the three dimensional cy-
toplasm. Finally, diffusion in two dimensions (2D) is special
because the steady-state solution of the diffusion equation is
inconsistent with the boundary condition at infinity16 and be-
cause 2D is the critical dimension with regard to the recur-
rence and transience of random walks.17

To derive the GF in 2D, we consider an isolated pair of
two disklike particles A and B with diffusion constants DA

and DB, respectively. The particles may associate when their
separation equals the encounter distance a to form a bound
molecule AB. When bound, the molecules may dissociate
again to form an unbound pair A + B. Such a system may be
described as the diffusion of a point-like particle with diffu-
sion constant D = DA + DB around a static disk with radius a.
In this picture, reactions are introduced by imposing bound-
ary conditions at the disk’s “surface.” The irreversible asso-
ciation reaction is described by the radiation boundary con-
dition (BC) that is characterized by an intrinsic association
constant κa. To take into account reversible reactions, i.e., to
allow for dissociations, the radiation BC has to be generalized
to the backreaction BC that involves an additional intrinsic
dissociation constant κd.4–6 We consider the probability den-
sity function (PDF) g(r, t|r0), which gives the probability to
find the particles at a distance equal to r at time t, given that
the distance was initially r0 at time t = 0. The time evolution
of g(r, t|r0) is governed by the 2D diffusion equation5

∂

∂t
g(r, t |r0) = D

(
∂2

∂r2
+ 1

r

∂

∂r

)
g(r, t |r0), r ≥ a. (1)
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The diffusion equation has to be completed by specifying
boundary conditions. Together with the following initial:

2πr0g(r, 0|r0) = δ(r − r0), (2)

and boundary condition

lim
r→∞ g(r, t |r0) = 0, (3)

Eq. (1) is equivalent to the free-space diffusion equation in
2D (if a = 0, r > 0) with the familiar solution18 (Ch. 14.8,
Eq. (1))

gfree(r, t |r0) = 1

4πDt
e−(r2+r2

0 )/4DtI0

( rr0

2Dt

)
, (4)

which is also known as the free-space GF. I0(x) denotes
the modified Bessel function of first kind and zero order19

(Sec. 9.6).
The PDF we are interested in is only defined for r ≥ a

> 0 and one has to impose a BC for r = a specifying the
behavior at the encounter distance. To incorporate association
and dissociation on the surface of the “interaction disc,” we
thus require4–6

2πaD
∂

∂r
g(r, t |r0)|r=a = κag(a, t |r0) − κd [1 − S(t |r0)].

(5)

Here, S(t|r0) denotes the survival probability that a pair of
molecules with initial distance r0 survives until time t

S(t |r0) = 2π

∫ ∞

a

g(r, t |r0)rdr, (6)

= 1 − 2πaD

∫ t

0

∂

∂r
g(r, t ′|r0)|r=adt ′. (7)

Note that, strictly speaking, the notion of a “survival probabil-
ity” is somewhat misleading in the case we consider here. For
the irreversible reaction, a non-vanishing likelihood to find
a separated isolated pair at a time t necessarily implies that
no association has occurred before. For the reversible reac-
tion, association and subsequent dissociation events that took
place possibly many times before t also contribute to the prob-
ability of finding an isolated pair unbound at a time t. There-
fore, more precisely, one could refer to the quantity S(t|r0)
as a separation probability.5 Nevertheless, in the following
we will use survival probability interchangeably with sepa-
ration probability.6 Furthermore, we would like to point out
that the possibility of an initial bound state (henceforth de-
noted by ∗) requires to consider two different survival prob-
abilities: S(t|r0) and S(t|∗), corresponding to the initially un-
bound and bound state, respectively. Similarly, the reversible
GF has four components: besides g(r, t|r0), one has to con-
sider g(r, t |∗), g(∗, t |r0), and g(∗, t |∗) for the initial and final
bound states.5, 6 For all these quantities, we will derive exact
analytical expressions in the time domain.

Following the general strategy of Ref. 18, [Ch. 14.8,
p. 368], we make the following ansatz for the Laplace trans-
form of the Green’s function that satisfies the backreaction
BC

g̃(r, q|r0) = g̃free(r, q|r0) + g̃br(r, q|r0). (8)

Here,

g̃free(r, q|r0) = 1

2πD

{
I0(qr0)K0(qr), r > r0

I0(qr)K0(qr0), r < r0

, (9)

is the Laplace transform of the free-space GF Eq. (4), cp.18

(Ch. 14.8, Eq. (2)). K0(x) refers to the modified Bessel func-
tion of second kind and zero order19 (Sec. 9.6). The variable
q is defined by q := √

p/D, where p denotes the Laplace
domain variable.

Alternatively, one could also seek a solution in the
form4, 6

g̃(r, q|r0) = g̃ref(r, q|r0) + g̃ref,br(r, q|r0), (10)

where g̃ref(r, q|r0) denotes the Laplace transform of the GF
that obeys reflecting BCs.

The part g̃br in Eq. (8) that takes into account the BC is a
solution of the Laplace transformed 2D diffusion equation18

(Ch. 14.8, Eq. (3))

d2g̃br

dr2
+ 1

r

dg̃br

dr
− q2g̃br = 0. (11)

The general solution to Eq. (11) is AK0(qr) + BI0(qr). Be-
cause we require limr→∞ g̃br → 0, and limx → ∞I0(x) → ∞,
the coefficient B has to vanish and hence,

g̃br(r, q|r0) = A(q, r0)K0(qr). (12)

A(q, r0) is determined by the requirement that the complete
GF Eq. (8) satisfies the Laplace transformed backreaction BC,
cp. Eq. (5),

∂

∂r
g̃(r, q|r0)|r=a = hg̃(a, q|r0) − κdp

−1 ∂

∂r
g̃(r, q|r0)|r=a,

(13)

where we have defined h := κa/(2πaD). Using Eqs.
(8), (9), (12), (13), and I ′

0(x) = I1(x),K ′
0(x) = −K1(x)19

(Eq. (9.6.27)) and defining κD := κd/D, we obtain

g̃br(r, q|r0) = 1

2πD
K0(qr)K0(qr0)

× (q2 + κD)I1(qa) − hqI0(qa)

(q2 + κD)K1(qa) + hqK0(qa)
. (14)

We would like to point out that for the irreversible case,
the GF that takes into account the reaction by satisfying the
radiation BC can be rewritten in terms of the GF that corre-
sponds to nonreactive diffusion and satisfies a reflective BC
(Ref. 20)

g̃rad(r, q|r0) = g̃ref(r, q|r0)

− κa

g̃ref(r, q|a)g̃ref(a, q|r0)

1 + κag̃ref(a, q|a)
. (15)

It was also shown that Eq. (15) relating the GFs for reac-
tive and nonreactive diffusion takes the form of a Dyson inte-
gral equation in the time domain.20 Furthermore, in Ref. 21,
Eq. (15) was extended to the reversible case in 3D. This re-
lationship is valid for the reversible case in 2D also. To ob-
tain the GF satisfying reflective BCs, we set h = κD = 0 in
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FIG. 1. Integration contour used in Eq. (19).

Eq. (14) and find

g̃ref,bc(r, q|r0) := g̃ref(r, q|r0) − g̃free(r, q|r0),

= 1

2πD
K0(qr)K0(qr0)

I1(qa)

K1(qa)
. (16)

Using I0(x)K1(x) + I1(x)K0(x) = x−1, cp.19 (Eq. (9.6.15)) it
follows that

g̃br(r, q|r0) = g̃ref,bc(r, q|r0)

− κaq
2 g̃ref(r, q|a)g̃ref(a, q|r0)

q2 + κD + κaq2g̃ref(a, q|a)
. (17)

The inversion theorem for the Laplace transformation
can be applied to find the corresponding expression of g̃br in
the time domain

gbr(r, t |r0) = 1

2πi

∫ γ+i∞

γ−i∞
ept g̃br(r, q|r0)dp. (18)

To calculate the Bromwich contour integral, we first note
that g̃br has a branch point at p = 0. Therefore, we use
the contour of Fig. 1 with a branch cut along the negative
real axis, cp.18 (Ch. 12.3, Fig. 40). Furthermore, we note
that the integrand has no poles within and on the contour22

and that the contribution from the small circle around the
origin vanishes, which can be seen by the limiting forms
of the modified Bessel functions for small arguments19

(Eqs. (9.6.7)–(9.6.9)). Therefore, we obtain

0 =
∮

ept g̃br(r, q|r0)dp =
∫ γ+i∞

γ−i∞
ept g̃br(r, q|r0)dp

+
∫
C2

ept g̃br(r, q|r0)dp +
∫
C4

ept g̃br(r, q|r0)dp. (19)

Thus, it remains to calculate the integrals
∫
C2

,
∫
C4

. To this
end, we choose p = Dx2eiπ and use18 (Append. 3, Eqs. (25)

and (26))

In(xe±πi/2) = e±nπi/2Jn(x), (20)

Kn(xe±πi/2) = ±1

2
πie∓nπi/2[−Jn(x) ± iYn(x)]. (21)

Jn(x), Yn(x) denote the Bessel functions of first and second
kind, respectively19 (Sec. 9.1). It follows that∫

C2

ept g̃br(r, q|r0)dp = i

2

∫ ∞

0
e−Dx2tH

(2)
0 (xr)H (2)

0 (xr0)

× α(x)[α(x) + iβ(x)]

α(x)2 + β(x)2
xdx. (22)

Here, H (2)
n (x) := Jn(x) − iYn(x) denotes the Bessel func-

tion of third kind (also referred to as Hankel function)19

(Eq. 9.1.4) and we have defined

α := α(x) := (x2 − κD)J1(xa) + hxJ0(xa), (23)

β := β(x) := (x2 − κD)Y1(xa) + hxY0(xa). (24)

To evaluate the integral along the contour C4, we choose p
= Dx2e−iπ and after an analogous calculation, one finds that∫
C2

ept g̃br(r, q|r0)dp = −(∫
C4

ept g̃br(r, q|r0)dp
)∗

, where ∗
means complex conjugation. Thus, one arrives at

gbr(r, t |r0) = − 1

π
	
(∫

C2

ept g̃br(r, q|r0)dp

)
,

= − 1

2π

∫ ∞

0
e−Dx2tα

α	 + β


α2 + β2
xdx, (25)

where we have defined

	 := 	(x, r, r0) := J0(xr)J0(xr0) − Y0(xr)Y0(xr0),


 := 
(x, r, r0) := Y0(xr)J0(xr0) + J0(xr)Y0(xr0).

Next, we use the fact that the free-space Green’s function
may be written as

gfree(r, t |r0) = 1

2π

∫ ∞

0
e−Dx2t J0(xr)J0(xr0)xdx

to arrive at the exact Green’s function in the time domain

g(r, t |r0) = 1

2π

∫ ∞

0
e−Dx2t T (x, r)T (x, r0) x dx, (26)

where we introduced the function23

T (x, r) := J0(rx)β(x) − Y0(rx)α(x)

[α(x)2 + β(x)2]1/2
. (27)

Note that in the limit κd → 0, one recovers the known GF
for the irreversible case with radiation BC18 (Chap. 14.8,
Eqs. (12) and (13)). We compared the obtained analytical
expression for the GF to solutions that were numerically
constructed using the Spherically Symmetric Diffusion
Problem (SSDP) software,24 version 2.66. Results are shown
in the left panel of Fig. 2. We find excellent agreement.

With the exact GF at our disposal, further important
quantities can be derived.25 Notably, the survival probability
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FIG. 2. The reversible Green’s function and survival probability for an initially unbound isolated pair in 2D. The parameters are: a = 1, D = 2, r0 = 1.1, κa

= 2πD. The left panel shows the r dependence of the reversible GF 2πrg(r, t|r0) at time t = 10η for various values of the dissociation constant κd = 1 η−1,
0.5 η−1, 0.1 η−1, 0.01 η−1, where η = a2D−1 denotes the natural time scale of the system. The solid lines correspond to the analytical expression Eq. (26). The
various markers refer to numerical solutions that were obtained using the SSDP software, ver. 2.66. The right panel shows the time dependence of the survival
probability S(t|r0). The dissociation constant is κd = 0.5 η−1. The solid line refers to the analytical expression in Eq. (29). The markers indicate the SSDP
results.

can be calculated using Eq. (7). To this end, we first introduce
the function

P (x, r) := − 1

x

∂

∂r
T (x, r) = J1(xr)β − Y1(xr)α

[α2 + β2]1/2
, (28)

where we used J ′
0(x) = −J1(x) and Y ′

0(x) = −Y1(x)19

(Eq. 9.1.28). Then the survival probability can be written as

S(t |r0) = 1 − a

∫ ∞

0
e−Dtx2

P (x, a)T (x, r0)dx. (29)

To obtain this result, we note that, as discussed in Appendix
A, the integral

∫ ∞
0 P (x, a)T (x, r0)dx has to vanish. Clearly,

the reversible survival probability approaches unity for large
times, limt → ∞S(t|r0) = 1. Therefore, it can explicitly be
shown that the fate of an isolated pair for the reversible reac-
tion is always dissociation in 2D, as in the 1D and 3D cases.4, 6

Let g(∗, t|r0) and g(r, t|∗), g(∗, t|∗) denote the Green’s
functions for the final and initial bound states, respectively.5, 6

Note that g(∗, t|r0) and g(∗, t|∗) are probabilities instead of
probability densities and that g(∗, t|r0) = 1 − S(t|r0). Because
of the detailed balance condition5, 6

κdg(∗, t |r) = κag(r, t |∗), (30)

the GF of the initial bound state becomes

g(r, t |∗) = κd

κa

a

∫ ∞

0
e−Dtx2

P (x, a)T (x, r)dx. (31)

Thus, the probability that an initially bound pair is unbound
at time t > 0 becomes

S(t |∗) = 1 − 2π
κd

κa

a2
∫ ∞

0
e−Dtx2

P 2(x, a)
1

x
dx. (32)

Note that S(0|∗) = 0, due to Eq. (38). In Ref. 5, it was demon-
strated that S(t|∗) relates to S(t|r0) in the time domain as

S(t |∗) = κd

∫ t

0
e−κd t ′S(t − t ′|a)dt ′. (33)

Using the obtained expression for the GF, Eqs. (26) and (27),
and the survival probabilities, Eq. (29) and (32), as well as

Y ′
0(x)J0(x) − J ′

0(x)Y0(x) = 2/(πx), (34)

Ref. 19 (Eq. (9.1.16)) and Eq. (38), we can explicitly verify
that Eq. (33) is satisfied in 2D. Finally, we obtain for g(∗, t|∗)
= 1 − S(t|∗),

g(∗, t |∗) = 2π
κd

κa

a2
∫ ∞

0
e−Dtx2

P 2(x, a)
1

x
dx, (35)

and g(∗, 0|∗) = 1. Using the SSDP software, we compared
the numerically calculated survival probability S(t|r0) of the
initially unbound as well as the GF and survival probability
S(t|∗) of the initially bound state to our analytical expressions
Eq. (29), Eq. (31), and Eq. (32). The right panel of Fig. 2
and both panels of Fig. 3 show the results. Again, we find
excellent agreement.

Finally, the time-dependent reaction rate coefficient can
be defined as5, 6

k(t) := 2πaD
∂

∂r0
S(t |r0)|r0=a. (36)

The resulting exact expression is

k(t) = 2πa2D

∫ ∞

0
e−Dtx2

P 2(x, a)xdx. (37)

As explained in Appendix A, one can show that∫ ∞

0
P 2(x, a)

1

x
dx = κa

κd2πa2
. (38)

We thus recover the correct expression for the equilibrium
constant Keq, ∫ ∞

0
k(t)dt = κa

κd

=: Keq. (39)

Alternatively, Eq. (39) may be deduced in the following way.
According to Ref. 5, the time-dependent reaction rate can also
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FIG. 3. The reversible Green’s function and survival probability for an initially bound isolated pair in 2D. The parameters are: a = 1, D = 2, κa = 2πD. The
left panel shows the r dependence of the reversible GF 2πrg(r, t|∗) at time t = 10 η for various values of the dissociation constant κd = 1 η−1, 0.5 η−1, 0.1 η−1,
0.025 η−1, where η = a2D−1 denotes the natural time scale of the system. The solid lines are obtained from the analytical expression Eq. (31). The various
markers indicate the corresponding numerical solutions generated by the SSDP software. The right panel shows the time dependence of the survival probability
S(t|∗). The dissociation constant is κd = 0.5 η−1. The solid line refers to the analytical expression Eq. (32). The markers indicate the SSDP results.

be calculated by using the survival probability S(t|∗),

k(t) = Keq
∂S(t |∗)

∂t
. (40)

Now, given Eqs. (29) and (32), one can explicitly show that
Eqs. (36) and (40) yield the same result. Then, taking into ac-
count that S(∞|∗) = 1 and S(0|∗) = 0, Eq. (39) is immediately
implied by Eq. (40).
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APPENDIX A: INTEGRAL IDENTITIES

In this appendix, we will show how the derived GF
Eq. (26) and the backreaction BC Eq. (5) can be used to cal-
culate seemingly intractable integrals that are needed in the
main text. Substituting the found expression of the GF into
the backreaction BC and taking the limit t → ∞ or, alterna-
tively, using T(x, a) = −(x2 − κD)/(hx)P(x, a), yields∫ ∞

0
P (x, a)T (x, r0)dx = 0. (A1)

By definition, the Green’ s function has to satisfy the initial
condition Eq. (2), i.e., in the case considered here we have

1

2π

∫ ∞

0
T (x, r)T (x, r0)xdx = δ(r − r0)

2πr0
. (A2)

It follows by direct integration over
∫ r

a
dr ′r ′

∫ ∞

0
P (x, r)T (x, r0)dx =

{ 0, r < r0,

r−1, r > r0,
(A3)

where we have used Eq. (A1). Note also that to perform the
integral, we used d/dx[xνJν(x)] = xνJν−1 and d/dx[xνYν(x)]
= xνYν − 1

19 (Eq. (9.1.30)). Next, we apply the derivative
∂/∂r0 to the BC Eq. (5) and subsequently integrate from 0
to t. Finally, we again consider the limit t → ∞ and find∫ ∞

0
P (x, a)P (x, r0)x dx = − κa

2πaD

∫ ∞

0
T (x, a)P (x, r0)dx

+ κd

D

∫ ∞

0
P (x, a)P (x, r0)

dx

x
.

(A4)

The integral on the lhs has to vanish, as can be seen by taking
into account Eq. (A1) and∫ ∞

0
P (x, a)P (x, r0)xdx = − ∂

∂r0

∫ ∞

0
P (x, a)T (x, r0)dx.

(A5)
Furthermore, we just calculated the first integral on the rhs,
cp. Eq. (A3). Hence, we arrive at∫ ∞

0
P (x, a)P (x, r0)

dx

x
= κa

κd2πar0
. (A6)

APPENDIX B: ASYMPTOTIC AND APPROXIMATE
EXPRESSIONS

In the following, we present some approximate solutions
for small and long times. Note that approximate solutions
have been discussed before5, 13, 14 and at least for the survival
probabilities, we re-derive already known results.

Generally, two alternative ways exist to obtain approx-
imate solutions for long times. One method starts in the
Laplace domain and is described in Ref. 18 (Ch. 13.6). One
starts from the expressions Eq. (9) and Eq. (14) in the Laplace
domain and expands them in the ascending powers of q.
The obtained series can be integrated term by term using the
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integrals given in Ref. 18 (Ch. 13.6, Eqs. (4)–(9)). Alterna-
tively, one might use the exact expressions in the time domain
to generate approximations. To demonstrate the general idea,
we start with the survival probability S(t|r0). First, we note
that

numerator of P (x, a) = 2h

πa
, (B1)

because of Eqs. (28) and (34). We make a variable substitution√
Dtx → u to obtain∫ ∞

0
e−Dtx2

P (x, a)T (x, r0)dx

→ 1√
Dt

∫ ∞

0
e−u2

P (u
√

Dt
−1

, a)T (u
√

Dt
−1

, r0)du. (B2)

Because we are interested in long times, we use the
expansions18 (Append. 3, Eqs. (1) and (5)) of the Bessel func-
tions suitable for small arguments to expand the integrand in

ascending powers of ξ := u
√

Dt
−1

. To leading order, we find

1

α(ξ )2 + β(ξ )2
= ξ 2

[2(πa)−1κD]2[1 + O(ξ 2 ln ξ )]2
. (B3)

Similarly, we arrive at

numerator of ξT (ξ, r0) = 2κD

πa
(1 + O(ξ 2 ln ξ )). (B4)

Combining Eqs. (29) and (B1)–(B4), we arrive at

S(t |r0) −→
t→∞ 1 − Keq

4πDt
+ · · · (B5)

In the same way, we can find an approximate expression for
S(t|∗). Again performing the variable substitution

√
Dtx → u

and using Eqs. (32), (B1) and (B3), we obtain

S(t |∗) −→
t→∞ 1 − Keq

4πDt
+ · · · , (B6)

so we find that the survival probabilities S(t|r0) and S(t|∗)
show the same long time behavior. This is what one expects,
because the long time characteristics should be independent
of the initial state. Finally, to derive a long time expansion
for the GF Eq. (26), we first expand the free GF Eq. (4) as
follows:

gfree(r, t |r0) = 1

4πDt

(
1 − r2 + r2

0

4Dt
+ O(t−2)

)
, (B7)

where we have used the expansion of I0(x) suitable for small
arguments18 (Append. 3, Eqs. (7)). We obtain for Eq. (25)

gbr(r, t |r0) = a2

4πD2t2

(
1

2
− Keq

2πa2

)
ln

(
C

rr0

Dt

)
+ O(t−3),

(B8)
where C := 1/4eγ + 1 and γ = .5772156649. . . denotes
Euler’s constant19 (Eq. (6.1.3)). To derive Eq. (B8), we used∫ ∞

0
e−mx ln(x)xdx = 1

m2
(1 − γ − ln(m)), (B9)

which follows from Ref. 26 (Eq. (4.331.1))∫ ∞

0
e−mx ln(x)dx = −γ + ln(m)

m
, (B10)

by differentiation with respect to the parameter m.

To obtain a small time expansion, it is convenient to
start from the Laplace domain and to use the expressions for
the free GF and the boundary component, given by Eq. (9)
and Eq. (14), respectively. Furthermore, we switch to dimen-
sionless variables R = r/a, R0 = r0/a, h̃ = ha, κ̃D = κDa2,

q̃ = qa, and τ = tDa−2. To obtain expansions in powers of
q̃−1, we exploit the asymptotic expansions of the modified
Bessel functions for large arguments19 (Eqs. (9.7.1), (9.7.2)),

Iν(x) ∼ ex

√
2πx

∞∑
k=0

(−1)k
ak(ν)

xk
, (B11)

Kν(x) ∼
√

π

2x
e−x

∞∑
k=0

ak(ν)

xk
, (B12)

where the coefficients are defined by

ak(ν) = (4ν2 − 12)(4ν2 − 32) · · · (4ν2 − (2k − 1)2)

k!8k
(B13)

to arrive at the following asymptotic expansion in powers of
q−1:

g̃free(R, q̃|R0) ∼ e−q̃(R−R0)

4πD
√

RR0q̃

∞∑
k=0

ψk(R,R0)

q̃k
, (B14)

g̃br(R, q̃|R0) ∼ e−q̃(R+R0−2)

4πD
√

RR0q̃

∞∑
k=0

φk(R,R0)

q̃k
. (B15)

Note that Eq. (B14) assumes R > R0. For convenience, we
give the first expansion coefficients (ψ0 = φ0 = 1),

ψ1 = −1

8
(R−1 − R−1

0 ), (B16)

φ1 = −1

8
(R−1 + R−1

0 ) − 3

4
− 2h̃. (B17)

The explicit form of the coefficients quickly becomes cum-
bersome, so that for instance in a simulation that uses small
time expansions of the GF, all the required coefficients should
be calculated by iterative use of (B13). To proceed, we use the
(inverse) Laplace transforms18 (Append. 5, Eqs. (7) and (11))

L−1

(
e−qx

q

)
=

(
D

πt

)1/2

e− x2

4Dt , (B18)

L−1

(
e−qx

p1+n/2

)
= (4t)n/2inerfc

(
x

2
√

Dt

)
. (B19)

The functions inerfc(x) are defined by18 (Append. 2, Eqs. (9)–
(11))

inerfc(x) :=
∫ ∞

x

in-1erfc(ξ )dξ, (B20)

and i0erfc(x) := erfc(x). None of the integrals in Eq. (B20)
has to be calculated, because the inerfc(x) functions satisfy
the recursion relation18 (Append. 2, Eq. (14))

2n inerfc(x) = in-2erfc(x) − 2x in-1erfc(x), (B21)

which allows to calculate Eq. (B20) swiftly.
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We finally arrive at the expressions for small times in the
time domain

g(R, τ |R0) ∼ 1

4πa2
√

τRR0

{
π−1/2

[
e− (R−R0)2

4τ + e− (R+R0−2)2

4τ

]

+ 1

2

∞∑
n=1

[
ψn in-1erfc

(
R − R0

2
√

τ

)

+φn in-1erfc

(
R + R0 − 2

2
√

τ

) ]
(2

√
τ )n

}
.

(B22)

Note that again R > R0 is assumed.
Small-time expansions for the other quantities considered

here can be derived in a similar way. The survival probability
becomes

S(t |r0) ∼ 1 −
∑∞

n=2 ϕn in-1erfc
(

R0−1
2
√

τ

)
(2

√
τ )n

4
√

R0τ
. (B23)

The first two coefficients are ϕ2 = 2h̃ and ϕ3 = −h̃(3/4
+ 2h̃ + 1/(4R0)).

Using the Laplace transform18 (Append. 5, Eq. (2))
L−1(pν+1) = tν�(ν + 1)−1, we finally obtain

S(t |∗) ∼ κ̃Dτ

∞∑
n=0

ωnτ
n/2, (B24)

where ω0 = 1, ω1 = −4/(3
√

π )h̃.

Finally, we would like to comment on how to numerically
evaluate the analytical expressions for the GF Eq. (26) and
the derived quantities. The time dependence of all the quanti-
ties is generically given by

∫ ∞
0 e−Dtx2

. . . dx. The quadratic
exponential strongly dampens the value of the whole in-
tegrand and limits the infinite integration range to a finite
range in the sense that contributions to the integral coming
from x values larger than a cut-off can be neglected. For the
actual integration, we used the Quadrature Adaptive Gen-
eral integrand (QAG) integration algorithm of the GNU Sci-
entific Library (GSL),27 which employs the Gauss-Kronrod
scheme28 (Ch. 2.7.1.1). If the accuracy is still not satisfac-

tory, one might divide the integration range in three inter-
vals corresponding to small, intermediate, and large x val-
ues. Then the integrand can be approximated corresponding
to the x range using the expansions of the Bessel functions
that are suitable for small and large arguments,18 (Append. 3,
Eqs. (1) and (5)) and19 (Eqs. (9.2.5), (9.2.6)). Alternatively,
for small and large times one may directly use the expressions
Eqs. (B22), (B7), and (B8), respectively.
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