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Purpose: Dual-energy computed tomography and dual-energy cone-beam computed tomography
(DE-CBCT) are promising modalities for applications ranging from vascular to breast, renal, hep-
atic, and musculoskeletal imaging. Accordingly, the optimization of imaging techniques for such
applications would benefit significantly from a general theoretical description of image quality that
properly incorporates factors of acquisition, reconstruction, and tissue decomposition in DE tomogra-
phy. This work reports a cascaded systems analysis model that includes the Poisson statistics of x rays
(quantum noise), detector model (flat-panel detectors), anatomical background, image reconstruction
(filtered backprojection), DE decomposition (weighted subtraction), and simple observer models to
yield a task-based framework for DE technique optimization.
Methods: The theoretical framework extends previous modeling of DE projection radiography and
CBCT. Signal and noise transfer characteristics are propagated through physical and mathematical
stages of image formation and reconstruction. Dual-energy decomposition was modeled according to
weighted subtraction of low- and high-energy images to yield the 3D DE noise-power spectrum (NPS)
and noise-equivalent quanta (NEQ), which, in combination with observer models and the imaging
task, yields the dual-energy detectability index (d′). Model calculations were validated with NPS and
NEQ measurements from an experimental imaging bench simulating the geometry of a dedicated
musculoskeletal extremities scanner. Imaging techniques, including kVp pair and dose allocation,
were optimized using d′ as an objective function for three example imaging tasks: (1) kidney stone
discrimination; (2) iodine vs bone in a uniform, soft-tissue background; and (3) soft tissue tumor
detection on power-law anatomical background.
Results: Theoretical calculations of DE NPS and NEQ demonstrated good agreement with experi-
mental measurements over a broad range of imaging conditions. Optimization results suggest a lower
fraction of total dose imparted by the low-energy acquisition, a finding consistent with previous lit-
erature. The selection of optimal kVp pair reveals the combined effect of both quantum noise and
contrast in the kidney stone discrimination and soft-tissue tumor detection tasks, whereas the K-edge
effect of iodine was the dominant factor in determining kVp pairs in the iodine vs bone task. The soft-
tissue tumor task illustrated the benefit of dual-energy imaging in eliminating anatomical background
noise and improving detectability beyond that achievable by single-energy scans.
Conclusions: This work established a task-based theoretical framework that is predictive of DE
image quality. The model can be utilized in optimizing a broad range of parameters in im-
age acquisition, reconstruction, and decomposition, providing a useful tool for maximizing DE-
CBCT image quality and reducing dose. © 2012 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4736420]
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I. INTRODUCTION

Dual-energy computed tomography (DE-CT) and dual-
energy cone-beam computed tomography (DE-CBCT)
provide numerous potential advantages over conventional
single-energy CT, most importantly in providing superior

contrast by selectively combining low-energy (LE) and
high-energy (HE) image data (projections or reconstructions)
in decomposition of various materials in the 3D image.
Weighted subtraction of 3D reconstructions exploits the
attenuation and scatter characteristics of materials at different
energies, thereby differentiating materials that may be
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indistinguishable in single-energy CT—for example, in
kidney stone characterization and distinguishing iodinated
vessels in bone.1–3 In contrast-enhanced imaging (e.g.,
iodine-enhanced angiography, renal, or liver imaging), DE-
CT is frequently acquired at energies straddling the K-edge
of the contrast agent (e.g., 33 keV for iodine), thus allowing
separation of contrast-enhanced structures from other dense
materials (e.g., bone) that may confound visualization.4, 5

More complex DE decomposition algorithms can begin to
transcend the traditional contrast mechanism of linear attenu-
ation coefficients through the discrimination of tissue compo-
sition in terms of effective atomic number, electron density,
basis material densities, etc.1, 6–10 In addition to improved
contrast, DE-CT or DE-CBCT could potentially achieve
more accurate beam hardening correction in projection-based
decomposition6, 11 and reduction of radiation dose in contrast-
enhanced imaging by producing a virtual noncontrast image
that in some scenarios can preclude a precontrast scan.12

Dual-energy CT has shown promise in a wide spectrum
of clinical applications,13–16 raising the need for imaging per-
formance optimization to knowledgably guide applications
with respect to radiation dose, image noise, and the imag-
ing task. In addition to the parameters that govern imaging
performance in single-energy CT (e.g., kVp, mAs, detec-
tor performance, system geometry, etc.), DE imaging intro-
duces additional factors that significantly affect image quality
(e.g., the selection of kVp pair, application of added filtra-
tion, dose allocation between the high- and low-energy scan,
and choice of noise reduction filters and decomposition al-
gorithms). Current methods of technique optimization rely
primarily on physical experimentation and iteration across
the numerous relevant parameters. Such experimentation in-
volves acquisition of DE images at permutations of kVp pair,
dose allocation, filter material and/or thickness, and analysis
in terms of basic performance metrics such as contrast, noise,
and contrast-to-noise ratio (CNR).17–19 Due to the vast param-
eter space that needs to be taken into consideration, an accu-
rate theoretical framework that is predictive of DE-CT image
quality would greatly benefit such efforts in providing an effi-
cient, rigorous, and more complete examination of the param-
eters of interest (potentially beyond the experimental limits of
existing scanner technologies).

Toward this end, early work derived closed-form ex-
pressions of image noise associated with common DE-CT
decomposition algorithms and used such expressions to
elucidate several fundamental principles in DE-CT imaging
techniques. Alvarez et al.6 described the image noise in the
projection-based estimates of Compton and photoelectric
contributions to linear attenuation coefficient, and in a later
work, showed that linear combinations of such estimates
at an optimized display energy may form a spectral shift
artifact-free image that contains the same quantum noise as a
single-energy image at the same total dose20—a result proven
experimentally by Kalender et al.9 Kelcz et al.10 developed an
equivalent decomposition method for estimating the densities
of two materials and demonstrated the noise advantage of
the two-kVp technique (where high- and low-energy images
are acquired at two different energies) compared to the two-

crystal technique (where both images are acquired simulta-
neously with two crystal layers—the first crystal forming the
low-energy image and the second the high-energy image). An
abundance of related work also investigated the noise charac-
teristics of particular DE decomposition algorithms.1, 7, 8, 21, 22

The work reported below presents a theoretical model for
reconstruction-based DE-CBCT decomposition that incor-
porates the detector model in the noise description, and
defines DE image quality in relation to the imaging task.
Based on previous modeling of DE projection radiography
and CBCT,23–26 the cascaded systems analysis framework
accommodates general characteristics of imaging techniques
(kVp pair, filtration, and dose allocation), the imaging chain
(detector type, additive noise, etc.), and decomposition algo-
rithm (weighted subtraction and noise reduction parameters).
Analytical forms for the DE-CBCT performance metrics
such as the noise-power spectrum (NPS), modulation transfer
function (MTF), and noise-equivalent quanta (NEQ) are
derived, allowing description of image quality with respect to
a given imaging task in terms of the detectability index (d′),
which has previously shown reasonable correspondence with
human observer performance for a broad range of imaging
conditions and simple imaging tasks.27

As detailed below, the work first presents the cascaded
systems model extended to reconstruction-based DE-CT
or DE-CBCT [the latter emphasizing a flat-panel detector
(FPD) in the imaging chain], then validates the accuracy of
the model by comparing theoretically calculated DE NPS
and NEQ with experimental measurements. The utility of
the model is demonstrated in example optimization of DE
acquisition parameters (dose allocation and kVp pairs) in
relation to specific imaging tasks using detectability index
as the objective function. The results below are restricted
to analysis of the 3D NPS and NEQ near the central axial
plane (ignoring effects of the Fourier “null cone”/cone-beam
artifact for a circular source-detector orbit28) and assumes
“local” stationarity of the first- and second-order image
statistics29—i.e., invariance of the NPS within a limited
(central) region of the volumetric image.

II. METHODS

II.A. Reconstruction-based dual-energy
image decomposition

The most common form of reconstruction-based (also
called “image-based”) DE image decomposition involves a
weighted subtraction of the high- and low-energy 3D image
reconstructions

IDE = IHE − wILE, (1)

where IDE, IHE, and ILE denote the dual-energy, HE, and LE
CBCT reconstructions, respectively. The tissue cancellation
factor w is a scalar broadly defined to reduce the signal value
(attenuation coefficient or HU) of one material, M1, to the
same intensity as another material, M2, effectively “cancel-
ing” M1 from the DE image. Assuming perfect cancellation
(i.e., ignoring effects of x-ray scatter, spatial variation of
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FIG. 1. Schematic diagram for cascaded systems analysis of reconstruction-based DE-CBCT. The 2D projection imaging chain (LE or HE) is characterized
by seven stages ranging from x-ray interaction in the detector to 2D sampling and readout with additive electronic noise. The 3D reconstruction process is
characterized by six algorithmic steps ranging from the logarithm to 3D backprojection and sampling. The DE decomposition step indicated by w combines the
low- and high-energy reconstruction NPS (SLE and SHE) into the DE NPS (SDE).

x-ray energy throughout the object, etc.), we have

μDE
M1

= μDE
M2

= μHE
M1

− wμLE
M1

= μHE
M2

− wμLE
M2

(2a)

yielding w as the ratio of the difference in effective linear
attenuation coefficients (μ1 and μ2) of the two materials (M1

and M2) in the high-energy image to that in the low-energy
image

w = μHE
M1

− μHE
M2

μLE
M1

− μLE
M2

. (2b)

The effective attenuation coefficients, μ, are computed us-
ing linear attenuation coefficients provided in ICRU Report
No. 33 (Ref. 30) and a polychromatic beam model generated
from Spektr.31

Variants of the simple weighted subtraction algorithm have
been reported in literature, e.g., applying weighting factors
to both the high- and low-energy images. A bit of arithmetic
reveals that signal and noise are scaled equivalently in such
forms, and the detectability index (below) is unaffected by the
form of (linear) weighting factors applied if the same material
is being canceled. Alternatively, w may be freely varied for
manual adjustment of the contrast between structures of inter-
est and the background [e.g., to account for effects of scatter,
beam hardening, or other reconstruction artifacts, or varied in
this study to demonstrate the effect of material cancellation on
image quality (Fig. 5)], exposing w as a parameter that may
be adjusted as simply as the window and level. Results be-
low pertain to the single-parameter, weighted subtraction DE
decomposition algorithm given in Eq. (1).

II.B. Cascaded systems analysis of DE-CBCT

Previous work derived the Fourier-domain imaging per-
formance metrics within the general framework of cascaded
systems analysis32 for a variety of imaging modalities in-
cluding cone-beam CT,26, 33 DE projection radiography,23 and
tomosynthesis.34 Such modeling has demonstrated agreement
with experimentally measured NPS and NEQ, with broad util-

ity in detector design, technique optimization, and system
development.33, 35–37

The cascaded systems model for CBCT consists of stages
describing the physical processes in the 2D imaging chain and
3D reconstruction process, quantifying the propagation of sig-
nal and noise characteristics in terms of fluence, MTF, NPS,
and NEQ. As shown in Fig. 1, stages 1–7 describe the physical
processes of 2D projection formation (for both the LE and HE
image) including x-ray interaction, photon spreading, sam-
pling in the FPD, and electronics noise. Stages 8–13 describe
the mathematical process of filtered backprojection, including
reconstruction filters, 3D backprojection, and sampling. Pre-
vious work derived the closed-form relation for the stochastic
noise-power spectrum (quantum and electronics noise) of a
CBCT reconstruction as26, 38

S =
(
q̄0a

4
pd ḡ1ḡ2ḡ4

(
1 + ḡ4PKT 2

3

)
T 2

5 ∗ ∗III6+Sadd

)
(
q̄0a

2
pd ḡ1ḡ2ḡ4

)2

× T 2
9 T 2

10T
2

11
1

M2
�2

12 ∗ ∗ ∗ III13, (3)

where ḡi denotes the amplification (or loss) associated with
gain stages (e.g., quantum detection efficiency, scintillator
gain, and conversion efficiency), Ti is the transfer function
for spatial spreading (e.g., MTF describing stochastic blur
or integration by pixel apertures), Sadd is the additive elec-
tronic noise, and � is the backprojection operator. The model
has demonstrated close agreement with experimental mea-
surements of both objective Fourier-domain metrics (NPS and
NEQ) (Refs. 26 and 38) and human observer performance.27

In all results below, cascaded systems model parameters asso-
ciated with a FPD in combination with a 250 mg/cm2 CsI:Tl
scintillator (including gain, MTF, and Swank factor) were
adapted from previous work.23, 24, 26, 39

The separate models for DE decomposition and 3D
reconstruction naturally combine in a general form for
reconstruction-based DE-CBCT. As illustrated in Fig. 1,
the DE decomposition step is incorporated following the
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reconstruction stages. Analogous to the form derived in
Richard et al.,23 the DE NPS, SDE, is given by

SDE = SHE + w2SLE, (4)

where SHE and SLE are the HE and LE energy NPS from
Eq. (3). Frequency dependence of S and T [(fx, fy, fz)] is
omitted for conciseness. Similar to the single-energy NPS,
the units of the 3D DE NPS, SDE, is μ2mm3, where μ de-
notes the 3D DE image signal [i.e., the linear combination
of single-energy linear attenuation coefficients according to
Eq. (1)] with units mm−1.

The dual-energy NEQ can be defined based on DE NPS
and MTF in a manner similar to the single-energy NEQ

NEQDE = πf
T 2

SDE
, (5)

where T is the system MTF, assumed to be equal for the low-,
high-, and dual-energy cases for simplicity.

The NEQ can be extended to account for the influence
of anatomical background in diminishing task performance
by including the background (“clutter”) power spectrum, de-
noted SB, in the denominator as an additional noise term,
yielding the “generalized” NEQ.40 In anatomical sites such
as the breast and lung, SB is frequently characterized by the
power-law relationship

SB = κ

(af β)
(6)

where the exponent β describes the degree of correlation
(clumpiness), a is a unity scale factor of units mm−1, and κ

is the magnitude of the background power spectrum, carrying
the same units as SB, μ2mm3.41, 42

A similar expression can be written for the generalized
NEQ of DE-CBCT as

NEQDE = πf
T 2

SDE + SDE
B · T 2

, (7)

where SDE
B is the dual-energy anatomical power spectrum (in

the object domain). The weighted subtraction decomposition
does not change the magnitude of β from a single-energy re-
construction but does affect κ in a manner proportional to the
square of the contrast between the two materials that consti-
tute the power-law pattern.33 For example in DE breast imag-
ing, where the contrast of endogenous fibroglandular, adipose,
and tumor tissues are modified by decomposition, the factor
κDE is proportional to the square of the contrast between fi-
broglandular and adipose tissue in the DE image. Selection of
κ and β is detailed below.

II.C. Experimental validation of 3D dual-energy NPS
and NEQ

Imaging performance metrics (e.g., NPS and NEQ) com-
puted from the cascaded systems analysis model were val-
idated against measurements from an experimental imaging
bench consisting of: (1) an x-ray tube (DU693 in EA10 hous-
ing, Dunlee, Aurora, IL) with 14◦ anode angle and 0.8 mm fo-
cal spot size; (2) a PaxScan 4030CB flat-panel detector (Var-
ian Imaging Products, Palo Alto, CA) with 2048 × 1536 pix-

els at 0.194 mm pixel pitch and ∼250 mg/cm2 CsI:Tl scin-
tillator; and (3) a motion control system (Compumotor 6k8,
Parker Hannifin, Cleveland, OH) that operates a central ro-
tation stage and allows precise positioning of the source and
detector. The system geometry was set to that approximat-
ing a dedicated extremities scanner36 with 43.3 cm source-
to-axis distance and 55.4 cm source-to-detector distance. Ac-
quisitions were performed with the FPD operated in 2 × 2
binning mode with a pixel size of 0.388 mm.

Low- and high-energy images were acquired over energy
ranges of 60–90 kVp and 90–130 kVp, respectively, based
on generator limitations and typical imaging techniques for
DE-CBCT applications. Additional filtration was held fixed
to 5 mm Al and 0.3 mm Cu for the low-energy dataset, and
0.3 mm Cu and 0.5 mm Ag for the high-energy dataset. Pre-
vious work identified such added filtration as near optimal for
DE projection imaging,37 and application of the theoretical
model to optimize filtration specifically for 3D DE-CBCT
is the subject of future work. In particular, the addition of
0.5 mm Ag to the high-energy beam has been shown to
provide optimal separation between low- and high-energy
spectra. Imaging techniques (mAs) were selected to deliver
an approximately equal dose of 7.5 (±0.39) mGy at each
kVp, with absolute dose measured using a 0.6 cm3 active vol-
ume ionization chamber (Accu-Pro 9096, RadCal, Monrovia,
CA) at the center of a 16 cm diameter acrylic CTDI phantom.

To minimize scatter and beam-hardening artifacts in the
image data, NPS measurements were performed in recon-
structions of air with a 22.8 mm of Al placed in the beam
to simulate attenuation through a uniform object (equivalent
to ∼85 mm water in a 90 kVp beam filtered with 5 mm Al
and 0.3 mm Cu). This method is equivalent to measuring NPS
from a uniform object, e.g., a water cylinder, but with im-
proved stationarity in the first and second-order statistics. Im-
ages were reconstructed from 360 projections acquired over
360◦ using 3D filtered-backprojection with a Hann apodiza-
tion filter at an isotropic voxel size of 0.3 mm.

Dual-energy images were decomposed from LE and HE
reconstructions according to Eq. (1). The tissue cancellation
factor w was allowed to vary arbitrarily for the purposes
of model validation. Two single-energy CBCT scans were
acquired at each energy, allowing two DE images to be
reconstructed at each energy pair. Subtraction of the 3D
images provided detrending of background shading (e.g.,
heel effect, cupping artifact, etc.) prior to analysis of the NPS.
Thirty nonoverlapping volumes of interest (VOIs) of size 53
× 53 × 53 voxels or 15.9 × 15.9 × 15.9 mm3 were placed at
a constant distance from the center of reconstruction within
each difference image. The “local” NPS was calculated as
the ensemble average of the square of the Fourier transform
of each realization, denoted as �VOIDE

NPSDE(fx, fy, fz)

= 1

2

bxbybz

NxNyNz

〈|FT(�VOIDE(x, y, z))|2〉, (8)

where bi and Ni are the voxel size (0.3 mm) and extent
(53 voxels) of each VOI in the ith direction, respectively. The
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factor of 1/2 accounts for the amplification of noise resulting
from the subtraction detrending process. The statistical error
in the NPS estimation was reported as the standard deviation
across the ensemble of VOIs at each spatial frequency, divided
by the square root of the number of VOIs in the measurement.

II.D. Detectability index as an objective function

Fourier descriptors of MTF, NPS, and NEQ have been
widely used in the assessment and optimization of imaging
systems. Such physical metrics in themselves, however, re-
veal little information as to how human observers perform
in relation to a given imaging task. As a simple extension
of such objective metrics, previous work applied task-based
detectability index to the analysis of DE projection radiogra-
phy, CBCT, and tomosynthesis by combining simple observer
models and imaging tasks with the NEQ.26, 27, 43 Such models
have been validated in comparison to human observer perfor-
mance for a variety of idealized imaging tasks, providing a
simple yet powerful framework that bridges the gap between
objective Fourier-domain metrics and human observers.27, 44

Considering the linear weighted subtraction in DE-CBCT de-
composition, a straightforward extension of the single-energy
detectability index yields its DE analogue

d ′2
DE =

∫ ∫ ∫
(T DE · WTask)2

SDE + SDE
B · T DE2

dfxdfydfz, (9)

where T DE denotes the DE system MTF, which was as-
sumed to be equal to the high- and low-energy MTF. The
term WTask is the Fourier domain task function,45 defined
as the difference of the two hypotheses in a binary deci-
sion task, namely, “signal-present” versus “signal-absent” (or
“background-only”) for a detection task, and “signal A” ver-
sus “signal B” for an A versus B discrimination task. The
“signal-absent” hypothesis corresponds to the Fourier trans-
form of the background, which may either be uniform (e.g.,
in air) or structured (e.g., power-law anatomical background
in the breast or lung). The “signal-present” hypothesis, on the
other hand, is given by the Fourier transform of the object
function (e.g., a sphere) on the background and carries mag-
nitude equal to the contrast between the signal and the back-
ground. For reconstruction-based DE-CBCT, similar defini-
tions apply, with the hypotheses weighted by the DE contrast
(C DE) which, following Eq. (1), is a linear combination of the
contrast in high-energy (C HE) and low-energy (C LE) images

CDE = CHE − wCLE. (10)

The detectability index shown in Eq. (9) corresponds to
the prewhitening observer model, where the observer is as-
sumed to be able to fully decorrelate 3D noise characteris-
tics. Alternatively, the 3D nonprewhitening observer filters
the noise with a detection template in the form of the expected
signal

d ′2
DE =

[∫∫∫
(T DE · WTask)2dfxdfydfz

]2∫∫∫ (
SDE + SDE

B · T DE2
) · (T DE · WTask)2dfxdfydfz

.

(11)

Compared to the prewhitening observer, the nonprewhiten-
ing model has been shown to give better agreement with hu-
man observers.27, 46

The detectability index as written in Eqs. (9) and (11) cor-
responds to the 3D detectability index in which the observer
is able to fully interrogate volumetric information. The extent
to which such a simple formulation corresponds to observers
dynamically scrolling slices or interpreting multiple slices at
once is the subject of ongoing research in image perception.
The 3D detectability index can also be defined in analogous
forms pertaining to a single slice through the reconstruction
(called the “slice” detectability index), where the “signal”
(numerator) and “noise” (denominator) are, respectively, inte-
grated along the direction orthogonal to the slice. The results
below are presented in terms of the 3D detectability index in
order to capture the fully volumetric signal and noise charac-
teristics without limiting results to a particular plane of visu-
alization. More complex forms of observer models (e.g., with
eye filters and internal noise, channelized Hotelling observer
models, etc.27, 46, 47) can be incorporated into the cascaded sys-
tems model and are the subject of future work.

II.E. Optimization of DE-CBCT imaging techniques

Example calculations were performed to demonstrate the
utility of detectability index as an objective function for op-
timizing imaging techniques and decomposition parameters,
including the tissue cancellation factor (w), dose allocation
(A), and kVp pairs. The tissue cancellation factor w was cho-
sen to “cancel” a particular material relative to another, giv-
ing w as a function of kVp pairs. The detectability index was
then calculated as a function of both the dose allocation factor
(i.e., the fraction of dose imparted by the LE acquisition, rang-
ing from 0 to 1) and the kVp pair, and the peak detectability
d′ (A, kVpLE, kVpHE) identified the optimum combination of
A and kVp. Calculations assumed a nominal total dose (HE
plus LE scans) of 15 mGy. The object was assumed to be
equivalent to 15 cm of water. The same filtration was used as
that in the experiments described in Sec. II.C (5 mm Al and
0.3 mm Cu for low-energy, and 0.3 mm Cu and 0.5 mm Ag
for high-energy acquisition). Electronics noise in the simula-
tion was taken as 7000 electrons based on measurements from
Yang et al.48

Three idealized imaging tasks were computed based on a
variety of potential DE imaging applications as detailed in the
following three subsections.

II.E.1. Identification of kidney stone composition

A kidney stone differentiation task was formulated assum-
ing two minerals commonly found in renal calculi, brushite
(CaHPO4 · 2H2O), and calcium phosphate Ca3(PO4)2.49 The
linear attenuation coefficient of each was calculated from
the respective elemental composition and density (brushite:
2.33 g/cm3, calcium phosphate: 3.14 g/cm3). Dual-energy
decomposition was set to cancel brushite to the same in-
tensity as a soft tissue (ICRU-44) (Ref. 50) background.
The resulting contrast between brushite (or equivalently soft
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tissue) and calcium phosphate was taken as the DE contrast,
CDE. The detectability index was computed for a low-to-mid
frequency detection task consisting of a 1.5 mm radius sphere

WTask = FT{CDE · H[r2 − (x2 + y2 + z2)]}, (12)

where H is the heavyside step function and r = 1.5 mm.

II.E.2. Iodine-enhanced vessel versus bone

A vessel-in-bone task was computed to simulate a com-
mon application of contrast-enhanced angiography in which
iodine-enhanced vessels need to be distinguished from sur-
rounding bone. The tissue cancellation factor was chosen to
cancel cortical bone to the same intensity as soft tissue, leav-
ing an iodine-enhanced vessel. The dual-energy contrast was
calculated as iodine (10 mg/ml) versus bone (or equivalently
soft tissue). This amounts to a detection task in the DE image.
For simplicity, the directional dependence of the vessel was
ignored and a symmetrical 3D midfrequency imaging task
was defined directly in the Fourier domain as the difference
between two Gaussians

WTask = CDE ·
[

exp

(
−f 2

x + f 2
y + f 2

z

2σ 2
1

)

−exp

(
−f 2

x + f 2
y + f 2

z

2σ 2
2

)]
, (13)

where σ 1 = 0.3 mm−1 and σ 2 = 0.2 mm−1.

II.E.3. Soft-tissue tumor detection in anatomical
background

A generic soft-tissue tumor detection task was modeled as-
suming a tumor embedded in a power-law cluttered anatom-
ical background. Pertinent tissues include the tumor and the
two materials constituting the power-law pattern. Dual-energy
contrast was therefore modeled as the signal difference be-
tween the tumor and the background material closer in atten-
uation coefficient to the tumor. Results below are shown for
a breast tumor detection task on a fibroglandular and adipose
tissue background. Other tasks that can be modeled within
a similar framework (the subject of future work) include de-
tection of a lung nodule in a lung tissue and air background,
detection of a sarcoma in a muscle and adipose background,
etc.

The linear attenuation coefficient of breast tumor was
taken from Johns and Yaffe for infiltrating ductal carcinoma51

μtumor = 0.0343μAl + 0.8411μlu, (14)

where μAl and μlu are the linear attenuation coefficients of
aluminum and lucite [polymethyl methacrylate (PMMA)], re-
spectively. The dual-energy contrast was taken as the differ-
ence in signal levels between breast tumor and fibroglandular
tissue.

The anatomical background noise was characterized by
the power-law relationship described in Sec. II.B, with β

equal to 3 (consistent with power spectrum measurements

from the breast by many authors52, 53 and expected of 3D self-
similar “fractal” structure54).The value of κ for anatomical
background in the breast was estimated using the relationship
κ ≈ λ(μDE

fibroglandular − μDE
adipose

)2, i.e., κ was assumed to be
proportional to the square of the contrast between adipose
and fibroglandular tissue. The proportionality constant λ

was found from previous measurements in a lung phantom55

and a sphere phantom,54 both yielding similar values of λ

(∼0.0079 mm3).
The nominal imaging task for the tumor detection task

consisted of a low-frequency 3 mm Gaussian function defined
in the spatial domain and imaged at a total dose of 15 mGy.
To illustrate the benefit of tissue cancellation, w was allowed
to vary from 0 to 1 instead of being held fixed as in the pre-
vious two tasks described in Secs. II.E.1 and II.E.2. The total
dose and the frequency content of the tasks were also varied
to illustrate the impact of CDE, SDE, and SDE

B on detectabil-
ity. Two additional dose levels were investigated, 1.5 and
0.15 mGy, spanning three orders of magnitude to examine
the low-dose limits of detectability and illustrate tradeoffs
between quantum noise and anatomical clutter as imaging
conditions transition from an anatomical noise limited regime
to a quantum noise limited regime. Two additional imaging
task included: (1) a low-mid frequency task defined as a
1.5 mm radius sphere, and (2) a high-frequency task modeled
as the difference between two Gaussian tasks defined in the
frequency domain following Eq. (13) with σ 1 = 0.9 mm−1

and σ 2 = 0.8 mm−1.

III. RESULTS

III.A. Comparison of theoretical and experimental NPS
and NEQ

Figure 2 shows example DE NPS [Figs. 2(a), 2(b), 2(d),
and 2(e)] and NEQ [Figs. 2(c) and 2(f)] for the [60, 130]
kVp pair DE image. The profiles in Figs. 2(b) and 2(c) are
the radial average calculated from the axial plane of the
3D NPSDE and NEQDE, respectively. The sagittal profiles
in Figs. 2(e) and 2(f) represent the angular average of line
profiles taken four samples away from the origin of the
fz axis, i.e., fz = 0.249 mm−1. The NPS and NEQ from
single-energy reconstructions are also plotted as dashed lines
on the corresponding graphs for comparison. Error bars
depict the standard deviation of measurements from all VOIs.
The tissue cancellation factor w was set to 0.295, resulting in
a NPSDE with magnitude intermediate to that of the high- and
low-energy. The magnitude of NPSDE could be greater than
both the high- and low-energy NPS, depending on the choice
of w but will always be greater than the high-energy NPS as
evident from Eq. (4).

Theoretical calculations of both single- and dual-energy
NPS and NEQ are in reasonable agreement with experimental
measurements. A slight discrepancy is observed in the NEQ
tails at spatial frequency above ∼0.7 mm−1 where measure-
ments exhibit a steeper decline than theory. The discrepancy
is attributed to two possible sources of error. First, a slight
underestimate of the tails of the MTF causes a slight underes-
timate of the NPS tails, which is in turn amplified in the NEQ
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FIG. 2. Comparison of theoretical and measured NPS and NEQ from the [60, 130] kVp DE image and the associated single-energy images. The top row shows
results in the axial (fx, fy) plane. An axial slice through the 3D NPSDE is shown in (a). The radial average of the 3D NPS and 3D NEQ for this axial plane are
displayed in (b) and (c). The bottom row shows the sagittal (fx, fz) plane. A slice through the 3D NPS in the sagittal plane is shown in (d). Sagittal profiles of
the single-energy and dual-energy NPS and NEQ are plotted in (e) and (f) as angular average of line profiles taken at a fixed radius (fz = 0.249 mm−1) from
the fz axis. Theoretical predictions are shown as curves, whereas experimental results are shown as individual data points for (b), (c), (e), and (f). Reasonable
agreement between theory and experiment was observed for both the single-energy and dual-energy results.

since it enters in the denominator. Second, there are a vari-
ety of possible noise sources in the imaging/reconstruction
system that may not be exactly accounted for in the model, in-
cluding small discrepancies in the spectral model, electronic
noise, and aliasing artifacts. Small errors in such factors may
appear as subtle discrepancies in the NPS tails but are magni-
fied in the high-frequency NEQ. Furthermore, a slightly larger
discrepancy is observed in the sagittal NEQ along the fz axis

[Fig. 2(f)] where samples are selected closer to the region of
the cone-beam artifact (null cone).

Figure 3 presents axial NPSDE for a wide range of energy
combinations at: (a) fixed high-energy at 110 kVp and low-
energy ranging from 60 to 90 kVp and (b) fixed low-energy
at 80 kVp at high-energy ranging from 90 to 130 kVp. A
constant tissue cancellation factor (w = 0.5) was used in
DE decomposition for purposes of illustration. Experimental

FIG. 3. Comparison of theoretical and experimental DE NPS for a range of experimental conditions. (a) Fixed high-energy beam, and varied low-energy
beam for a constant tissue cancellation factor w = 0.5. (b) Fixed low-energy beam, and varied high-energy beam, also for a constant tissue cancellation factor
w = 0.5. (c) Varying levels of w at fixed low- and high-energy beams (60 and 130 kVp).
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FIG. 4. Optimization results for a kidney stone discrimination task and an iodine vs bone discrimination task. (a) and (e): The optimal dose allocation factor,
A*, identified as the dose allocation that maximizes d′ at each kVp pair. (b) and (f): Integral of the 3D NEQ (irrespective of task) demonstrates similar trends
despite different values of w and A*. (c) and (g): The dual-energy contrast of brushite vs calcium phosphate and iodine vs bone, respectively, with (g) reflecting
the K-edge of iodine at 33 keV (i.e., ∼65 kVp). (d) and (h): Detectability index as a function of kVp pair calculated using the optimal dose allocation, A*, shown
in (a) and (e), respectively. The detectability index of the kidney stone discrimination task (d) shows the combined effect of NEQ (b) and contrast (c), whereas
that of the iodine vs bone task (h) is mainly driven by contrast (g).

results were plotted as individual data points for the [60, 110]
and [90, 110] kVp pairs on Fig. 3(a) and the [80, 90] and [80,
130] kVp pairs on Fig. 3(b). Figure 3(c) plots the axial NPSDE

for the [60, 130] kVp image at varying levels of w. The
measured NPS exhibit a fairly typical level of experimental
error (standard deviation in measured spectral estimates), and
theoretical results demonstrate fairly good correspondence
and fall within the error bars of most experimental data
points. Other kVp combinations and w values were also
examined and similar levels of agreement were observed. The
general trend of NPS as a function of kVp is consistent with
the behavior of single-energy imaging and is characteristic of
the filters applied. In Fig. 3(a), the NPS is seen to decrease
with increasing low-energy kVp. For an incident x-ray
fluence imparting the same dose to the center of the object,
the total fluence to the detector after attenuation by the object
increases with beam energy, therefore decreasing the NPS.
Conversely, in Fig. 3(b), where the low-energy kVp is kept
constant, the DE NPS generally increases with high-energy
kVp due to the introduction of the Ag filter which decreases
the fluence to the detector beyond a certain kVp (∼80 kVp in
this case). This effect, in conjunction with decreased quantum
detection efficiency [ḡ1 in Eq. (3)], results in NPS increasing
with kVp.

III.B. Detectability index

The optimization results for the brushite vs calcium
phosphate kidney stone discrimination task are plotted in
Figs. 4(a)–4(d) as a function of kVp pairs (high-energy

kVp, kVpHE, and low-energy kVp, kVpLE). As described in
Sec. II.E.1, the tissue cancellation factor w was chosen to
cancel brushite to a soft-tissue background and has intrinsic
energy dependence as well. Figure 4(a) plots the optimal dose
allocation factor, A*, identified as the dose allocation, A, that
maximizes detectability at each kVp pair. Some interesting
trends were observed: for a fixed kVpLE, A* decreases with
higher kVpHE as more dose is required to compensate for
increased noise and decreased detective quantum efficiency
(DQE) in the high-energy image; on the other hand, for
a fixed kVpHE, A* decreases with higher kVpLE as the
low-energy image becomes less noisy [Fig. 3(a)] as a result
of increased transmission through the object; furthermore, as
kVpLE further increases, A* increases again due to a higher
tissue cancellation factor w giving a higher weight on the
low-energy image. For all kVp pairs, A* was found to be
less than 0.5, indicating that more dose should be allocated
to the high-energy image compared to the low-energy image.
Figure 4(b) plots the integral of the 3D NEQ along the fx, fy,
and fz directions, which essentially reflects the d′ of a task
that has fixed CDE for all energy pairs and is equally weighted
in all spatial frequencies (i.e., a delta function detection
task). The trend of the integral of NEQ can be explained in
a similar way as that of A*: NEQ is optimized at low kVpHE

due to low NPS, and at intermediate or low kVpLE depending
on the tradeoff between decreasing NPS and increasing w.
Figure 4(c) shows the DE contrast between brushite and cal-
cium phosphate at different kVp pairs which follows naturally
from the monotonically decreasing attenuation characteristics
of the two materials. Detectability index plotted in Fig. 4(d)
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FIG. 5. Detectability index computed as a function of w and A for a low-frequency detection task at (a) 15 mGy, (b) 1.5 mGy, and (c) 0.15 mGy, and for
(e) a midfrequency task and (f) a high-frequency task at 15 mGy. The integral of the quantum noise NEQ [Eq. (5)] at 15 mGy is plotted in (d). Superimposed
on (a) are plots of the absolute values of dual-energy contrast between a breast tumor and fibroglandular tissue, |CDE|, and the dual-energy anatomical “clutter”
magnitude, |κDE|. A clear optimum in d′ is observed in (a) at w = ∼0.6 where κDE is reduced to 0 (i.e., cancellation of background clutter). As dose is lowered
or the spatial frequency content of the tasks increases, canceling anatomical noise becomes less important, and the DE contrast eventually becomes the dominant
factor in driving d′.

was calculated using the energy-dependent A* shown in
Fig. 4(a). The maximum d′ identifies the optimal kVp pair at
[45,105], with a corresponding A* of 0.32. The optimal kVp
selection is driven by both the NEQ and contrast, as seen by
the “blending” of optima from Figs. 4(b) and (c).

Similar results are shown for the iodine vs bone discrim-
ination task in Figs. 4(e)–4(h). The optimal dose allocation
factors for both tasks show similar trends as the previous task
as a function of kVp pairs and are less than 0.5 for all en-
ergy combinations. The integral of NEQ shows similar trends
as well despite the different w and A* used in the calcula-
tions. In contrast to the kidney stone discrimination task, Fig.
4(g) presents a low-energy optimum at 65 kVp that reflects
the K-edge effect of iodine, which consequently results in an
optimal kVp selection mainly influenced by the contrast term
[Fig. 4(h)].

Figure 5 shows detectability index computed for the breast
tumor detection task in the presence of anatomical back-
ground noise. The effects of tissue cancellation factor w and
dose allocation factor (A) on d′ are examined for three levels
of total dose [(a) 15 mGy, (b) 1.5 mGy, and (c) 0.15 mGy]
and three imaging tasks [(a) low-, (e) mid-, and (f) high-
frequency] as described in Sec. II.E.3. The absolute value of

the magnitude of the DE anatomical background power spec-
trum, |κDE|, and the DE contrast modeled as the signal differ-
ence between breast tumor and fibroglandular tissue, |CDE|,
are superimposed on Fig. 5(a). Figure 5(d) plots the integral
of the 3D quantum noise NEQ. The energy pair is fixed at 60
and 120 kVp. The results for other energy pairs support simi-
lar conclusions (but are not shown for reasons of brevity).

For the low-frequency task at 15 mGy [Fig. 5(a)], the
maximum d′ is achieved at w ≈ 0.6, where the signal value of
fibroglandular tissue is canceled to the same intensity as adi-
pose tissue (w = 0.58), resulting in a minimum in [|κDE|. As
the total dose decreases, the peak at w = 0.58 becomes less
pronounced. As the total dose reduces by orders of magnitude
to 0.15 mGy, anatomical noise is superceded by quantum
noise, and cancellation of anatomical background no longer
results in improved performance. Instead, d′ is quantum
noise limited and exhibits the combined effects of |CDE| and
quantum noise NEQ [Fig. 5(d)], as evident in: (i) the valley at
w ≈ 0.2, consistent with the point at which |CDE| reaches
0; and (ii) the peaks at A ≈ 0.4–0.6 observed at w > ∼0.5,
consistent with trends in the integral of the NEQ [Fig. 5(d)].
Variation of the frequency content of the imaging tasks
yields similar results. The influence of anatomical noise
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FIG. 6. Detectability index and integral of the NEQ computed for a low-frequency task at 15 mGy [(a) and (b)], a low-frequency task at 1.5 mGy [(c) and (d)],
and a midfrequency task at 15 mGy [(e) and (f)]. Dual-energy contrast between the tumor and fibroglandular tissue in the DE image is plotted in (g). The optimal
kVp selection demonstrates a combined effect of NEQ and DE contrast, and is affected by total dose more than the frequency content of the task.

becomes less severe as the frequency content of the imaging
tasks extends beyond the low-frequency region dominated
by anatomical noise. For the high-frequency task, perfor-
mance is quantum noise limited even at high doses. Such
behavior is reminiscent of similar tradeoffs in single-energy
tomosynthesis and CBCT.

The integral of the NEQ at 15 mGy plotted in Fig. 5(d)
is representative of similar trends at other dose levels. As
expected, the dose allocation that maximizes NEQ at each
w is seen to increase with w, demonstrating that more
doses needs to be imparted by the low-energy image as its
decomposition weight increases. This trend is also reflected
in the detectability index calculations in Fig. 5(a)–(c), (e)–(f).
When w = 0 (i.e., for a single high-energy image) the NEQ
decreases monotonically as A increases (i.e., as the dose
allocated to the high-energy image decreases). At higher
values of w, the NEQ [vertical profiles in Fig. 5(d)] exhibits
an optimum at intermediate values of A since low and high
extremes of A result in high NPS in the low-energy and
high-energy images, respectively.

Optimization of kVp pairs for the breast tumor detection
task are shown in Fig. 6. The detectability index computed
as a function of kVp pair is plotted along with the integral of
the NEQ for three conditions: (1) the low-frequency task at
15 mGy [Figs. 6(a) and 6(b)]; (2) the low-frequency task at
1.5 mGy [Figs. 6(c) and 6(d)]; and (3) the midfrequency task
at 15 mGy [[Fig. 6(e) and 6(f)]. Note that the NEQ in Fig. 6(b)
and (f) is computed with the optimal dose allocation, A∗, for
the respective tasks. The DE contrast modeled as the signal
difference between the tumor and the fibroglandular tissue is
included in Fig. 6(g) for reference. Based on the optimization
results from Fig. 5, w was chosen to cancel fibroglandular
to adipose tissue, thereby reducing anatomical noise to zero.
The optimal dose allocation factor exhibits similar trends as
the previous two tasks (Fig. 4) and is not shown for brevity.

Similar to the kidney stone discrimination task, the detectabil-
ity index is affected by both the NEQ and DE contrast, which
can be appreciated through the “blending” of optima from
the corresponding figures. As the total dose is reduced, the
integral of NEQ exhibits an optimum at a higher kVpLE due
to the stronger influence of quantum noise, consequently
moving the optimal kVp selection from [65, 90] kVp at
15 mGy [Fig. 6(a)] to [75, 90] kVp at 1.5 mGy [Fig. 6(c)].
As the frequency content of the tasks is varied, however, the
optimal kVp selection remains for the most part unchanged
[Fig. 6(e)].

IV. DISCUSSION AND CONCLUSIONS

This work reported a cascaded systems model for
DE-CBCT based on 3D filtered backprojection and
reconstruction-based decomposition. Fourier-domain imag-
ing performance metrics such as the NPSDE and NEQDE were
derived from the model and validated against measurements
from an experimental CBCT imaging bench across a broad
range of imaging techniques and decomposition parameters.
The dual-energy detectability index was derived from such
Fourier metrics for a variety of imaging tasks, including renal
stone discrimination, iodinated vessel-bone discrimination,
and soft tissue tumor detection in anatomical clutter. The
detectability index provided an objective function in the
optimization of DE imaging parameters including the tissue
cancellation factor (w), dose allocation factor (A), and kVp
pair.

For all tasks investigated, the optimal dose allocation fac-
tor was found to be below 0.5, indicating that more dose
should be allocated to the high-energy image. The endoge-
nous breast tumor detection task illustrated the benefit of dual-
energy imaging in eliminating anatomical background clutter
and improving detectability beyond traditional single-energy
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scans. Tradeoffs reminiscent of single-energy tomosynthe-
sis in the battle between quantum and anatomical noise are
also revealed—namely, that dual-energy imaging is most ben-
eficial for low-frequency tasks and dose levels above the
quantum-limited regime. The calculations also indicated that
optimal kVp selection is dependent on total dose levels more
than the spatial frequency content of the imaging tasks at a
constant tissue cancellation factor. The kidney stone discrim-
ination task exemplified the application of dual-energy imag-
ing in discerning two materials with similar attenuation coeffi-
cients not possible in single-energy reconstructions. For both
of these tasks, the optimal kVp selection was found to fol-
low a combined effect of both NEQ (quantum noise) and DE
contrast (tissue cancellation). Therefore, in these cases, opti-
mizing imaging techniques based on noise or contrast alone is
not sufficient, and a fuller appreciation of NEQ in relation to
the imaging task was important to identifying the optima. The
iodine vs bone task demonstrated the situation in which a ma-
terial of interest exhibited a strong K-edge effect that resulted
in a sharp contrast profile within the energy range of interest;
therefore, the optimal kVp selection in this case was mainly
contrast-driven.

Assumptions implicit in this work are significant and con-
sistent with previous application of cascaded systems analysis
of Fourier metrology in DE and CBCT imaging performance.
These include the assumption of linearity and shift-invariance
intrinsic to linear systems analysis. Furthermore, perfect tis-
sue cancellation was assumed with the weighted subtraction
algorithm, and the effects of x-ray scatter, spatial variation
of x-ray energy as a result of attenuation through the object,
etc., were ignored. Moreover, the present study focuses on the
weighted subtraction algorithm for material decomposition,
which is limited in the extent to which it provides quantitative
measure of material composition. More complex decomposi-
tion algorithms, such as basis material decomposition either
in the reconstruction or projection domain, could offer quan-
titative information of materials and beam-hardening artifact
reduction.11 Modeling and optimization of such algorithms
within the general framework is subject of future work. A
straightforward extension of the model to linear noise reduc-
tion algorithms that further improve image quality and reduce
dose is also underway.56
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